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Abstract
We present some interesting facts connected with the following second-order
difference equation:

xn+2 – qnxn = fn, n ∈N0,

where (qn)n∈N0 and (fn)n∈N0 are given sequences of numbers. We give some sufficient
conditions for the existence of a unique bounded solution to the difference equation
and present an elegant proof based on a combination of theory of linear difference
equations and the Banach fixed point theorem. We also deal with the equation by
using theory of solvability of difference equations. A global convergence result of
solutions to a linear first-order difference equation is given. Some comments on an
abstract version of the linear first-order difference equation are also given.
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1 Introduction
Difference equations and systems of difference equations have been of a great interest in
the last several decades. For some classical results in the research area, see, for example,
[–], whereas some recent results can be found, for example, in [–] (see also the ref-
erences therein). Book [] contains a lot of results obtained up to ,.

It is a frequent situation that during some investigations in various areas of mathemat-
ics and science naturally appeared special cases of the following nonhomogeneous linear
second-order difference equation:

xn+ – qnxn = fn, n ∈N, ()

where (qn)n∈N and (fn)n∈N are sequences of real or complex numbers. Recall that equa-
tions of type () with fn = , n ∈N, appeared in many problem books on classical analysis
([, ]), especially in those dealing with sequences and integrals (by using the integra-
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tion in parts an integral In is frequently presented in terms of a linear function of In–).
However, this case is very simple, so the case fn �≡ , is more interesting.

Although equation () is of second order and resembles the following differential equa-
tion:

x′′(t) – q(t)x(t) = f (t), t ≥ , ()

it is not the one that corresponds quite well to it. The following second-order difference
equation:

�xn – qnxn = fn, n ∈N,

where �xn = xn+ – xn is the forward difference, is one of the discrete cousins of equa-
tion (), and is much more interesting for investigation than equation (). Nevertheless,
equation () has some nice properties which seem are not so known and will be presented
here.

As a further motivation, recall that if q is a positive number, then the difference equation

xn+ – qxn = , n ∈ N, ()

where x, x are given numbers, is easily solved and it has the following general solution:

xn = ĉ(
√

q)n + ĉ(–
√

q)n, n ∈N, ()

where ĉ and ĉ are arbitrary constants ([, , , ]).
By using equation () it is immediately seen that the following three statements hold.
(a) If q ∈ (, ), then all the solutions to equation () converge to zero.
(b) If q =  then all the solutions to equation () are bounded.
(c) If q > , then all the solutions to equation () are unbounded, except the trivial

solution

xn = , n ∈N,

which is obtained for the initial conditions x = x = .
In terms of the boundedness these statements claim that all the solutions to equation ()

are bounded if and only if q ∈ (, ], while for the case q >  there is only one bounded
solution to the equation.

It is a classical problem to see how bounded perturbations of the right-hand side of
equation (), as well as of coefficient q influence on the boundedness character of the so-
lutions of such obtained equations. We will present two interesting ways how the problem
of the existence of a unique bounded solution can be solved for the case of the difference
equation (), where (qn)n∈N and (fn)n∈N are two given bounded sequences.

By l∞ we will denote the space consisting of all bounded sequences u = (un)n∈N with
the supremum norm

‖u‖∞ = sup
n∈N

|un|. ()

It is well known that l∞ with norm () is a Banach space.
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The paper is partially based on several comments and ideas presented by the author
at several international conferences and invited talks during the last several years, which
has not been published so far. Some of the results could be known, but we could not find
specific references for them.

The paper is organized as follows. First, we consider the case when qn = q �=  for every
n ∈N and (fn)n∈N is a bounded sequence. Then we consider the case when the sequences
(qn)n∈N and (fn)n∈N are bounded. By a nice combination of the theory of linear difference
equations and the Banach fixed point theorem we present some sufficient conditions for
the existence of a unique bounded solution to equation (). In the third section we will
present another way for dealing with the unique existence problem by using only the the-
ory of linear difference equations. We finish the paper by giving some comments on the
form of general solution to an abstract version of the linear first-order difference equa-
tion.

2 Fixed point approach in dealing with equation (1)
In this section we deal with the problem of the existence of a unique bounded solution
to the difference equation (). To do this we use fixed point theory. First we deal with the
case when qn = q �=  for every n ∈ N and (fn)n∈N is a bounded sequence.

