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Abstract

This paper is concerned with stochastic differential equations of fractional-order

g € (m-1,m) (where m € Z and m > 2) with finite delay at a space BC([-, 0]; RY).
Some sufficient conditions are obtained for the existence and uniqueness of solutions
for these stochastic fractional differential systems by applying the Picard iterations
method and the generalized Gronwall inequality.
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1 Introduction

Stochastic differential equations are valuable tools for description of some systems and
processes with stochastic disturbances in many fields of science and engineering. For the
general theory of stochastic differential equations, one can refer to the monograph [1].
Moreover, some results of the existence of solutions were obtained for some stochastic
differential equations in [2—6], and the exponential stability was considered for a kind
of impulsive neutral stochastic partial differential equations in [7]. The existence of mild
solutions was addressed for a class of fractional stochastic differential equations with im-
pulses by the fixed point theorem in Hilbert spaces [8]. The approximate controllability is
considered for a stochastic fractional differential system in [9].

On the other hand, fractional calculus can effectively characterize the hereditary proper-
ties of various materials and processes to be widely studied [10, 11]. The existence of solu-
tions was considered for (impulsive) fractional differential equations in [12-18], and some
progress was achieved in controls, stability, chaos synchronization, some other fractional
derivatives and some new methods of numerical solutions etc. for fractional differential
equations [19-27]; and the general solution was revealed for some impulsive fractional
differential equations in [28, 29].

Motivated by the above mentioned works, we will first consider the existence of solution
for a d-dimensional stochastic differential equation of fractional-order g € (1,2) with finite
delay, and then consider broader stochastic differential equations of fractional order g €
(m —1,m) (here m € Z and m > 2) in the present paper.

dB(t)
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dt
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where D! is the Caputo fractional derivative, X; = {X(¢t + ) : =t < 6 < 0} (where
7 € [0,+00)) can be regarded as a BC([-T,0]; R%)-valued stochastic process, where § :
[to, T] x BC([-7,0];R?) — R? and o : [ty, T] x BC([-1,0];R?) — R¥*™, B(t) is a given
m-dimensional standard Brownian motion. The initial value is as follows:

Xi =& = {£(0) : -7 <6 < 0} is an F;;-measurable
BC ([—r, 0]; Rd)—valued random variable such that

£ e M*([-7,0};R?) and X =&’ =d&/df € M*([-7,0];R?), 1.2)

where M?([-7,0]; R%) denotes the family of the process {&(£)};<o in L?([-T, 0]; R?) such that
E[% |E@)Pdt <0 as.

Next, some preliminaries are introduced in Section 2. Finally, some results are obtained
for the solution of (1.1) with initial value (1.2), and these results are extended to stochastic
differential equations of fractional-order g € (m — 1,m) (here m € Z and m > 2) in Sec-
tion 3.

2 Preliminaries
We shall give some notations, basic definitions and conclusions which are used throughout
this paper.

Let R? be the d-dimensional Euclidean space with norm | - |. AT denotes the transpose
of matrix A, and |A| = \/m represents the trace norm of matrix A. Let 5 > 0
and (2,F, P) be a complete probability space with a filtration {F;}c[s,+o0) satisfying the
usual conditions (i.e., it is increasing and right continuous). F¢, contains all P-null sets. F;,
is independent of the o -field generated by {B(t) — B(ty) : to < t < T}. Let BC([-T,0]; R%)
denote the family of bounded continuous R%-value functions ¢ on [-t, 0] with the norm

@1l = sup_; 9o [P(O)].

Definition 2.1 ([10]) The fractional integral of order g for a function f is defined as

1 t
I‘If(t):Tq) to%d& t>ty,q>0,

provided the right-hand side is pointwise defined on [, 00), where T is the gamma func-

tion.

Definition 2.2 ([10]) The Caputo derivative of order g for a function f can be written as

1 [t fs)
F(n-q) Jy (657"

D?f(t): ds:l”_qf(")(t), t>t,0<n-l<g<n.

According to Definitions 2.1 and 2.2, system (1.1) with condition (1.2) is transformed into

X(t)=&£(0) +£'(0) (& - to)+m/(t $)178(s, X;) ds

F( )/ (t - 9)7 o (s, X,) dB(s), (2.1)

where1<g<2,te€[ty,T].
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Therefore, the following definition of the solution of (1.1) with initial value (1.2) is pre-
sented according to (2.1).

