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Abstract
We study, in this paper, infection dynamics when an epidemic emerges to many
regions which are connected with their neighbors by any kind of anthropological
movement. For this, we devise a multi-regions discrete-time model with the three
classical SIR compartments, describing the spatial-temporal behaviors of
homogenous susceptible, infected and removed populations. We suppose a large
geographical domain, presented by a grid of colored cells, to exhibit at each instant i
the spatial propagation of an epidemic which affects its different parts or
sub-domains that we call here cells or regions. In order to minimize the number of
infected individuals in some regions, we suggest an optimal control approach based
on a travel-blocking vicinity strategy which aims to control a group of cells, or a patch,
by restricting movements of infected people coming from its neighboring cells. We
apply a discrete version of Pontryagin’s maximum principle to state the necessary
conditions and characterization of the travel-blocking optimal controls. We provide
cellular simulations based on discrete progressive-regressive iterative schemes
associated with the obtained multi-points boundary value problems. For illustrating
the modeling and optimal control approaches, we consider an example of 100
regions.

Keywords: multi-regions model; SIR epidemic model; discrete-time model; optimal
control; vicinity; travel-blocking

1 Introduction
1.1 Main references and description of the problem
In , Kermack and McKendrick devised the Susceptible-Infected-Removed (SIR)
model which has presented an interesting contribution to the mathematical theory of
epidemics []. The mathematical SIR model is in the form of three compartments: sus-
ceptible, infected or removed. Susceptible populations are healthy and do not carry the
epidemic but can contract it from infected individuals which carry the infection and can
pass it to susceptible hosts, while the removed people are no longer infected and acquire
immunity from future contagion.

In their papers [–] and [], Zakary et al. proposed new modeling and control ap-
proaches based on multi-regions discrete-time and continuous-time SIR models which
have been devised in the purpose to exhibit the spatial-temporal propagation of an epi-
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demic which emerges in different geographical regions, to show the influence which exists
between regions via infection connections, and to seek a reasonable control strategy which
could be effective for the prevention of infectious diseases such as HIV/AIDS and Ebola,
or epidemics and pandemics in general. The authors have supposed that all regions are
connected, and the infected people are able to enter all these regions. However, a region
is often infected due to movements of infected people who enter from the neighboring
regions. Generally, in the case of detached regions, infection travels to a targeted region
if there exists a direct mode of transport between it and other regions from where the
epidemic starts. In Figure (a), where region E is connected with all other regions, we can
see an illustration of the case of infection connections, which has been studied in the ref-
erences above. In the same figure, we can also see that region A is connected only with
regions B, D and E. Such cases have motivated us to write this paper in order to present
a new epidemic modeling approach which generalizes all possible cases of infection con-
nections between regions. The authors in [–] have attempted to discuss and take into
account such assumptions of connections using SIS, SIRS and SEIRS systems involving
also discrete cellular simulations, but with a control approach applied to only one region.

Figure 1 (a): Infection travel connections between nine separated geographical regions located at
different continents. (b): Assembly of the regions in one grid of nine numbered cells.



Zakary et al. Advances in Difference Equations  (2017) 2017:120 Page 3 of 25

More clearly, we propose a cellular representation of regions, assembled all together in
one grid of cells, and we study the transmission dynamics of the epidemic in these regions
when a travel-blocking vicinity strategy is followed for controlling one region or more to
show the impact of infection connections that relate it with other regions via travel. In
Figure (b), we can see the example of all nine regions presented in (a), how they can be
converted to cells, assembled in one grid which represents a part of the earth as the global
domain of interest.

Based on this new kind of representations, we can discuss the spread of the epidemic
and the effectiveness of a control strategy in one region, with the possibility to analyze the
SIR dynamics in this region without and with control, and exhibiting the importance of the
direct influence between it and its vicinity. As observed in Figure (a) and (b), region I is
exposed to infection via travel of infected people coming from its vicinity which contains
regions D, F and H, or for the same reason, region H can directly become highly infected
due to connections with regions D, E, F, G and I.

