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1 Introduction
Fractional calculus is the extension of integer order calculus to arbitrary order calculus.
With the development of fractional calculus, fractional differential equations have wide
applications in the modeling of different physical and natural science fields, such as fluid
mechanics, chemistry, control system, heat conduction, etc. There are many papers con-
cerning fractional differential equations with the p-Laplacian operator [1-6] and frac-
tional differential equations with integral boundary conditions [7-11].

By means of the Guo-Krasnosel’skii fixed point theorem on cones, Han et al. [5] inves-
tigate positive solutions for the following problems for the generalized p-Laplacian oper-
ator:

Dg+ (¢>(D‘(’)‘+ u(t))) = Af(u(t)), 0<t<l,
u(0)=u'(0)=u'(1) =0,

¢(D%u(0)) = (p (D3 u(1))) =0,

where 1 < 8 <2, 2 <a < 3, they obtain some new results of positive solutions for the
aforementioned boundary value problem.
By means of the Avery-Henderson fixed point theorem and the Leggett-Williams fixed

point theorem, Giinendi and Yaslan [11] investigate positive solutions for the following
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problem with integral boundary conditions:

~DE () +f(u(t) =0, te[0,1],
w'(0)=u"(0) = =u(1) = u"(1) =0,
au(0) — fu'(0) = Y0P ay [ <>ds,
yu()+8u/(1) =302 b  [52 u(s) ds,

where n -1<n<n,n>3,a,p,y,6 >0, a,b, > 0 are given constants. They show the
existence of multiple positive solutions for the aforementioned boundary value problems.

Motivated by the aforementioned work, this work discusses the existence of positive
solutions for this fractional differential equation:

DY, [y (DG u(e)] + f(6,u(£) = 0, ¢ € (0,1),
(DL 1(0)) = [, (DL u(0))]' = (<D (1)) = 0,
u”(0)=u'(1)=0,

au(0) + b/ (0 fo

(1.1)

where 2<a <3,2<B <3and5<a + B < 6. ¢p(u) = [ul’*u, p > 1. °D, is the Caputo
fractional derivative, D’g+ is the Riemann-Liouville fractional derivative.
We will always suppose the following conditions are satisfied:

(H1) g(8):[0,1] — [0, +00) with g(¢) € L'[0,1], f, g()dt > 0 and [, tg(t) dt > 0;
(Hy) a,b € (0,+00), a > folg(t) dtand b > a;
(Hs) f(t,u):[0,1] x (0,00) — (0,00) is continuous.

2 Background and definitions
To show the main result of this work, we give in the following some basic definitions and
a theorem, which can be found in [12, 13].

Definition 2.1 The fractional integral of order o > 0 of a function y : (0, +00) — R is given
by

1 t
B0 = s [ -9 y0ds
0+) T@) Jy Y
provided that the right side is pointwise defined on (0, +00), where
+00
INa) = / e x% 1 dx.
0

Definition 2.2 For a continuous function y : (0, +00) — R, the Riemann-Liouville deriva-
tive of fractional order « > 0 is defined as

o e (AN [T gran
D50 - () [ -9

where 7 = [«] + 1, provided that the right side is pointwise defined on (0, +00).
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Definition 2.3 For a continuous function y : (0, +00) — R, the Caputo derivative of frac-
tional order « > 0 is defined as

o _ 1 ! _ a1 (n)
DO*y(t)_if’(n—a) /0 (t=s)"""y"(s)ds,

where 7 = [«] + 1, provided that the right side is pointwise defined on (0, +00).

Theorem 2.1 (Avery-Henderson fixed point theorem [14]) Let (E, || - ||) be a Banach space,
and P C E be a cone. Let  and ¢ be increasing non-negative, continuous functionals on P,
and w be a non-negative continuous functional on P with w(0) = 0, such that, for somers > 0

and M > 0, ¢(u) < w(u) <Y (u),and ||ul| < Mo(u), forallu € P(p,rs), where P(p,r3) = {u €
P: ¢(u) < r3}. Suppose that there exist positive numbers ry < ry < r3, such that

o(lu) <lw(u) for0<Il<1l,anduc dP(w,r).

If T : P(@,rs) — P is a completely continuous operator satisfying:

(C1) @(Tu) > rs for all u € dP(p, r3);

(C2) w(Tu) <ry forall u € IP(w, ra);

(C3) P(yr,r1) #9, and y(Tu) > r for all u € 9P(yr, 1),
then T has at least two fixed points uy and uy such that ry < V¥ (uy) with w(u;) < ry and
ry < w(uy) with ¢(uy) < rs.

