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Abstract
In this paper, we develop the nonlinear integrable couplings of Burgers equations
with time-dependent variable coefficients. A new simplified bilinear method is used
to obtain new multiple-kink solutions and multiple-singular-kink solutions for this
system. The proposed system is a generalization model in ocean dynamics, plasma
physics and nonlinear lattice. The effects of time-variable coefficients on the velocity,
phase and amplitude are given. The solitonic propagation and collision are discussed
by the graphical analysis and characteristic-line method.
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1 Introduction
The classical coupled Burgers equations (CBE) [–] with time t and space x derivatives
are given by

vt – vxx – vvx + a(vw)x = ,
wt – wxx – wwx + b(vw)x = ,

}
()

where t > , x is a horizontal coordinate space and a, b are constants. The coupled Burgers
equations (CBE) arise in a large number of applications in physics, engineering and math-
ematical problems. Some if these applications are plasma physics, fluid mechanics, optic,
solid state physics, chemical physics, etc. [–]. Many researchers in applied mathematics
give great attention to finding the analytical, approximation and exact solutions of CBE
by different methods such as variational iteration method [], Adomian-Pade technique
[], differential transformation method [], exponential function method in rational form
[], homotopy analysis method [], modified extended direct algebraic (MEDA) method
[], first integral method [], reduced differential transform method [] and the Hirota
bilinear method [].
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In this paper, we develop the classical coupled Burgers equations () to derive nonlinear
n-coupled Burgers equations with time-variable coefficients (nc-BE) in the form

(w)t – α(t)(w)xx – β(t)w(w)x + γ(t)(www · · ·wn)x = ,
(w)t – α(t)(w)xx – β(t)w(w)x + γ(t)(www · · ·wn)x = ,
(w)t – α(t)(w)xx – β(t)w(w)x + γ(t)(www · · ·wn)x = ,
...
(wn)t – αn(t)(wn)xx – βn(t)wn(wn)x + γn(t)(www · · ·wn)x = .

⎫⎪⎪⎪⎪⎪⎪⎪⎬
⎪⎪⎪⎪⎪⎪⎪⎭

()

When n = , α(t) = α(t) = , β(t) = β(t) = , γ(t) = a, and γ(t) = b, the coupling ()
reduces to the classical coupled (). The objectives of this work are the following:

. Derive a form of nonlinear n-coupled Burgers equations ().
. Show that it has multiple-kink solutions and multiple-singular-kink solutions by

using the Backlund transformations and simplified Hirota’s method [–].
In this study, we need the following conditions on ():

αj(t) = bjβj(t), j = , , , . . . , n, ()

where bj are arbitrary constants.
Finally, we define the ‘kink’ as a type of solitons which is in the form tanh, not tanh.

In a kink, we take the limit when x approaches infinity. The answer is a constant, unlike
solitons where the limit goes to . Solitons are solutions in the form of sech and sech.
The graph of the soliton is a wave which is positive. It is unlike the periodic solutions sine,
cosine, etc. In trigonometric functions, waves go above and below the horizontal line [].

This paper is organized as follows. A new N-kink solutions and N-singular-kink solu-
tions for the nc-BE system () are constructed in Sections  and . The effect of the vari-
able coefficients and the collision behavior and propagation properties are discussed in
Section . Finally, conclusions are given in Section .

2 Multiple-kink solutions for the nc-BE system
In this section, we use the simplified bilinear method [–] to construct multiple-kink
solutions of nc-BE system (). If we substitute

wj(x, t) = eφij(x,t), j = , , , . . . , n,

φij(x, t) = six – δij(t)

into the linear terms of Eq. (), we get the dispersion relation as follows:

δij(t) = –
∫

s
i αj(t) dt. ()

Thus,

φij(x, t) = six +
∫

s
i αj(t) dt. ()

Assume that the multiple-kink solutions of () are

wj(x, t) = Cj
(
ln aj(x, t)

)
x, j = , , , . . . , n. ()
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For single-kink solutions, the aj(X, T) is given by

aj(x, t) =  + eφj(x,t) =  + esx+
∫

s
 αj(t) dt . ()