In addition to all these considerations, we note that if Zakary et al. have supposed that
all regions are connected by infected travelers to show the influence of SIR dynamics of
one region on other regions, the cellular model we propose here has also the advantage to
exhibit this kind of influence even in the absence of direct connections between regions.
This can easily be understood from the example in Figure  where we can see that region
A can also be infected by individuals coming from region G via region D. The numerical
results we will provide further are more convincing to show such kind of influence.

In the following, we provide a brief presentation of the new epidemic modeling and
travel-blocking vicinity optimal control approaches.

1.2 The new epidemic model and the vicinity travel-blocking optimal control
strategy

We suggest here a new modeling approach which is based on a multi-regions discrete-time
epidemic model describing the spatial-temporal spread of an epidemic which emerges in
a global domain of interest � represented by a grid of colored cells which are uniform in
size. These cells are supposed to be connected by movements of their populations, and
they represent sub-domains of � or regions. Note that several cells are targeted by our
control strategy, which means we suggest an optimization strategy that is not limited to
controlling only one cell.

In [], each region was represented by a sub-domain (�j)j=,...,p, while here each region
or cell is denoted by (Cpq)p,q=,...,M .

For this, we assume that the epidemic can be transmitted and propagated by move-
ments of people from one spatial cell Cpq to its neighbors or cells belonging to its vicinity.
In fact, in a relatively small geographical scale, some infectious diseases, such as African
swine fever [], Bovine Viral Diarrhoea virus [, ] and foot-and-mouth disease [],
follow that pattern of spread, and Cpq can represent a farm; while in a large geographi-
cal scale, such as in the case of SARS [], HIV/AIDS [, ], Ebola virus [] and ZIKA
virus [], a cell Cpq can represent a city or country. Thus, the multi-cells model with the
vicinity optimal control strategy we propose here can represent good approaches for in-
fection dynamics studies regardless of the area size. In fact, the optimization criteria are
chosen in a way to restrict the movement of people coming from several cells and en-
tering other cells. Explicitly, we seek to minimize an objective function associated with
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a group of cells or patch P =
⋃m

p,q= Cpq with m < M, subject to the discrete-time system
associated with Cpq, with optimal controls functions introduced as effectiveness rates of
the travel-blocking operations followed between P and its neighbors. Vpq is the vicinity
set composed of all neighboring cells of Cpq which are denoted by (Crs)r=p+k,s=q+k′ with
(k, k′) ∈ {–, , } except when k = k′ = . Note also, as we have mentioned before, that
these cells are attached just in the grid, but in reality they are not necessarily joined to-
gether as seen in example of Figure (a). For instance, in Figure (b), the vicinity sets asso-
ciated with regions or cells C = {A}, C = {E} and C = {H} are defined by V = {B, D, E},
V = {A, B, C, D, F , G, H , I} and V = {D, E, F , G, I}, respectively. Thus, the travel-blocking
vicinity optimal control approach will show the impact of the optimal travel-blocking con-
trol on reducing contacts between susceptible people of the targeted patch P and infected
people coming from cells Crs in Vpq.

The paper is organized as follows. Section  presents the discrete-time multi-cells epi-
demic system based on a colored cell modeling approach. In Section , we announce a
theorem of necessary conditions and characterization of the sought optimal control func-
tions related to the travel-blocking vicinity optimal control approach. Finally, in Section ,
we provide simulations of the numerical results for an example of  hypothetical cities
when an infection starts from one cell which has three neighboring cells (respectively, the
case of a cell with eight neighboring cells is investigated), while aiming to control a patch
of four cells, and in another example, two patches of one and four cells, respectively.

2 A discrete-time multi-regions epidemic model
We consider a multi-regions discrete-time epidemic model which describes SIR dynamics
within a global domain of interest �, which in turn is divided to M regions, or cells,
uniform in size. In other words, � =

⋃M
p,q= Cpq with Cpq denoting a spatial location or

region.
We note that (Cpq)p,q=,...,M could represent a country, a city or a town, or a small do-

main such as neighborhoods, which belong respectively to the global domain of interest
�, which could in turn represent a part of a continent or even a whole continent, a part of
a country or a whole country, etc.