Before we formulate and prove the main result in the section we need an auxiliary result
which is incorporated into the following lemma. The lemma is essentially folklore, but we
will give a proof of it for completeness, for the benefit of the reader and also as a good
motivation and better understanding of some ideas appearing in the proof of the main
result.

Lemma  Consider the difference equation

xn+ – qxn = fn, n ∈N, ()

where q ∈ C \ {}, x and x are given complex numbers, and (fn)n∈N is a given sequence
of complex numbers. Then the general solution to equation () is given by the following
formula:

xn = (
√

q)n

(
c +

n–∑
k=

fk

(√q)k+

)
+ (–

√
q)n

(
d +

n–∑
k=

(–)kfk

(√q)k+

)
, n ∈ N, ()

where c and d are arbitrary numbers, and √q is one of two possible roots of q.

Proof The difference equation () can be solved. We will demonstrate it by using the
method of variation of constants ([, ]). Namely, based on the form of the general solu-
tion to the homogeneous equation () given in (), we seek the general solution to equa-
tion () in the form

xn = cn(
√

q)n + dn(–
√

q)n, n ∈N, ()

where (cn)n∈N and (dn)n∈N are two (undetermined) sequences.
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Further, we pose the following condition:

xn+ = cn+(
√

q)n+ + dn+(–
√

q)n+ = cn(
√

q)n+ + dn(–
√

q)n+, ()

for n ∈N, that is,

(cn+ – cn)(
√

q)n+ + (dn+ – dn)(–
√

q)n+ = , ()

for n ∈N.
Using () with n → n +  along with () into equation () is obtained

cn+(
√

q)n+ + dn+(–
√

q)n+ – q
(
cn(

√
q)n + dn(–

√
q)n) = fn,

that is,

(cn+ – cn)(
√

q)n+ + (dn+ – dn)(–
√

q)n+ = fn, ()

for n ∈N.
For each fixed n ∈ N, equalities () and () can be regarded as a two-dimensional

linear system in the variables cn+ – cn and dn+ – dn.
By solving the system the following is easily obtained:

cn+ – cn =
fn

(√q)n+ and dn+ – dn =
(–)nfn

(√q)n+ , n ∈N,

from which it follows that

cn = c +
n–∑
k=

fk

(√q)k+ ()

and

dn = d +
n–∑
k=

(–)kfk

(√q)k+ , ()

for n ∈N.
Using () and () into () we get equation (). That () represents the general solution

to () follows from the facts that the sequence

xp
n := (

√
q)n

n–∑
k=

fk

(√q)k+ + (–
√

q)n
n–∑
k=

(–)kfk

(√q)k+

is a particular solution to equation (), which is easily verified, while

xh
n = c(

√
q)n + d(–

√
q)n,

is the general solution to the corresponding homogeneous equation ([, ]). �
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The following result solves the problem of existence of a unique bounded solution to
equation () for the case qn = q, n ∈N, when |q| > .

Theorem  Consider the difference equation (), where q is a complex number such that
|q| >  and f := (fn)n∈N is a given bounded sequence of complex numbers. Then there is a
unique bounded solution to the difference equation.

Proof By Lemma  we know that the general solution to the difference equation () is given
by equation (). By using equation () for even and odd indices it follows that

xn = qn

(
c + d +

n–∑
k=

( + (–)k)fk

(√q)k+

)
()

and

xn+ = (
√

q)n+

(
c – d +

n∑
k=

( – (–)k)fk

(√q)k+

)
, ()

for every n ∈N.
Now note that from the assumptions of the theorem we have

∣∣∣∣∣
∞∑

k=

( + (–)k)fk

(√q)k+

∣∣∣∣∣ ≤
∞∑

k=

‖f ‖∞
(
√|q|)k+ =

‖f ‖∞√|q|(√|q| – )

and ∣∣∣∣∣
∞∑

k=

( – (–)k)fk

(√q)k+

∣∣∣∣∣ ≤
∞∑

k=

‖f ‖∞
(
√|q|)k+ =

‖f ‖∞√|q|(√|q| – )

so that these two series are absolutely convergent.
Using this fact, (), () and the assumption |q| >  we see that for a bounded solution

(xn)n∈N to equation () we must have

c + d = –
∞∑

k=

( + (–)k)fk

(√q)k+ = –
∞∑
j=

fj

(√q)j+ ()

and

c – d =
∞∑

k=

((–)k – )fk

(√q)k+ = –
∞∑
j=

fj+

(√q)j+ ()

(at the moment we do not know if a bounded solution to () exists, but if it does, then its
subsequences (xn) and (xn+) will be bounded, which will imply that () and () must
hold).