Substitute Eqs () and () into Eq. (), then solving for C, C, C, . . . , Cn, the non-zero so-
lution is given by

Cj =
αj(t)
βj(t)

, j = , , , . . . , n. ()

To obtain a numerical value of Rj, we set the constraints αj(t)
βj(t) = bj, j = , , , . . . , n, where

bj are arbitrary constants. Now, substitute Eq. () into Eq. (), to obtain the single-kink
solutions for () as follows:

wj(x, t) = s
αj(t)
βj(t) × eφj(x,t)

(+eφj(x,t))

= s
αj(t)
βj(t) × esx+

∫
s
 αj(t) dt

+esx+
∫

s
 αj(t) dt

= s
αj(t)
βj(t) [ + tanh

φj(x,t)
 ], j = , , , . . . , n,

⎫⎪⎪⎪⎪⎬
⎪⎪⎪⎪⎭

()

where

φj(x, t) = sx +
∫

s
αj(t) dt.

To obtain the two-kink solutions, let

aj(x, t) =  + eφj(x,t) + eφj(x,t) + beφj(x,t)+φj(x,t)

=  + esx+
∫

s
 αj(t) dt + esx+

∫
s
αj(t) dt + be(s+s)x+(s

 +s
)

∫
αj(t) dt

}
()

where φj(x, t) and φj(x, t) are defined in Eq. (). Using Eqs () and () and substituting
the results in Eq. (), we obtain the value of phase shift by

b = . ()

Hence,

bij = ,  ≤ i < j ≤ .

Substituting Eqs (), () and () into Eq. (), we obtain two-kink solutions for Eq. ()

wj(x, t) = 
αj(t)
βj(t)

× sesx+
∫

s
 αj(t) dt + sesx+

∫
s
αj(t) dt

 + esx+
∫

s
 αj(t) dt + esx+

∫
s
αj(t) dt

, j = , , , . . . , n. ()

The three-soliton solutions are determined by

aj(x, t) =  + eφj(x,t) + eφj(x,t) + eφj(x,t) + beφj(x,t)+φj(x,t)

+ beφj(x,t)+φj(x,t) + beφj(x,t)+φj(x,t) + beφj(x,t)+φj(x,t)+φj(x,t),
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where

bij = ,  ≤ i < j ≤ .

Proceeding as before, we find

b = .

Then

aj(x, t) =  + esx+
∫

s
 αj(t) dt + esx+

∫
s
αj(t) dt + esx+

∫
s
αj(t) dt .

Thus, the three-kink solution for Eq. () is given by

wj(x, t) = 
αj(t)
βj(t)

× sesx+
∫

s
 αj(t) dt + sesx+

∫
s
αj(t) dt + sesx+

∫
s
αj(t) dt

 + esx+
∫

s
 αj(t) dt + esx+

∫
s
αj(t) dt + esx+

∫
s
αj(t) dt

, j = , , , . . . , n.

To this point, we reach the fact that Eq. () is completely integrable and N-kink solutions
exist for N ≥  [, ]. Moreover, we can obtain N-kink solutions as follows:

wj(x, t) = 
αj(t)
βj(t)

×
∑N

i= siesix+
∫

s
i αj(t) dt

 +
∑N

i= esix+
∫

s
i αj(t) dt

, j = , , , . . . , n.

3 Multiple-singular-kink solutions for the nc-BE system
In order to obtain the single-singular-kink solutions of Eq. (), we substitute

wj(x, t) = esix–δij(t), j = , , , . . . , n,

into the linear part of Eq. (); as a result, we get

δij(t) = –
∫

s
i αj(t) dt.

Assume that the single-singular-kink solutions of Eq. () are

wj(x, t) = Cj
(
ln aj(x, t)

)
x, j = , , , . . . , n, ()

where aj(x, t) is given by

aj(x, t) =  – esx+
∫

s
 αj(t) dt . ()

Substituting Eq. () into Eq. () and solving for Cj, we get

Cj =  αj(t)
βj(t) , j = , , , . . . , n.