Definition 2.3 R?-value stochastic process X(t) defined on £y — 7 < ¢ < T is called a solu-
tion of (1.1) with initial value (1.2) if X(¢) satisfies the following properties:
(i) X(#) is continuous and {X(£)};,<;<7 is F;-adapted;
(i) 8(tXy) € LN([to, T1,R?) and o (¢, X,) € L>([to, T]; R¥™);
(ili) Xy, =& foreachty <t <T,

X(6) = £(0) + £'(0)(t — fo) + % / (£ - )55, X,) ds

-1
F( )/(t—sq o(s,X;)dB(s) a.s.

X(t) is named a unique solution if any other solution X(¢) is nondistinctive with
X(¢), that is,

P{X(t) = X(t) for anyfp — 1<t < T} =1

Lemma 2.4 ([30]) Suppose q >0, a(t) is a nonnegative function locally integrable on ty <
t< T (someT < +00) and g(t) is a nonnegative, nondecreasing continuous function defined
onty <t<T,g(t) <M (constant), and suppose u(t) is nonnegative and locally integrable
onty <t<T with

t
) <a(t) +¢(0) [ (6= ds

to

on the interval. Then
u(t) <alt) + / (Z € F(q s)”q_la(s)) ds, to<t<T.

Lemma 2.5 ([30]) Under the hypothesis of Lemma 2.4, let a(t) be a nondecreasing function
on [ty, T). Then
u(t) < a(t)Eq(¢OT (@)t - t0)?),

where E, is the Mittag-Leffler function defined by E;(z) = - Wkﬂ).

3 Main results
Lemma 3.1 Suppose q>1and 0 <ty <T and t € [ty, T], function g is bounded on [ty —
7, 1. Ifgls,X,) € M*([to — 7, TT, R&*™), then (¢ — $)1'g(s, X,) € M([£o — 7, £]; R*™).

Remark 3.1 The conclusion can be obtained by the properties of definite integral, and it

is a precondition to use Itd’s formula in the proof of Theorem 3.2.

Theorem 3.2 Let K and K be two positive constants. If



Zhang et al. Advances in Difference Equations (2017) 2017:123 Page 4 of 18

(i) forall ¢,y € BC([-1,0);R?) and t € [t,, T),

|8(6,0) -8, v)* v o (t,9) — o (6, w)|* < Klig - w11, (3.1)
(ii) for all (¢,t) € BC([-7,0];R?) x [to, T,

5,0 v |o(5,0)* <K, (3.2)

then system (1.1) with initial value (1.2) has a unique solution X(t) with X(t) € M?([ty —
7, T]; RY).

Firstly, let us prove a conclusion which will be used in the proof of Theorem 3.2.

Lemma 3.3 Let (3.1) and (3.2) hold. If X(t) is the solution of (1.1) with initial value (1.2),
then

E( sup |X(s)|2)

to—t<s<T

2T
5}5||g||2+{4E||§||2+4E||(T_t0)g/||2+41((T W t“”}

q(T'(q))?

E 4K(T — t0)* T (T -ty + 1)
* q( o) )

and X(t) € M*([to — t, T]; RY).

Proof Define the stopping time 7, = T Ainf{t € [to, T] : || X;|| > n} for every integer n > 1.
Obviously, t, 1 T a.s. Let X"(¢t) = X(¢ A 1,,) for ¢ € [ty, T]. Therefore,

tATy
X0) =6(0) +£ O/ A T~ ) + ennmaria(ea) a
tATy
+ @ ; (AT, —s)q_la(s,XS") dB(s) forty<t<T, (3.4)

1X7"(8)]* < 4]£(0)|* + 4]€'(0)(¢ A 1, — t0)|*

4 2

+ —

(T'(9))?
L
(T'(q))?