From () and () it follows that

c = –



∞∑
k=

fk

(√q)k+ ()
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and

d =



∞∑
k=

(–)k+fk

(√q)k+ . ()

If we use () and () in (), we get

xn = –(
√

q)n 


∞∑
k=n

fk

(√q)k+ + (–
√

q)n 


∞∑
k=n

(–)k+fk

(√q)k+

= (
√

q)n 


∞∑
k=n

((–)n+k+ – )fk

(√q)k+ , ()

for n ∈N.
A direct calculation shows that sequence (xn)n∈N defined by () is a solution to equa-

tion (). On the other hand, by using the assumptions of the theorem we easily get

|xn| ≤ ‖f ‖∞√|q|(√|q| – )
< ∞, n ∈N,

from which the boundedness of (xn)n∈N , follows. From this and since (c, d) is a unique
solution to the linear system ()-(), (xn)n∈N defined by () is a unique bounded solu-
tion to equation (). �

Now we are in a position to formulate and prove the main result in the section in an
elegant way.

Theorem  Consider the difference equation (), where

 < a ≤ qn ≤ b, n ∈N, ()

or

–b ≤ qn ≤ –a < –, n ∈ N, ()

for some positive numbers a and b, and (fn)n∈N is a bounded sequence of complex numbers.
Then equation () has a unique bounded solution.

Proof We will prove the theorem under condition (). The proof when () holds is sim-
ilar/dual so is omitted.

Let q be a positive number such that

q ∈ (
max

{
a, (b + )/

}
, b

)
. ()

Write equation () in the following form:

xn+ – qxn = (qn – q)xn + fn, ()

for n ∈N.
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Let A be the following operator defined on the class of all sequences:

A(u) =

(
(
√

q)n 


∞∑
k=n

((–)n+k+ – )((qk – q)uk + fk)
(√q)k+

)
n∈N

. ()

If u ∈ l∞, then from () it follows that

∥∥A(u)
∥∥∞ = sup

n∈N

∣∣∣∣∣(√q)n 


∞∑
k=n

((–)n+k+ – )((qk – q)uk + fk)
(√q)k+

∣∣∣∣∣
≤ sup

n∈N

∞∑
k=n

(qk + q)|uk| + |fk|
|√q|k+–n

≤ (b + q)‖u‖∞ + ‖f ‖∞√q(√q – )
< ∞,

which means that the operator A maps the Banach space l∞ into itself.
On the other hand, for every u, v ∈ l∞ we have

∥∥A(u) – A(v)
∥∥∞ = sup

n∈N

∣∣∣∣∣(√q)n 


∞∑
k=n

((–)n+k+ – )(qk – q)(uk – vk)
(√q)k+

∣∣∣∣∣
= sup

n∈N

∣∣∣∣∣(√q)n
∞∑
j=

(qn+j – q)(un+j – vn+j)
(√q)n+j+

∣∣∣∣∣
≤ sup

n∈N

∞∑
j=

|qn+j – q||un+j – vn+j|
qj+

≤ max{q – a, b – q}
q – 

‖u – v‖∞. ()

Since a >  we have q–a < q–. On the other hand, from () we see that  < b–q < q–.
From this and (), we have

∥∥A(u) – A(v)
∥∥∞ ≤ q̂‖u – v‖∞, ()

for every u, v ∈ l∞, and for

q̂ :=
max{q – a, b – q}

q – 
∈ (, ),

that is, A : l∞ → l∞ is a contraction.
By the Banach fixed point theorem we see that the operator has a unique fixed point,

say x∗ = (x∗
n)n∈N ∈ l∞, that is, A(x∗) = x∗ or equivalently

x∗
n = (

√
q)n 



∞∑
k=n

((–)n+k+ – )((qk – q)x∗
k + fk)

(√q)k+ , ()

for n ∈N.
A direct calculation shows that this bounded sequence satisfies the difference equa-

tion () for every n ∈N, from which the theorem follows. �
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Remark  Beside the choice of operator (), which is naturally imposed, a crucial point
in the proof of Theorem  is the choice of constant q in () to get the contractivity of the
operator. It is also expected that a modification of the above arguments can be applied to
some other related difference equations.