3 Preliminary lemmas
Lemma 3.1 The boundary value problem (1.1) is equivalent to the following equation:

u(t) =do +dit + ﬁ /Ot(t —8)*y(s) ds, (3.1)
where
1 1 t
do = - 5)*(s)dsd
*"la- [Tg(t)deIT (@) /0 g(t)/o (- dsde
b [y tg(e)dt 1 H
1-s)* ds, 3.2
[a— [, g(®)deIM (@ -1) /o (A=) ds 32
1
d, = —ﬁ /0 (1-5)*2u(s)ds, (3.3)
1
v(s) = ¢y (/ H(s, ‘L')f(l’, u(r)) d‘L’), (3.4)
0
_g7)B1 _ (g — 7)B1
His ) = L (s—sT1) (s—7) 7, 0=<t=<s<l, (3.5)
L) | (s-st)f, 0<s<t<l
Bq(s) is the inverse function of ¢,(s), a.e., dy(s) = [s|9™2s, zla + %1 =1

Proof From D}y, [¢,(“Di. u(®))] +£(t,u(t)) = 0, we get

bp (D ul(t)) = —%/3) /Ot(t - Y (ru(r) dr + atP 7 + ot 4 at?
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In view of ¢, (°Dg, u(0)) = [¢,(°D§. u(0))]' = 0, we get c; = c3 = 0, i.e,,

(<Dl (1)) = —%ﬂ) /0 (t = oV (r,u(@) dr + cutP . (3.6)

Conditions ¢,(°Dg, %(1)) = 0 imply that

= 1 /l(l—r)ﬁ_lf(r u(t)) dr (3.7)
LTB) Jo ’ ‘ ‘

By use of (3.6) and (3.7), we get

1
¢p(cDg+u(t))=f0 H(t,r)f(r,u(t)) dr. (3.8)

In view of (3.8), we obtain

1
Dy u(t) = ¢y </0 Hi(t, t)f(r, M(T)) dt). (3.9)
Let
1
W) = ¢, ( /0 H(t, 0)f (1, u(0)) dr),

by use of (3.9), we get

u(t) = e )/(t ) (s)ds + do + dyt + dat?.

Conditions #”(0) = 0 imply that d, = 0, i.e.,
1 t 1
u(t) = —— | (t=s)*"v(s)ds + dy + dit,
() Jo
then we have
1 t
u/(t) = m </0‘ (t - S)aizV(S) ds + dl'

Conditions #'(1) = 0 imply that

1 ! a-2
dl:_m‘/.o (I—S) V(S)dS.

From au(0) + bu/(0) = folg(t)u(t) dt, we get

1 1 .
d = ~ . d d
' [“_fol )dt]r‘(a)/ g(t)/o (t—s)*"v(s)dsdt

b- fo tg(t)dt
[a fo &) el (@ — 1)

/(1 $)%2y(s) ds.
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Therefore, we can obtain

u(t) = do +dyt + ﬁ /Ot(t_s)alv(s) @

1 1 P 1
= e
[ﬂ—folg(t)dt F(Ol)/o g(t)/(; (t—5)*""v(s)dsdt

b- fo tg(t)dt
[‘Z fo

f(l 9 24(s) ds

_ _ Q)22 - _e-l
F(a—l)/o(l s) V(S)dS+I‘( )/(t $)* " v(s)ds.

The proof is complete. d

Lemma 3.2 ([15]) The function H(s, t) defined by (3.5) is continuous on [0,1] x [0,1] and
satisfy
s£11-s)r(l - 7)P 1 7(1-1)f!

N0 SH(S’T)SW fors, T €[0,1].

Let E be the real Banach space C[0,1] with the maximum norm, define the operator T :
E— Eby

Tu(t) = do + dit + %/ (t=95)*u(s)ds

- g(t) )T () f / s)dsdt

b- fo tg(t)dt
[a fo &) el (@ — 1)

" Tla s 1)/ (1= vls) ds + )/ (¢ s

Lemma 3.3 For u € C[0,1] with u(t) > 0, (Tu)(t) is non-increasing and non-negative.

/(1 $)*2y(s) ds

Proof Since

— L ! _ o)1
Tu(t) = dy +d1t+F(a)/0 (t—s5)*"v(s)ds,

so we get

(Tu)/(t) = dl + ﬁ/ (t_s)a—ZV(S) ds

/ (1-5)*2u(s)ds + ——— / (¢ = 8)*2v(s) ds

F(a 1)
<0.

o -1)
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So Tu(t) is non-increasing, then we have minc[o,1] Tu(t) = Tu(1). We have

1 ! a-1
Tu(l) = do +dq + m/o 1-9)"v(s)ds

1 1 P 1
- e
[a— [y g(t) AT (@) /0 g(t)/o (t— ) u(s)dsdt

b [ tg(t)dt ! .
1-5%24(s) ds
. fo (1) di] F(a—l)/ (=9

/ (1-29)*2u(s)ds + —/ (1-29)*v(s)ds

) r‘(06—1) o
1 1 P 1
—folg(t)dtr(a /Og(t)/o(f $)*1w(s) dsdt
[b fo tg dt / (1 )a 2V(S) ds
[a - fog(t)dt]r(a 1)