The S-I-R populations associated with a cell Cpq are noted by the states SCpq
i , ICpq

i and
RCpq

i , and we note that the transition between them is probabilistic, with probabilities be-
ing determined by the observed characteristics of specific diseases. In addition to death,
there are population movements among these three epidemiological compartments from
time unit i to time i + . We assume that the susceptible individuals are not yet infected
but can be infected only through contacts with infected people from Vpq (vicinity set or
neighborhood of a cell Cpq). Thus, the infection transmission is assumed to occur between
individuals present in a given cell Cpq, and it is given by

∑

Crs∈Vpq

βrsICrs
i SCpq

i ,

where βrs is the constant proportion of adequate contacts between a susceptible from a
cell Cpq and an infected coming from its neighbor cell Crs ∈ Vpq with Vpq = {Crs ∈ �/r =
p + k, s = q + k′, (k, k′) ∈ {–, , }} \ Cpq.

SIR dynamics associated with a domain or cell Cpq are described based on the following
multi-cells discrete model.
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For p, q = , . . . , M, we have

SCpq
i+ = SCpq

i – βpqICpq
i SCpq

i –
∑

Crs∈Vpq

βrsICrs
i SCpq

i – dSCpq
i , ()

ICpq
i+ = ICpq

i + βpqICpq
i SCpq

i +
∑

Crs∈Vpq

βrsICrs
i SCpq

i – (α + γ + d)ICpq
i , ()

RCpq
i+ = RCpq

i + γ ICpq
i – dRCpq

i ()

i = , . . . , N –  with SCpq
 ≥ , ICpq

 ≥  and RCpq
 ≥  being the given initial conditions.

Here, d >  is the natural death rate, while α >  is the death rate due to the infection,
γ >  denotes the natural recovery rate from infection. By assuming that all regions are
occupied by homogeneous populations, α, d and γ are considered to be the same for all
cells of �.

3 A travel-blocking vicinity optimal control approach
Let I = {, , . . . , M}, IH ⊂ I be a subset of I , and consider P = {Cpq/p, q ∈ IH} denoting a
patch of controlled cells, with its complementary in �, defined as

P̄ = {Cij/i, j ∈ I\IH}.

Let us define the vicinity of the patch P as follows:

VP = {Crs ∈ Vpq ∩ P̄/p, q ∈ IH}.

The main goal of the travel-blocking vicinity optimal control approach is to restrict move-
ments of infected people coming from the set VP and aiming to reach the patch P without
including cells Crs which belong to Vpq ∩ P. For this, we introduce control variables upqCrs ,
which limits contacts between susceptible of the patch P and infected individuals from
cells Crs that belong to VP .

In this section, we introduce control variables in the above mentioned model to restrict
contacts between susceptible people of the controlled cells Cpq ∈ P and infected ones
which belong to Crs ∈ P̄ ∩ Vpq. Then, for a given cell Cpq ∈ �, the discrete-time system
()-()-() becomes

SCpq
i+ = SCpq

i – βpqICpq
i SCpq

i –
∑

Crs∈P∩Vpq

βrsICrs
i SCpq

i

–
∑

Crs∈P̄∩Vpq

upqCrs
i βrsICrs

i SCpq
i – dSCpq

i , ()

ICpq
i+ = ICpq

i + βpqICpq
i SCpq

i +
∑

Crs∈P∩Vpq

βrsICrs
i SCpq

i

+
∑

Crs∈P̄∩Vpq

upqCrs
i βrsICrs

i SCpq
i – (d + α + γ )ICpq

i , ()

RCpq
i+ = RCpq

i + γ ICpq
i – dRCpq

i ()

i = , . . . , N – .
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Since our goal concerns the minimization of the number of infected people and the cost
of the vicinity optimal control approach, we consider an optimization criterion associated
with the patch P, and we define it by the following objective function:

JP(u) =
∑

Cpq∈P

[

AICpq
N +

N–∑

i=

(

AICpq
i +

∑

Crs∈P̄∩Vpq

Ars


(
upqCrs

i
)

)]

, ()

where A >  and Ars >  are the constant severity weights associated with the number of
infected individuals and controls, respectively.

We note that here, u = (upqCrs
i )Crs∈VP ,i=,...,N–, which belongs to the control set UP defined

as

UP =
{

u/umin ≤ upqCrs
i ≤ umax, i = , . . . , N – , Crs ∈ VP

}
.