3 Equation (1) versus the linear first-order difference equation
Another approach in dealing with equation () is to note that it is obtained from a lin-
ear first-order difference equation by scaling the indices. The linear first-order difference
equation is of the form

xn+ = qnxn + fn, n ∈ N, ()

where (qn)n∈N and (fn)n∈N are arbitrary real (or complex) sequences and x ∈ R (or
x ∈ C). The main feature of the equation is that it is solvable. How equation () is solved
can be found, for example, in [, , ]. On periodic solutions to equation () see []. If
qn �=  for every n ∈N, then general solution to equation () can be obtained, for exam-
ple, as follows. Dividing both sides of () by

∏n
j= qj, we obtain

xn+∏n
j= qj

=
xn∏n–
j= qj

+
fn∏n
j= qj

, n ∈N. ()

Summing the equalities in () from  to n – , we easily get the following formula for a
general solution to equation ():

xn =
n–∏
j=

qj

(
x +

n–∑
i=

fi∏i
j= qj

)
. ()

It is important to note that many nonlinear difference equations and systems can be
reduced to some special cases of equation (), which means that they are solvable too.
Some interest in the area has been renewed recently. For some recent classes of solvable
difference equations see, for example, [, , , , , , ], while some related systems
of difference equations can be found in [, , , ]. For some recent results on solvable
product-type systems of difference equations, see [, –] and the references therein.
For some classical equations and systems which can be reduced to () or solved by some
other methods; see, for example, [, , , , ].

How useful and powerful equation () is shows the following small but nice result,
which is an old result by the author which has never been published so far but has been
presented at several talks.

Theorem  Consider equation (). Assume that  < qn ≤ p < , for n ∈ N, (fn)n∈N is a
sequence of real numbers, and that there is a finite

lim
n→∞

fn

 – qn
. ()

Then every real solution (xn)n∈N to the equation is convergent.
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Proof Let the limit in () be equal to l. Since qn �=  for every n ∈ N we see that every
solution to equation () can be written in the form as in (). Since


pn ≤ ∏n–

j= qj
<

∏n
j= qj

, n ∈N,

it follows that the sequence

Qn =
∏n–

j= qj
, n ∈N,

increasingly tends to +∞ as n → ∞.
Using the Stoltz theorem ([, ]) and condition () we have

lim
n→∞ xn = lim

n→∞

x +
∑n–

i=
fi∏i

j= qj

∏n–
j= qj

= lim
n→∞

fn–∏n–
j= qj

–qn–∏n–
j= qj

= l,

which implies that limn→∞ xn = l, for every solution to equation (), from which the the-
orem follows. �

Remark  Special cases of Theorem  frequently appear at problem books or students’
competitions (see, for example, []), but in all the cases that we have met so far the ex-
istence of the limit limn→∞ fn is assumed. However, if () holds, then the limit need not
exist. For example, if we assume that sequences (qn)n∈N and (fn)n∈N are defined as follows:

qn = q, qn+ = q,

fn = f, fn+ = f, n ∈N,

where the following conditions are satisfied:

f

 – q
=

f

 – q
,

f �=  �= f �= f and q, q ∈ (, ), then it is clear that

lim
n→∞

fn

 – qn
=

f

 – q
,

but there is no limn→∞ fn.
If we assume that

inf
n∈N

|qn| =: q > , ()

then
∣∣∣∣∣

n–∏
j=

qj

∣∣∣∣∣ → +∞, as n → ∞



Stević Advances in Difference Equations  (2017) 2017:169 Page 10 of 13

(we can assume here also lim infn→∞ |qn| > ). Hence, in this case a solution to equa-
tion () will be bounded, only if

x = –
∞∑
i=

fi∏i
j= qj

, ()

and using () in (), we see that it will be given by the following formula:

xn = –
n–∏
j=

qj

∞∑
i=n

fi∏i
j= qj

, n ∈N. ()

In order that () holds the convergence of the series in () is necessary, which will be so,
for example, if (fn)n∈N is a bounded sequence.

Now note that if (xn)n∈N is a solution to equation (), then its subsequences (xn)n∈N

and (xn+)n∈N are solutions to the equations

yn+ = qnyn + fn, n ∈N, ()

and

yn+ = qn+yn + fn+, n ∈N, ()

respectively, which are nothing but two difference equations of the form in (), and con-
sequently they are solvable.