ATy
/ ATy —9)T"8(s, X)) ds
7

0

2
fortgo<t<T. (3.5)

ATy
/ AT, —s)q‘la(s,XS”) dB(s)
to

Taking the expectation on both sides of (3.5), we obtain
E|X"(t)|” < 4E|£(0)|* + 4E|E'(0)(t A 1y — 1) [

4 2

+ WE /ttmn(t AT, —8)T718 (s,Xs”) ds

0

2

Lt 5 , (3.6)

(T(@)? / (AT =970 (5,X7) B

to




Zhang et al. Advances in Difference Equations (2017) 2017:123 Page 50f 18

By (3.1) and (3.2), Lemma 3.1, Holder’s inequality and It6’s formula, we get

E sup |X"(s)|” < 4E|£I + 4E|(T - )€’

to<s<t
2]

tATy
/ AT, — S)q_la(s, Xs”) dB(s)
to

4 tATy ~ ,
+WE|: /to AT, —5)1 1S(s,)(s)ds

4 2
* (r(q>)2E[ ]
< 4E||E|? + 4E|(T - to)¢'|

AR

' ﬁE[/ (€7 =92 o 537) |

< 4|2 + 4E||(T - to)¢'|)”
AT - t)

ATy g — 12
+W/ (t ATy —8) PV KE||X?|" + K] ds

Lo

tATy
. @ / (£ A 1y — )PV [RE| X! + K] ds
to

AK(T — t)* 7 (T -ty +1)
(2q -1)(T(q))*

AK(T -ty +1) (™
[ ennmsrr s
to

<4E||E|? + 4E|(T - 1o)€' +

AK(T — t)* (T -ty +1)
(2q -1)(T(q))*

<A4E||E|? + 4E|(T - t0)€'||* +

AK(T -ty +1) [
g (t AT, — )@ VLE sup |X”(r)}2 ds.
(1—‘(q))2 to to<r<s

Using Lemma 2.5 in the above inequality, we have

E sup |X”(s)|2

to<s<t

< {4}5”5 12+ 4E(T - )8 + 4K(T — o)™ (T = 1o + 1) }

(2q-1)(I'(9))
(41?(1"— to +1)
q

@)y F(")(t_t")m)

AK(T — )2 N (T -ty +1
= {4E”5”2+4E”(T_t°)§luz+ ( (zqto—)lxr((q)ﬂto+ )}

4K(T —to +1) o1
xE,,(T(T-tO) d ) (3.7)

Furthermore,

E sup ’X”(s)’2

to—T<Ss<t

<E|&|*+E sup |X"(s)

toss<t

’ 2
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K(T —t0)* ™ (T -t +1
< et fae1er agl - e | ST t010)

4K(T -ty +1) -
x @(%@”(T—to)”f 1). (3.8)

Thus,

E sup |X(s/\ 1:,,)|2

to—t<s<T

4K (T - tp)* 1™ (T - 1
SE||§||2+{4E||§||2+4E”(T—t0)5/H2+ ( (2;0_)1)(F((q))2t0+ )}

4K(T —to +1) -
xEq<(?q)°+(T—to)2q 1). (3.9)

Letting n — +00 in (3.9), we have

E( sup |X(s)|2>

to—t<s<T

2q-1(7 _
<+ {4E||sn2 caE|(T— )P+ KT ) (T fo ”)}

(2g - 1)(T'(9))?

AK(T -ty +1) ) 1)
x E [ 22 0 gyt (3.10)
,,( I'(q) ’
The proof is complete. O

Next, we will prove Theorem 3.2.

Proof Uniqueness: Let X(t) and X(¢) be two solutions of (2.1). By Lemma 3.3, X(¢) and X@®)
belong to M?([¢, — 7, T); RY),

X)) - X(¢) = %q) t(t — )t [8(3,)(5) - S(S,Xs)] ds
+ 1 /t(t —s)Tt [U (s, X;) - a(s,f(s)] dB(s). (3.11)
F(‘]) to

By (3.1), Lemma 3.1, Holder’s inequality and Itd’s formula, we have

2
X - X ()| <2‘— (t-9)7[8(s,X;) - 8(s,X;)] ds

2

+2|—— (t—s)q 1[(7(S,X) os, X)] dB(s)

T J;,
2(
<

< W/ (& = 5)%772[8(s, X) - 8(s, Xs)|* s

(F(q))Z/( t—s)%- 2|<7(s X;) - as,X)| ds

2K(T—t0+1)

TP /(t $)@ V1)1 X, - X2 ds.
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Therefore

E sup |X(s) —)~((s)|2

% [t(t - s)(Zq—l)—lE[”X(S) —5((5)”2] s
m(i(;q)t(;zm s)(z’f‘”-lE{tng [x©-x6F] | as. (3.12)