Then, we seek optimal control u such that

JP
(
u∗) = min

{
JP(u)/u ∈ UP

}
.

The sufficient conditions for the existence of optimal controls in the case of discrete-
time epidemic models have been announced in [, , ] and [].

As regards the necessary conditions and the characterization of our discrete optimal
control, we use a discrete version of Pontryagin’s maximum principle [, , ]. For this,
we define a Hamiltonian H associated with the patch P by

H =
∑

Cpq∈P

[

AICpq
i +

∑

Crs∈P̄∩Vpq

Ars


(
upqCrs

i
)

+ ζ
Cpq
,i+

(

SCpq
i – βpqICpq

i SCpq
i –

∑

Crs∈P∩Vpq

βrsICrs
i SCpq

i

–
∑

Crs∈P̄∩Vpq

upqCrs
i βrsICrs

i SCpq
i – dSCpq

i

)

+ ζ
Cpq
,i+

(

ICpq
i + βpqICpq

i SCpq
i +

∑

Crs∈P∩Vpq

βrsICrs
i SCpq

i

+
∑

Crs∈P̄∩Vpq

upqCrs
i βrsICrs

i SCpq
i – (d + α + γ )ICpq

i

)

+ ζ
Cpq
,i+

(
RCpq

i + γ ICpq
i – dRCpq

i
)
]

i = , . . . , N –  with ζ
Cpq
k,i , k = , , , the adjoint variables associated with SCpq

i , ICpq
i and

RCpq
i , respectively, and defined based on formulations of the following theorem.

Theorem  (Necessary conditions and characterization) Given optimal controls upqCrs∗

and solutions SC∗
pq , IC∗

pq and RC∗
pq , there exist ζ

Cpq
k,i , i = , . . . , N , k = , , , the adjoint vari-
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ables satisfying the following equations:

	ζ
Cpq
,i = –

[

( – d)ζ Cpq
,i+ +

(

βpqICpq
i +

∑

Crs∈P∩Vpq

βrsICrs
i +

∑

Crs∈P̄∩Vpq

upqCrs
i βrsICrs

i

)

× (
ζ

Cpq
,i+ – ζ

Cpq
,i+

)
]

, ()

	ζ
Cpq
,i = –

[
A + βpqSCpq

i
(
ζ

Cpq
,i+ – ζ

Cpq
,i+

)
+ ( – d – α – γ )ζ Cpq

,i+
]
, ()

	ζ
Cpq
,i = –( – d)ζ Cpq

,i ()

with ζ
Cpq
,N = , ζ Cpq

,N = A, ζ Cpq
,N =  being the transversality conditions. In addition,

upqCrs∗
i = min

(

max

(

umin,
(ζ Cpq

,i+ – ζ
Cpq
,i+)βrsICrs∗

i SCpq∗
i

Ars

)

, umax

)

,

i = , . . . , N – , Crs ∈ VP. ()

Proof Using a discrete version of Pontryagin’s maximum principle in [, , ], and setting
SCpq = SCpq∗, ICpq = ICpq∗, RCpq = RCpq∗ and upqCrs = upqCrs∗, we obtain the following adjoint
equations:

	ζ
Cpq
,i –

∂H
∂SCpq

i

= –
[

( – d)ζ Cpq
,i+ +

(

βpqICpq
i +

∑

Crs∈P∩Vpq

βrsICrs
i +

∑

Crs∈P̄∩Vpq

upqCrs
i βrsICrs

i

)

× (
ζ

Cpq
,i+ – ζ

Cpq
,i+

)
]

,

	ζ
Cpq
,i = –

∂H
∂ICpq

i

= –
[
A + βpqSCpq

i
(
ζ

Cpq
,i+ – ζ

Cpq
,i+

)
+ ( – d – α – γ )ζ Cpq

,i+
]
,

	ζ
Cpq
,i = –

∂H
∂RCpq

i

= –( – d)ζ Cpq
,i

with 	ψk,i = ψk,i+ – ψk,i, k = , , , the difference operator, and ζ
Cpq
,N = , ζ

Cpq
,N = A,

ζ
Cpq
,N = , the transversality conditions.
In order to obtain the optimality condition, we calculate the derivative of H with respect

to upqCrs
i , and we set it equal to zero

∂H
∂upqCrs

i

= Arsu
pqCrs
i – ζ

Cpq
,i+βrsICrs

i SCpq
i + ζ

Cpq
,i+βrsICrs

i SCpq
i = .