By applying the arguments from () to (), it is easy to see that the following result
holds.

Theorem  Consider equation (), where condition () holds and (fn)n∈N is a bounded
sequence. Then the equation has a unique bounded solution given by the formulas

xn = –
n–∏
j=

qj

∞∑
i=n

fi∏i
j= qj

,

xn+ = –
n–∏
j=

qj+

∞∑
i=n

fi+∏i
j= qj+

,

for every n ∈N.

Remark  Theorem  also shows that equation () has a unique bounded solution if ()
holds and (fn)n∈N is a bounded sequence, and gives it explicitly, although in not so nice
way. Moreover, the conditions in Theorem  are somewhat weaker so that its result is
somewhat stronger than the one in Theorem , which again shows the importance and
usefulness of equation (). Nevertheless, both approaches in dealing with equation ()
are interesting, each of them in its own way.
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3.1 An abstract form of equation (29)
Equation () is not only ‘solvable’ for the case of real or complex initial values and coef-
ficients. Namely, let S be a set equipped with two binary operations 
 and ⊕ (two maps
which send elements of the Cartesian product S × S to S), or in terminology of abstract
algebra, let (S,
) and (S,⊕) be two groupoids/magmas, such that operation 
 is left-
distributive over ⊕, that is,

x 
 (y ⊕ z) = (x 
 y) ⊕ (x 
 z), ()

for every x, y, z ∈ S. Then the ‘difference’ equation

xn = (an– 
 xn–) ⊕ bn–, n ∈ N, ()

where x ∈ S, an, bn ∈ S, n ∈ N, is solvable.
Indeed, for n = , we get x = (a 
 x) ⊕ b. From equality () with n =  along with

(), is obtained

x =
(
a 
 (

(a 
 x) ⊕ b
)) ⊕ b =

(
a 
 (a 
 x)

) ⊕ (a 
 b) ⊕ b.

An inductive argument shows that

xn =
(
an– 
 (

an– 
 · · · 
 (a 
 x) · · · ))
⊕ (

an– 
 (
an– 
 · · · 
 (a 
 b) · · · )) ⊕ · · · ⊕ (an– 
 bn–) ⊕ bn–, ()

for every n ∈ N, which means that () is a formula for general solution to equation ()
under the posed conditions.

If operation 
 has precedence over ⊕, that is, if

x 
 y ⊕ z = (x 
 y) ⊕ z,

for every x, y, z ∈ S, then equation () can be written in the following form:

xn = an– 
 (
an– 
 · · · 
 (a 
 x) · · · )

⊕ an– 
 (
an– 
 · · · 
 (a 
 b) · · · ) ⊕ · · · ⊕ an– 
 bn– ⊕ bn–, n ∈N.

If further (S,
) is a semigroup; a groupoid where operation 
 is associative, that is,

(x 
 y) 
 z = x 
 (y 
 z),

for every x, y, z ∈ S, then from the well known fact that in this case for every set d, d, . . . , dk

of elements from S the product

k⊙
j=

dj := d 
 d 
 · · · 
 dk ()
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is unambiguous, that is, the same element is obtained regardless of how parentheses are
inserted in product (), equation () can be written in the following form:

xn = an– 
 an– 
 · · · 
 a 
 x

⊕ an– 
 an– 
 · · · 
 a 
 b ⊕ · · · ⊕ an– 
 bn– ⊕ bn–

=

( n–⊙
j=

an––j

)

 x ⊕

n–⊕
j=

(n––j⊙
i=

an––i

)

 bj, n ∈N,

where if d, d, . . . , dk ∈ S, then

k⊕
j=

dj := d ⊕ d ⊕ · · · ⊕ dk . ()

Note that in () and () the order of elements is important, since we do not assume
commutativity of these operations on S.

If further the operation 
 is commutative, that is,

x 
 y = y 
 x,

for every x, y ∈ S, then equation () can be written in the following form:

xn =

( n–⊙
j=

aj

)

 x ⊕

n–⊕
j=

( n–⊙
i=j+

ai

)

 bj, n ∈N,

from which if S = R or S = C and 
 and ⊕ are multiplication and addition in R or C,
respectively, is obtained equation ().
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15. Stević, S: Solvable product-type system of difference equations whose associated polynomial is of the fourth order.

Electron. J. Qual. Theory Differ. Equ. 2017, Article ID 13 (2017)
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