By Lemma 2.5, we obtain

E sup |X(s) —)~((s)|2 =0.

to<s<T

This means that X(¢) = X(¢) for t, < t < T. Hence, the solution for system (1.1) with initial
value (1.2) is almost surely unique on the interval [£y — 7, T].
Existence: Step 1. Suppose that T — £yis sufficiently small such that

2K(T = to + 1)(T = to)*a71
= 1. 3.13
2-Dr@? (3.13)

&)

Let X°(¢) = £(0) and X" =& (here n =1,2,...). Define the following Picard sequence:

X"(t) = £(0) + (£ — £0)&'(0) + % (t-9)T"8(s, X! ") ds

t

+ — t—8) o (s, X" VdB(s) forto<t<T. 3.14
F(Q)to( )" o (s, X! ") dB(s) 0<t< (3.14)

Obviously, X°() € M?([ty — 7, T]; R?), then prove X" (¢) € M?([ty — T, T]; R%). By (3.14), we

have
1X"@)]° < 4]£(0)| + 4|(¢ - 20)&(0) |

/(t—s)q '8(s,X0") ds

2

T ))2[

2
+ / (t-s)1o (s,XS”’l) dB(s) :| (3.15)

By (3.1) and (3.2), Lemma 3.1, Holder’s inequality and It6’s formula, we get

E|X"(t)|” < 4E)&|? + 4E|(T - )¢’ |

4T - to) ‘ 292 n-1) |2
+ W/ (t—S) q E|8(S,XS )i ds
4 n—
(r@))z[ (=P 2E|o (s, X:7) [ ds

= 4E|E|? + 4E|(T - to)€'|
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+ 4((:(;);;)) /t(t_s)zq_2E|8(s,X;’_l) _5(s,0) + 5(S,0)|2d5
T / (t =57 2E[o (5, X)) = 0(5,0) + 0(5,0)| " ds
< 4E|E|* + 4E[ (T - )t
' 4((1“T(c;);2) « — $)22E[2]8(s, X1) = 8(5,0)|” +2[8(s5,0)| ] ds
T (Lil)) / (¢ -1 2E[2]0 (5, X27Y) - 0(5,0)|” + 2|0 (5,0)[*] ds
< 4E|E I + 4E|(T - )|
ot [MesprslRo s

8K(T —to +1)

2g-1
Ca-Dr@r 0"

<A4E||E|? + 4E|(T - to)€'|* +

@a-D-1p qup |X"’1(r)|2ds.

to<r=<s

81((T t0+1)/(t 9

Hence, for any k > 1, we have

SK(T —to +1)

max, E[X"(0)|* < 4E|IE )% + 4E|(T - to)'|| + W(T—to)zq‘l
o A b L
Moreover,
max E|X"(s) )|* = max| X's) % E[x3s)|, .. EX o) [P)
< max{E|§ % E|[X'(5)|", E[X2(s) [, ..., E|X*(5)| ")
- max ||, max E[X"(5)"}
< Ellg1* + max E|x"(5)]"
Therefore,
max E|X"(0)|* < 4E|&|* + 4E|(T - t0)¢'|? %(T—m%l
+ m(l;(;q)t;m [ /t (e=gr £ 1" + max E|x"(5)”] ds}

8K(T -t +1)
(2g - 1)(T'(g))?
8K(T —to + 1)(T — to)*'E||§||?

(2 - 1D(T'(q))?

8?(T—t0+1) ¢ (2g-1)- " 2
T [LO (657 ma £x°69) ]ds]

< 4E|E|? + 4E|(T - )| + (T — o)




Zhang et al. Advances in Difference Equations (2017) 2017:123

By Lemma 2.5, we have

max E|X” t)| <aky (Cz(T )" 1)

1<n<k

2g-1 2
where ¢; = 4E||€||? + 4E||(T - to)&'||> + 8K(Tifoﬂ(T to) ! + 8K(T—to+1)(T—t0)*4 ' E| €]

(2g-1)( (2q-1)(T'(9))?
8K(T- t0+1)l"(2q 1)

c = TP . Because of the arbitrary constant k, we obtain

EIX"0)) < aEg(ea(T - 10)7Y), to<t<Tn=1.
Next, by (3.13), we have

XHe) - X°() = X () - £(0)