Then we obtain

upqCrs
i =

(ζ Cpq
,i+ – ζ

Cpq
,i+)βrsICrs

i SCpq
i

Ars
.
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By the bounds in UP , we finally obtain the characterization of the optimal controls upqC∗
rs

i
as

upqCrs∗
i = min

(

max

(

umin,
(ζ Cpq

,i+ – ζ
Cpq
,i+)βrsICrs∗

i SCpq∗
i

Ars

)

, umax

)

,

i = , . . . , N – , Crs ∈ VP. �

4 Numerical results and discussions
4.1 Brief presentation
In this section, we provide numerical simulations to demonstrate our theoretical results in
the case when the studied domain � represents the assembly of M regions or cells (cities,
towns, . . . ). A code is written and compiled in MATLAB using data cited in Table . The
optimality systems are solved using an iterative method where at instant i the states SCpq

i ,
ICpq

i and RCpq
i with an initial guess are obtained based on a progressive scheme in time, and

their adjoint variables ζ
Cpq
l,i , l = , , , are obtained based on a regressive scheme in time

because of the transversality conditions. Afterwards, we update the optimal control values
() using the values of state and costate variables obtained in the previous steps. Finally,
we execute the previous steps till a tolerance criterion is reached. In order to show the
importance of our work, and without loss of generality, we consider here that M = , and
then we present our numerical simulations in a  ×  grid which represents the global
domain of interest �.

At the initial instant i = , susceptible people are homogeneously distributed with 
individuals in each cell except at the lower right corner cell C, where we introduce 
infected individuals and  susceptible ones. With similar values, we study the case when
the epidemic starts from cell C which is near to the center of �.

In all of the figures, the redder part of the color-bars contains larger numbers of individ-
uals, while the bluer part contains smaller numbers. In the following, we discuss in more
detail the cellular simulations we obtain in the case when there is yet no control.

4.2 Cellular simulations without controls
In this section, Figures , , , ,  and  depict dynamics of the susceptible population
in the case when there is yet no control strategy to be followed for the prevention of the
epidemic. We note that in all the figures presented here, simulations give us an idea about
the spread of the disease in two different cases:

- when the epidemic starts in a cell Cpq with p = , q =  (lower right corner cell). It
represents the case when the vicinity set Vpq associated with the source cell of
infection contains three cells.

- when the epidemic starts from a cell Cpq , with p = , q = , located in the vicinity of
the target patch we aim to control.

Table 1 Parameter values of α, β , γ and d associated with a cell Cpq, p, q = 1, . . . , M, utilized
for the resolution of all multi-regions discrete-time systems (1)-(3) and (4)-(6), and then
leading to simulations obtained from Figure 2 to Figure 19, with the initial conditions S

Cpq
0 ,

I
Cpq
0 and R

Cpq
0 associated with any cell Cpq of �

S
Cpq
0 I

Cpq
0 R

Cpq
0 α β γ d

50 0 0 0.002 0.0001 0.003 0.0001
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Figure 2 SCpq behavior in the absence of control. The case when the disease starts from the corner C11.

For instance, in Figure , if we suppose there are  susceptible people in cell C lo-
cated at the lower right corner of �, and  in each of the other cells, we can see that at
instant i = , the number SC becomes less important and takes a value close/or equal
to , while SCpq in the cells of V takes values close/or equal to . As we move away
from V = {C, C, C}, SCpq remains important. At instant i = , we can observe
that in most of cells SCpq becomes less important, taking values between  and , while in
other cells it takes values between  and  except SC which conserves its value in 
since it is located far away from the source of infection. At instant i = , SCpq becomes
zero except at the corners and in most cells at the borders of �, because these cells have
vicinity sets smaller than other cells. Finally, at last instants, SCpq converges to zero in all
cells. As regards Figure , when we consider SC = , which is located near the center of
�, and  susceptible people in each of the other cells, it is observed that the situation is
more severe, because the disease reaches the corners and borders faster than in the case
of Figure . As we can see, at instant i = , SCpq takes values less important in most cells
except at the corners and borders since their vicinity sets contain only three to five cells
respectively, but it is the result we have reached until instant i =  in Figure .