}
()
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Similarly, we set the constraints αj(t)
βj(t) = bj, j = , , , . . . , n, where bj are arbitrary constants

to obtain a numerical value of Cj. Then the single-singular-kink solutions of Eq. () are

wj(x, t) = –s
αj(t)
βj(t) × eφj(x,t)

(–eφj(x,t))

= –s
αj(t)
βj(t) × esx+

∫
s
 αj(t) dt

–esx+
∫

s
 αj(t) dt

= s
αj(t)
βj(t) [ + coth

φj(x,t)
 ], j = , , , . . . , n,

⎫⎪⎪⎪⎪⎬
⎪⎪⎪⎪⎭

where

φj(x, t) = sx +
∫

s
αj(t) dt.

The two-singular-kink solutions are obtained by setting

aj(x, t) =  – eφj(x,t) – eφj(x,t) + beφj(x,t)+φj(x,t)

=  – esx+
∫

s
 αj(t) dt – esx+

∫
s
αj(t) dt + be(s+s)x+(s

 +s
)

∫
αj(t) dt . ()

Substituting Eq. () into Eq. () and then in Eq. (), we obtain the phase shift b as

b = . ()

Substitute Eqs (), () and () into Eq. (), then the two-singular-kink solutions for
Eq. () are

wj(x, t) = –
αj(t)
βj(t)

× sesx+
∫

s
 αj(t) dt + sesx+

∫
s
αj(t) dt

 – esx+
∫

s
 αj(t) dt – esx+

∫
s
αj(t) dt

, j = , , , . . . , n.

For three-singular-kink solutions, we use

aj(x, t) =  – esx+
∫

s
 αj(t) dt – esx+

∫
s
αj(t) dt – esx+

∫
s
αj(t) dt .

Proceeding as before, the three-singular-kink solutions for Eq. () are given by

wj(x, t) = –
αj(t)
βj(t)

× sesx+
∫

s
 αj(t) dt + sesx+

∫
s
αj(t) dt + sesx+

∫
s
αj(t) dt

 – esx+
∫

s
 αj(t) dt – esx+

∫
s
αj(t) dt – esx+

∫
s
αj(t) dt

, j = , , , . . . , n.

In general, we can set N-singular-kink solutions for Eq. () as

wj(x, t) = –
αj(t)
βj(t)

×
∑N

i= siesix+
∫

s
i αj(t) dt

 –
∑N

i= esix+
∫

s
i αj(t) dt

, j = , , , . . . , n.

4 Stabilities and propagation characteristics of solitary waves
In this section, we discuss the effect of non-homogeneities, namely, variable coefficients to
the nc-BE. The dispersion relation will be used to give the characteristic line and velocity v
for every soliton. The soliton amplitude amp for wj(x, t), j = , , , . . . , n, can be expressed
as

amp =
∣∣∣∣s

αj(t)
βj(t)

∣∣∣∣.
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Figure 1 Evolution plots of single-kink solution
given by (9) at t = 1, h1 = 0.5, αj(t) = λt2,
βj(t) = t2, γj(t) = t (a) (solid line) λ = 0.5; (b) (dot
line) λ = 0.75; (c) (dash line) λ = 1.0.

Figure 2 The profile figure for solution (12) with
s1 = 0.5, s2 = 0.75, αj(t) = 8t

5�(1.8) and
βj(t) = 4t

5�(1.8) .

Using the characteristic-line method [, ], the characteristic wedge for each solitary
wave for wj(x, t) is defined by

x = –
∫

siαj(t) dt. ()

The velocity v of each solitary wave for wj(x, t), j = , , , . . . , n, is

vx = –siαj(t). ()

The soliton amplitude amp depends on the variable coefficients αj(t) and βj(t) but not on
the variable coefficient γj(t), see Figure . The propagation velocity of the solitary wave
Eq. depends only on the coefficient functions αj(t). Moreover, we see that from (), as the
inequality –siαj(t) >  holds, the soliton will move in the direction of positive x-axis.