-1 0
= (t-ty)&’ (0)+m/ (t-s) S(SX )ds

1 / t
+—— | (t—s)""0(s,X°)dB(s).
F(Q) to ( )
With similarity to the proof of uniqueness, we get

E sup [X'(0)-X°@)[°

to<t<T

2
<3E sup ||(T o)’ || +3E‘F( v/ (t-—s)T 16(s,X0)0l
to<t<T

+3E Tq)/ (t—s)q_la(s,Xso) dB(s )

3(T - to)

)
=3t ti‘lET”(T‘t‘))g I+ rar

/(t— )24~ 2E‘8(5 X0)| ds

/( —s)27'2E|cr(s X°)| ds

(F( (M)
=3E suwp |(T-w) I?
+ % /t(t—5)2q‘2E|6(s,XS°) —8(s,0) + 8(s, 0)|2ds
(r(q>>2/ (£ - 92E|o (5, X°) ~ (5,0 + o(5,0) " ds
<3E sup (T~ )t I M f (¢ — )%2[2KE|| X0 + 2K] ds
3

YTy t _§)242[2K, 012
T @2 /to(t s)*2[2KE|| X7 | + 2K] ds

6K(T =ty + 1)(T - to)%a
29 -1)(T(9))?
6K(T —to + 1)(T - 1p)*"
(29 - 1)(I'(g))*

<3E|(T-10)&'|* + E|l&))?
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For arbitrary n > 1 and ¢y <t < T, we have
X" E) - X"(¢ @ / (-7 [8(s,X7) - (s, XI7") ] dis
I'(q
(t—s)T" 1 s X” X" )] dB(s).
F(q)/ )-a(s.0)]
With similarity to the proof of uniqueness, we get

E sup [X"(@t)-X"(t)|°

to<t<T
2
‘ / (t-9)7" sup [8(s, X)) —8(s,X!")]ds
F( ) to<s<t
2
+2‘— (t-9)7" sup [o(s,X}) — o (s, X!")] dB(s)
0 to<s<t
AT _tO)/ (t—5)%2 sup |8(S,X”)—8(S,X”_l)|2ds
(F( ))? to<s<t s s
+ L‘/T(t—s)zq2 sup |a(s,X") —o(s,X"’1)|2ds
(F(q))2 to lp<s<t s s
2I_<(T—t0+1) 29-2 -1 2
<" t—8)7% sup | X"(r)-X""(r)|" ds
T@r  J, 797 s X=X
2F(T— to + l)(T—to)Zq_l -1 2
s X"(t)-X""(¢t
Ga-D@E o, - X0l
<E" sup {XI(L‘)—XO(L‘)|2
to<t<T
<CEB", t=<t<T. (3.16)

Next, we will verify that {X"(¢)} converges to X(t) in the sense of L? and probability 1 on
M?([to — T, T]; R%), and X(¢) is the solution of (1.1) with initial value (1.2). By the Chebyshev

inequality, we have

P{ sup |X"(8) - X"(8)|* > i} < CE)" (3.17)

to<t<T 2}'1

By the fact .- C(4E)" < 0o and the Borel-Cantelli lemma, there exists a positive integer

ng = no(w) for almost all w € 2 such that

sup \X"*l(t) X”(t)| , n>ng.

1
to<t<T 2"

Define the function series

X0+ [X'O-X°@O] + -+ [X"O - X" (O] + -+ (3.18)
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with the partial sum X" (¢) = X°(¢) + Y-, [X*(¢) — X'~'(¢)]. Therefore, the absolute value of

every item (3.18) is less than the corresponding item of a positive series

1+ L + 1 +- i +
2 22 2"

By Weierstrass’s criterion, (3.18) is uniformly convergent on [¢y — 7, T]. Thus, the approx-
imate sequence {X"(¢)} uniformly converges to X (¢) (where X(¢) is assumed to be the sum
function) on [ty — 7, T], and it is F;-adapted. Thus X(¢) is continuous and F;-adapted.
Moreover, (3.16) implies that the sequence {X"(£)} for each ¢ is also a Cauchy sequence
in L2. Hence, X"(t) =% X(t) as n — oo, i.e., E|X"(t) - X@®)|> — 0. Letting # — oo in
M2([ty — T, T]; R%), we have