- _ el
T@) /0 1 =9)*"v(s)ds
0

The proof is complete. d

4 Main results
Theorem 4.1 Suppose that there exist numbers 0 < r) < ry < r3 such that f satisfies the
following conditions:
(H1) f(t u) > Ms, fort €[0,1], u € [rs3, ’73];
(H2) f(t,u) <My, fort €[0,1], u € [0, r2];
(H3) f(t,u) > My, fort € [0,1], u € [0,11],
where

T (s CTB-1 )\ T (n\"
M3‘3(25><L_) oW (L_> ’ MI‘B@,m(LT)

(b- a)B(ﬂq B-q+2a+q-2) BBg-p-q+2a+q-1)
. fo {GLGINCE)) ') ’
_ fog(t)dt . bl

la- [ g@dtT(@+1)  [a- [, g®)deIT (@)’

(b- fotg(t)dt)B(ﬂq B-q+2,a+q- 2)
[a - fo (&) dtIT (@ = 1)

L=

Then the problem (1.1) has at least two positive solutions u; and uy such that ry < ¥ (uy)

with w(uy) < ry and ry < w(uy) with ¢(uy) < r3.
Proof Define the cone P C E by

P={ulueEand min u(e) = klul,¢ 0,11},
te[0,1]
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where

_[b- [ tg(t)de] - fo (t)dt
b- fo 1g(t)

0<k<l.

For any u € P, in view of Lemma 3.3, we get

1 1
min |Tu(t)| = |Tu(1)| =dy+d + —f (1-35)*u(s)ds
te0,1] () Jo

1 ¢
— [ g ddT (@) /o &) /0 (- 5)""v(s)dsdt
0

b [ tg(t)dt 1 ,
1-5)*2u(s)ds
- fol g deT (@ - 1) /0 =9

/ (1-35)*2v(s)ds + / (1-9)*"v(s)ds

F(oe 1)
1 1 B
o— d d
la - fyg(t)de] F(a)/o g(”fo(f 9" () dsdt
e Jo 1804 -~ la - Jy g® d]

1-9)%2u(s)d
[a— [ g dt]Fa 1) /( 9 ds

1
k —5)y(s)dsd
= {[a— folg(t)dt]r(a)/o g(t)/o (=9 V9 dsde

b_fol tg(t)dt 1 , }
1 b a dS
— [ g@®)dar(@-1) /0 (1-5)*"v(s)

= KTu(0) = k|| Tu|..

Therefore, T : P — P. In view of the Arzela-Ascoli theorem, we have T : P — P is com-
pletely continuous.
We define the functions on the cone P:

¢(#) = min |u(t)| = u(l), w(u) = max |u(t)| = u(0),
te[0,1] t€[0,1]
Y(u) = max‘ t)’

Obviously, we have w(0) = 0, ¢(u) < w(u) < ¥ (u).

For any u € P(p,r3), we get mingepo,) #(t) > k|lul|, that is, ¢(u) > k||u||, therefore we ob-
tain ||y| < %g&(u). For any u € dP(w, r2), we get w(lu) = low(u) for 0 </ <1.

In the following, we prove that the conditions of Theorem 2.1 hold.

Firstly, let u € 0P(p, r3), that is, u € [rs, '73] for t € [0,1]. By means of (H1), we have

1
v(s) = ¢, (/0 H(s, T)f (t,u(z)) dr)

VP11 -s)z(1 - 1)p1
8 (M3 / r(6) dT)

$)B(2, ﬂ))q_

<M35ﬂ 1(
B T'(B)
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where B(2, B) = fol 7(1-7)#1dr. So we get

1
o(Tu) = n%n}]|Tu(t)| Tu(l) =dy + di + F(loc)/o (1-29)*v(s)ds

1 1 P 1
= e d d
la=Jog t)dt]r(a)/g(”fo(f 9" v(s) dsde

b- fo tg(t)dt
[a [y g(6)deIT (e - 1)

1 _ Q)2 L ! _q)e-l
F(a—l)/o(l s) V(S)ds+F(a)/0(1 8)*v(s)ds

1 1
b~y tg(tl)dt] —la-J, () dt] / (L ") ds
[a— [y g(&)de]T (a - 1) 0

1
/ (1-5)*21(s)ds

v

—8)* y(s) ds

b-a ! L M3sP1-9)B2, )\ T
1- ‘“( > ) ds
” [a—folg(t)dt]F(a—l)/o -9 L)