Figures  and  illustrate the rapid propagation of the infection when the disease starts
from cell C and from the center of �, respectively. In Figure , if we suppose there
are ten infected people in cell C and no infection in all other cells, we observe that at
instant i =  the number IC increases to bigger values close/or equal to  in C,
while ICpq in the cells of V takes values close/or equal to , and as we move away from
V, ICpq remains less important. At instant i = , we can see that in most of cells, ICpq
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Figure 3 SCpq behavior in the absence of control. The case when the disease starts from the center of �.

becomes more important, taking values between  and  in the cells which are close
to the cells with eight neighboring cells, while in few other cells, it takes values between
 and . From these numerical results, we can deduce that once the infection arrives
to the center or to the cells with eight cells in their vicinity sets, the infection becomes
more important compared to the case of the previous instant. At instant i = , ICpq

takes values close/or equal to  in the cell from where the epidemic has started, and 
in V and near to it, and as we move towards the center and further regions, infection
is important with the presence of more than  infected individuals in each cell except
the ones in the three opposite corners even at instant i = . In fact, at the center of
�, the number of infected people, which has increased to  at the previous instant, has
been reduced, because once a cell becomes highly infected, it loses an important number
of individuals which die or recover naturally after. All cells Cpq become highly infected
and the number ICpq becomes less and less important at further instants, noting that at
i = , a large number of infected individuals has decreased because many ICpq have died
or moved to the removed compartment. In Figure , when we consider infection starting
from near the center of � by considering now that IC = , and no infected people in
other cells, the disease spreads towards the corners and borders faster than in the first
case in Figure . At instant i = , the number of infected people has increased in V,
and as we move away to the corners and borders, infection is still low. At instant i = ,
ICpq takes values more important in most cells, close/or equal to , except at the corners
and center where ICpq is close/or equal to , which is the result we can reach until instant
i =  in Figure , noting that IC and ICpq in V C have reduced due to death or natural
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Figure 4 ICpq behavior in the absence of control. The case when the disease starts from the corner C11.

recovery from the disease, while the infection has remained important in the cells which
are near to the corners and borders since the infection has just arrived. The corner cells at
instant i =  conserve their number of infected individuals, while cells at the borders of
� and the ones which are close to the center lose more people due to the number of dead
or recovered people, which increases more and more at further instants, leading IC to
decrease towards  and  at i =  and i = , respectively.

We note that in the following figure, the scale of the color-bars does not exceed ten
individuals since we cannot reach a larger number of removed people when we focus only
on targeting infected people which come from C. As we can observe in Figure , when
we have supposed there are  susceptible people in cell C, and  in each of the other
cells, we can see here that simultaneously, at instant i = , the numbers RC and RCpq

in the cells of V are close/or equal to only one or two removed people, and as we move
away from V, RCpq becomes zero. Similarly, at instant i = , the number RCpq is not
zero and takes values between one and three, except for distant cells where it remains
zero. At instant i = , RCpq takes values between three and five except at the opposite
three corners and some cells at the borders where it does not exceed two removed people.
Finally, at further instants RCpq converges to five in most cells at i =  and in all cells at
i =  since as we go forward in time, some people acquire immune responses that help
them to cure naturally from the disease. As regards Figure , when we consider SC = 
located near the center of �, we can see that the results at instant i =  when the disease
has started from the upper left corner of � are at most the same as the results obtained
at i =  when the disease has started near the center of �. At instant i = , RCpq has
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Figure 5 ICpq behavior in the absence of control. The case when the disease starts from the center of �.

already begun to increase from the center because some infected people have disappeared
as seen in the previous figure. As regards further numerical simulations, we can observe
that the number of the removed people increases to five at the center at i =  until it
reaches the same value in all cells of � except the corners at i = . It becomes more and
more important at further instants reaching five removed people at the corners and six in
each of the other cells at i = .

In the following, we discuss the cellular simulations we obtain in the case when the
optimal controls () are introduced.