EIX®)|” < ciEy (2T (@)(T — 26)*7). (3.19)

Using (3.19), we can get

T to T
E/ |X(s)|2ds:E/ |X(s)|2ds+E/ 1X(s)|* ds

to—-7 to—-T

to T
§Ef ’é(s)’zds+E/ clEq(czF(q)(T—to)zq_l) ds < oo.
to—T to

Therefore, X(¢) € M2([ty — T, T); R?).
Next, we will verify that X(¢) satisfies (1.1).

ql n
I‘()/(ts sX) S(X)]d

2

- _ 1 n
+ r@ /to (t -9 o (s, X) — o (s,X,)] dB(s)

2

<2E'L/T(t_s)ql[5(s X”) —68(s X)] ds
=T J, el

2
+2E Tq)/ (t- sql[ (s X”) o(s,X)]dB(s)

= 2((1?(_);(2)) / (t - 9)*2E|8(s, X7) - 5(3,X5)|2ds
T
gy | o) - oto 0 s
K T
< mgi(;q)t;‘l—l) (t _S)Zq—2E||XSn _Xs ||2dS
2K(T =ty +1) T
= w /to (t—s)zq"zEtOS;gT|X"(r)—X(r)|2ds
K T
% (t — S)(ZQ*I)*1E|XV1(S) —X(S)|2 ds.
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Thus {X"(¢)} is uniformly convergent on [fy — 7, T]. This means that there exists an 7, for
any given ¢ > 0 such that E|X"(t) — X(¢)|? < & (as n > np and V¢ € [ty — 7, T]). Therefore

(T —to)¥1~
=2 .

T
f (£ —5)*72E|X"(s) = X(s)|* ds <
to 2q -1

Hence, for ¢t € [ty, T], we have
t t
/ (t-9)7"8(s, X') ds — / (t-9)7"8(s,Xs)ds in L*(),
to to
t t
/ (t-9)7""o(s,X])ds — f (t-9)"0(s,X;)ds inL*().
to
Taking limits on both sides of (3.14), we get

X(t) = £(0) + (t — 1o)€' (O)*m/“ O718(5,X,) ds

(£ — )7 o (s, X,) dB(s).
"T4 )/
Thus X(¢) is the solution of (1.1).
Step 2. To remove the limitation of (3.13), suppose that y > 0 is sufficiently small to
satisfy

2K(y +4)y*
(2q -1)(I'(9))

Therefore, (1.1) has a solution on [¢y — 7,%y + y] by Step 1. Next, consider the solution of
(1.1) on [£o + ¥, Lo + 2y]. By repeating the process above, it is sure that there is a solution
to (1.1) on the entire interval [ty — 7, T]. The proof is complete. O

Remark 3.2 Considering (2.1) by the definition of fractional Brownian motion (¢, H) on
the Maruyama expression in [31] (for details, see [31] and the references therein), we have

/t(t -8 o (s, X;) dB(s) = /t(t —98)1 o (s, X;) [%a)(s)(t - S)*% dsi|

1 t
- - / o (5, X,)(t — )02 o(s) ds
2 t
L[ s X s) sy
—— s, X)w(s)(ds
2q_1 o w

1
= m /;0 o(s,Xs)d,B(s,q— 5);

where g € (1, %). This shows that the solution of system (1.1) with initial value (1.2) is dis-

turbed by a fractional Brownian motion S(t,q — %) with Hurst index H = g — % € (%, 1).

Next, the estimate of the error will be discussed for the Picard approximation X" (¢) and

the exact solution.
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Theorem 3.4 Under the hypothesis of Theorem 3.2, suppose that X(t) is the unique solu-
tion of (1.1) with initial value (1.2) and X" (¢) is defined by (3.14). Then, for each n > 1,

E sup ’X”(s) —X(s)‘2

to<s<t

<CEg"™

]

141_((T—t0+1)(T—t0)2q_1 <4E(T—to+1)
q

_ 2g-1
24-D(T@)? rg Lo )