In Figure , we choose s = ., s = ., αj(t) = t
�(.) and βj(t) = t

�(.) . Then the char-
acteristic curve of Eq. () is given by

x +
si

�(.)
t + η = .

Then the soliton reveals the parabolic type propagation trajectory with unalterable am-
plitude but continuously changeable velocity.
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Figure 3 The profile figure for solution (12) with
s1 = 0.5, s2 = 0.75, αj(t) = 7 sin t

10�(1.4) , and
βj(t) = 7 sin t

20�(1.4) .

Figure 4 The propagation of two-kink solution
(12) with s1 = 0.25, s2 = 0.5, αj(t) =

√
π

2 (–t2 + t – 1)

and βj(t) =
√

π
2 (t2 – t + 1).

In Figure , we choose s = ., s = ., αj(t) =  sin t
�(.) and βj(t) =  sin t

�(.) . Then the
characteristic curve of Eq. () is given by

x –
hi

�(.)
cos t + η = .

We see from Figure  that the propagation trajectory of the soliton presents the periodicity
oscillation.

In Figures  and , we use Eq. () to discuss the interaction between two solitonic
waves in a nonhomogeneous situation. In Figure  the interaction is called the overtak-
ing coalescence. In this figure, we choose s = ., s = ., αj(t) =

√
π

 (–t + t – ) and
βj(t) =

√
π

 (t – t + ). The two fronts with the same propagation direction in x-axis coa-
lesce into one large front in their interaction region of the (x, t)-plane, of which the am-
plitude amounts to two initial amplitudes. The front with faster velocity overtakes the
slow-velocity one. In Figure , we choose s = –., s = ., αj(t) =

√
π

 (–t + t – ) and
βj(t) =

√
π

 (t – t + ). The interaction is called head-on collision between one left-going
soliton and one right-going soliton. Moreover, the directions of the solitary are controlled
by the sign of velocity. It is clear that the amplitude and velocity after the collision of each
soliton are not changed since the phase shift b = .

5 Conclusions
In this work, we obtain new N-kink solutions and N-singular-kink solutions for new
couplings of the Burgers equations with time-dependent variable coefficients (nc-BE)
by using the simplified Hirota method and Backlund transformations. The condition
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Figure 5 The propagation of two-kink solution
(12) with s1 = –0.25, s2 = 0.5, αj(t) =

√
π

2 (–t2 + t

– 1) and βj(t) =
√

π
2 (t2 – t + 1).

αj(t) = bjβj(t) for Eq. () is sufficient to have multi-soliton solutions. We show the effect of
time-dependent coefficients on amplitude and velocity of a single wave. We see that the
amplitude depends on αj(t) and βj(t), but the velocity of the wave depends only on αj(t)
and both of them are independent of γj(t). Furthermore, the interaction behaviors and
propagation characteristics of the solitons have been discussed. We see that the forms of
the variable coefficients determine the appearances of the characteristic curve and corre-
spond to distinct propagation trajectories.

Since the problem of bidirectional solitary waves has been reported in waves, in bubbly
liquids [, ] and shallow-water waves [], it is expected that the bidirectional soliton-
like solutions to Eq. () are used to describe such interesting physical phenomena.

Regarding the complexity of the proposed problem, we highlight the main advantages
of the proposed method:

. The solution in the proposed method can be written in the exponential form, which
generates multiple solutions, while other methods generate only single solution.

. The proposed method shows the integrability of the modified equations, which is
not possible in other methods.

. In the proposed method, we use auxiliary functions to identify the type of the
obtained solution, which is not possible in other methods.

. The computational cost for the proposed method is cheaper compared with other
methods.

Finally, most of the solitary wave methods give only single solution, either of type soli-
ton, singular-soliton, kink, singular-kink, periodic or singular-periodic. Examples of these
methods are the tanh expansion method, the sine-cosine method, the rational trigono-
metric function method, the tanh-sech function method, the (G′/G)-expansion method,
Jacobi elliptic function method and others [–]. The obtained solutions are always sin-
gle. But, for the bilinear method, it gives multiple solutions at once.
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