I a Mssﬂ-l(l—s)B(z,ﬁ))‘f‘1
- _ Q) d
+F(05)/0(1 9 ( () g

_ b-a M3BZ,3)>q— oG
_[ﬂ—f(fg(t)dt]l“(a—n( T'(B) /( 82 (s -9) "

—1 1
L(M3B(2”3 ))q f (1-5)(s" 11 -5) " ds
0

T\ T
_ b—a M3B(2’/3)>q—lB L , .,
i [“—folg(t)dt]l“(aq)( T'(B) Bg-B-g+2,a+q-2)

q-1
L<M3B(2;,3)) B(Bg-B-q+2,a+q-1)

T\ 1)
_ (MsBRAHNT,
( I(8) ) =

Secondly, let u € dP(w, ry), that is, u € [0, 1] for £ € [0,1]. By means of (H2), we get

1
= %(/O H(s,7)f (v, u(r)) dr)
Pt -oft N\ (MeBR )\ T
<¢"<M2fo r(B-1) d’)’(F(ﬂ—l)) '

So we have

o(Tu) = tlgl[gx]|Tu(t)| Tu(0) = d,

1 1 " 1
= o y
[ﬂ—folg(t) dt]F(a)/o g(t)/o (t—95)""v(s) ¢

Page 8 of 11
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b [ tg(t)dt
[a— [, g(t)de]T (o ~ 1)

1 1 1 ~ MQB(2,ﬂ)>ql
1-5)" dsd
) [“—fég(ﬂdtlr(a)/o g(t)/o -9 ( (g -1) ‘

_ 1 -1
[b1 Jo tg(2) dt] / 1 g2 (MzB(Zﬁ))q ds
[a— [y g(&)de]T (o - 1) Jo rg-1

[y g0 de (MZB(Z, B) )q-l
" la-fyg®)ddr@+1)\ T(B-1)

b [ tg(t)dt (MZB(z, B) )ql
[a— [y gt)ddT (@) \ T(B-1)

_ (MBAHNT,
‘(F(ﬁ—l)) 2=

1
/ (1-29)%2u(s)ds
0

Finally, let u € 0P(y, 1), that is, u € [0, 1] for ¢ € [0,1]. By means of (H3), we get

1
v(s) = ¢y (/0 His, ‘L’)f('(, u(r)) dr)
P L1 -s)r(1 - 7)P!
oo | )

_ (Mlsf“(l —5)B(2, B) )’“
B r(8) '

So we get

¥(Tu) = max |Tu(t)| =Tu(0) = dy
te[0,n]

1 1 ' 1
_ o
[“‘fég(t)dt]r(a)/og(t)/o(‘ 9" v(s) dsdr

b [y tg(t)de
[a— [, g®)deTM(@-1)
b [y tg(t)dt
" la- [y g®)ddr(@ -1
b- [l g de 1 R <M1sf‘—1(1 - 5)B(2, ﬁ))“
1-5)° ds
g [a— [y g®)del (@ -1) /0 =9 ()

b [, tg(t)de <M1B(2,,3)>q—1 o
- . o
la- [yg®)diM@-1)\ T(B) /0 (1-5)"2(s (1 -9))" ds

_ b-[ytg(t)de (MlB(Z,,B)
Ca- flg)ddT@-1)\  T(B)

-1
= (MlB(z,'B)>q Ll =Tr.

/1(1 —8)*2p(s)ds
0

1
)/0 (1-35)%2v(s)ds

q-1
) B(Bg-B-q+2,a+q-2)

r'(B)
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Therefore, in view of Theorem 2.1, we see that the problem (1.1) has at least two positive
solutions #; and u, such that r < ¥ () with w(u) < 5 and ry < w(uy) with @(uy) <rs. O

5 Example
In this section, we give a simple example to explain the main result.

Example 5.1 For the problem (1.1), Let« =2.8, 8=2.3,a=4,b=10,p =2, g(t) = t, then
wegetq=2, [, g()dt=1, [ tg(t)de =1,

1 1
po 0o te® df]l— o~ Jog®dt] (37 o angar
b [, tg(e)dt 58

Let
23, t€[0,1],u €[0,9],
f(&u)=123+600u-9), tel0,1],u¢c[9,10],
623, t € [0,1], u € [10, +00).

From a direct calculation, we get

580
F(t,u) > Ms ~583.266938 fort e [0,1],u € [10, ?}

f(t,u) < M, ~36.538326 forte[0,1],u € [0,9];

f(t,u) > M; ~21.322041 fort e [0,1],u € [0,0.5].

In view of Theorem 4.1, we see that the aforementioned problem has at least two positive
solutions #; and u, such that 0.5 < ¥ (u;) with w(u1) <9 and 9 < w(u,) with ¢(u;) < 10.
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