Proof With similarity of discussion in Theorem 3.2, we have

2K(T —ty +1
E sup [X"(s) - X(s)|* < (T =ty +1)

t
E _ o)29-2 Xn—l _Xs 2 d
to<s<t - (T(q))? " (£=5) [” s ” ] s

2K(T -ty +1) / 20-2 1 2
<———= | (t-9)°E sup (X" (r)-X(r)|"ds
(TP ke |

< W(IT“(;q;;)zm /t (t-5)%2E tosfrgs\X”(r) X" ds

41_((T—t0+1)/ _— 2
+——— | (t—5)"T°E sup |X"(r)-X(r)| ds.
(T'(q))? to toSrSs| |
Substituting (3.16) into the above inequality, we obtain
AK(T —ty +1) 241
E sup |X"(s) - X(s)|” < CE"' ———— (T —tp)™
N ’ 2q-Dr@P
41_((T—to+1)/t 2g-1)-1 2
—— | t-5)®VE sup [X"(r) - X(r)|" ds.
(T'(q))? to t05r5s| |

By Lemma 2.5, we get

E sup ’X”(s) —X(s)‘2

to<s<t

VAK(T —to +1)(T — to)*a7! AK(T -ty +1
<ca" ( o+ 1)( 0) q( ( ot )(t—t())zq_1>.

(2q -1)(I'(9))? I'(q)

Letting ¢ = T in the above inequality, the conclusion can be drawn. This completes the

proof. O

Extending fractional order g € (1,2) to g € (m —1,m) (here m € Z and m > 2), consider
a d-dimensional stochastic fractional differential equation as follows:

dB(t
DIX(t) =f(t,X,) +g(t, X;)- %, qge (m-1,m),meZandm=>2,t € [ty, T], (3.20)

where X; = {X(t + 6) : = < 6 < 0} can be regarded as a BC([-t,0]; R%)-valued stochastic
process, D{ is the Caputo fractional derivative, where f : [£, T] x BC([-t,0];R%) — R?
and g : [ty, T] x BC([-7,0]; RY) — R**™. The initial value is as follows:

w=E= {5(9) -7 <0< 0} is an F, -measurable

BC ([—r, 0];Rd)—valued random variable such that
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& € M*([-7,0];RY)andX; =& =dE/do e M*([-T,0L;R?),...,
XIY = gD = gD (dg) D € M2 ([-7,0]; RY), (3.21)

to
where M?([-7,0]; R%) denotes the family of the process {&(£)};<o in L?([-T, 0]; R?) such that
E[° |E()Pdt < 0 as.
According to Definitions 2.1 and 2.2, system (3.20) with initial condition (3.21) can be
rewritten as

m-1 k)
X0 = : kf()) (t-t)*
k=0 :
+ %q)[ /t:(t—s)qlf(s,Xs)ds + /tot(t—s)qlg(s,Xs)dB(s)] (3.22)

for t € [ty, T]. Therefore, we give the following definition of the solution of (3.20) with
initial value (3.21).

Definition 3.5 R?-value stochastic process X(t) defined on ty — 7 < ¢t < T is called a solu-
tion of (3.20) with initial value (3.21) if X(¢) has the following properties:
(i) X(t) is continuous and {X ()} <:<7 is F;-adapted;
(ii) {f(Xs, )} € LM([to, T1,R?) and {g(X;, 1)} € L*([to, T); R**™);
(iii) Xz =& foreachty <t<T,

m=1 (k) t
X0 = -0 s s [ -9 x0ds
k=0 0

+ %q) /t:(t—s)q_lg(s,Xs)dB(s) a.s.

X(t) is named a unique solution if any other solution X(#) is nondistinctive with
X(¢), that is,

P{X(t) =X(t)forany tp— 7 <t < T}=1.

With similarity to Theorem 3.2 and Lemma 3.3, the following two conclusions can be
drawn and their proofs are omitted.

Theorem 3.6 Let K, and Kybe two positive constants. If
(H1) for all ¢, € BC([-7,0); R and t € [to, T,

f(t.d)—f& W) Vgt ) gt v <Kallp -1, (3.23)
(H2) for all (¢,t) € BC([-7,0];R%) x [to, T,
ft,0)* v |g(t,0)]° <K, (3.24)

then (3.20) with initial value (3.21) has a unique solution X (t) and X(t) € M*([to—t, T]; RY).
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Lemma 3.7 Let (3.23) and (3.24) hold. If X(t) is the solution of (3.20) with initial value
(3.21), then

E( sup T’X”(s)yz)
n-1 _ k (k) B ~ ~
R e e

k=0

r (m + 2)Ko(T — to + 1)(T — tp)%a!
) q( T(q) )

and X(t) € M*([to — T, T]; R%).

Theorem 3.8 Under the hypothesis of Theorem 3.6, suppose that X(t) is the unique solu-
tion of (3.20) with initial value (3.21). Then, for each n > 1,

E sup ‘X”(s) —X(s)’2

to<s<T

4K (T -ty +1)(T — tp)%a! (41?2(1"— to+1)
q

2g-1
%2 T 2D @P rg L )

where X"(£) = Y E00 (¢ _ gy 4 w1 S & = 9T (5, X0 ds + w5 [ (¢ = 9)7gls,
XY dB(s).

Proof Let X°(¢) = £(0) and Xj, =& (heren=1,2,...). Define the following Picard sequence:

m-1
nen £®(0) 0 1 ! 1 -1
X"(¢t) = ,?zo = (t—t)" + —F(q) : t-s) (s, X!") ds

t

+ Fq) ; (t-— S)q_lg(s,Xs’”l) dB(s).

Thus,

E sup |X1(t) —Xo(t)|2

to<t<T
m-1 _ k (k) 2
§(m+1)zw (m+1)E % . (t -7 (5, X°) ds
2
+ (m + I)E‘ — (t - s)q’lg(s,Xso) dB(s)
k
I)Z (T - tO) g + (m'*('l)(T to)/ (t— )zq ZEV(S X0)| ds
(m+ 1) 20-2 0
(F( ))2/(t— s)“ E|g(S,X )| ds

N - mks (m+ (T — to)
s+ ”Z YT )

L
/ (- P [2E|X0| + 2K) ds
to
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(m+1)

T (@)

|| T to k%‘ 2(1’1’1+1)(T—t0 +1)(T—t0)2q—1
bm+1) Z 24— DT (@)

/ (¢ — 222K, E| X0 + 2K, ] ds

[?25”5”2 +K2]
= Cz.

Next, forn >1and ¢y <t < T, we have

X" - X" (¢ / (=) [f (s, X7) = f (s, X77)] ds

1 t

Yo ny _ n—1
@l (-9 [g(s, X)) —g(s, XI")] dB(s).
Therefore,

E sup [X"(@) - X"(0)|°

to<t<T

2

$)7! sup [f(s,Xs") —f(s,Xs”_l)] ds

‘ I'(q) to to<s<t

2

’ g ). 97 sup [g(s. X)) ~gls X7 dBO)

to=s=t

2 / T(t—s)z’f‘2 sup |g(s, X7) - g(s, X2 | ds
(C(@)* /sy ) ’

to<s=<t

—5)%72 sup |X”(r X"‘l(r)|2ds

to<r=<t

2K2(T lf()+1)
=T r@r / g

2K2(T—t0+1) _ 2g-1 - _ yn-1 2
= g -Dre LT s X0 X0

<E7 sup [X'(5)-X°()|?

to<t<T

<C2s_42, to<t<T.
Substituting the above two results into the following inequality, we have

E sup |X s)—X(s)|2

lp<s<t

2

‘F(q) f (t=9" tossusl;[f(s’Xf ) —f(s, X,)] ds

2

to<s=<t

2 L/T(t—s)q1 su [ (s X"’l)— (sX)]dB(s)
F(q) o P |8\S s gL, As

2I_<2(T—t0+1) ¢ _\2g-2 n-1_ 2 d
], el - s
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- 2K,(T - to+1)/ (t—5)™E sup \anl(r)—X(r)|2dS

(F(q))2 fp<r=<s
- LLKZ(F(_)?;+1 / (6= 971 E sup [X'0) =X ds
4KH(T -ty +1) )
W/ (t=P2E sup [X7(0) = XO)["ds

4K (T - to + 1)(T — t)%!
(2q - 1)(I'(g))?
4K,(T -ty +1) /
T(@)? to

C2nn 1

(t —s) 2 D7LE sup |X” r) — X(r)\ ds.

to<r<s

By Lemma 2.5, we have

E sup |[X"(s)-X(s)|*

to<s<T
<CEr! 4K (T - to + 1)(T - £5)*17 (41?2(71 —to+1) (T - t0)2q1)
(24 -1)(I'(¢)) ! (g '
The proof is completed. d
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