4.3 Cellular simulations with controls
Figures , , , ,  and  depict dynamics of the SIR populations when the travel-
blocking vicinity optimal control strategy is followed.

In order to show the importance of the optimal control approach suggested in this pa-
per, we take the example of a patch which has  neighboring cells. As it was done in the
previous part, we investigate also here the results obtained when the disease starts from a
corner and when it starts near or attached to the center. As an example, we suppose that
the patch we aim to control is P = {C, C, C, C}, and we present simulations when
the epidemic is more important at the corner cell C and when the epidemic is more
important in cell C which is attached or directly connected to P.

In the following, we consider that the vicinity of the patch P is defined by

VP = {C, C, C, C, C, C, C, C, C, C, C, C}.
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Figure 6 RCpq behavior in the absence of control. The case when the disease starts from the corner C11.

In Figure , as supposed also above, there are  susceptible people in cell C, and  in
each of the other cells. We can see that at instant i = , the numbers SC and SCpq are at
most the same as in the case when there was no control strategy. At instant i = , we can
observe that in most of cells, SCpq becomes less important, taking values between zero and
ten in cells that are close to V, while in other cells, and as we move away from V, it
takes values between  and . However, the controlled patch P contains  susceptible
people in each cell. In fact, even at instant i = , the number of susceptible people in
the controlled patch conserved its value in , which is not also exactly the same as in
the case when there was yet no control strategy since in Figure , SCpq has decreased more
significantly. Thus, we can deduce that the travel-blocking vicinity optimal control strategy
has proved its effectiveness earlier in time. At instants i = ,  and i = , SCpq is also
the same as done before but fortunately again, we reach our goal in keeping the number
of susceptible people in P close to its initial value despite a decrease of  people. Thus,
this demonstrates that most of movements of infected people coming from the vicinity
of P have been restricted in final times. As regards Figure , we consider SC =  which
represents the number of susceptible people present in cell C located near the center of
� which is more close to the target cell P, and we consider  susceptible people in each of
the other cells. We can observe at instant i =  that SCpq takes values less important in
most cells except at the corners and borders since the number of cells in their vicinity sets
is small, but it is the result we have reached until instant i =  in Figure . We can see
more clearly that the number of susceptible people in the patch P has decreased to only 
in each cell Cpq ∈ P, since even in the previous instant i = , SC has not changed also
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Figure 7 RCpq behavior in the absence of control. The case when the disease starts from the center of �.

and conserved its value in . At that instant, and as shown also in the previous case, the
corner cells contain about  susceptible, while in cells in the borders, SCpq takes values
between  and , and  in some cells near to the corners. Finally, as we move forward in
time, it is observed that the number of susceptible people in the targeted patch P, in each
cell Cpq ∈ P, has decreased to , which is smaller than the number of susceptible people in
the case when the infection has started from the corner. In fact, it is an interesting result
since it shows the impact of infection which starts close to the targeted patch even if it
does not start exactly in the vicinity of the patch P.

In Figure , we can see more the analogy between the number of susceptible people
SC and SC and infected ones IC and IC . In fact, when the disease starts from cell
C, as supposed in the section above, there are ten infected people in cell C and no
infected in each of the other cells. We can deduce that at instant i = , the numbers IC

and ICpq are at most the same, as shown in the absence of controls. At instant i = , we
can see that in most of cells, ICpq is similar to the case in Figure , and it is also more
important, taking values between  and ; while in other cells, it takes values between
 and  as shown in the previous subsection. However, the controlled patch P is still not
really infected since it does not contain yet any infected individual. At instant i = , ICpq

takes values around  in neighboring cells which belong to V, and about  in other
cells except at the three opposite corners and borders of �. At instant i = , most cells
Cpq begin to lose some infected individuals due to natural recovery, and the number ICpq

becomes less and less important at further instants, while the number of infected people
in the patch P does not exceed eight infected individuals. In Figure , and as done in the
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Figure 8 SCpq behavior in the presence of optimal controls (11). The case when the disease starts from
the corner C11.

case without controls, we can also observe that when we consider infection starting from
near the center of � by supposing ten infected individuals in each cell of the patch P with
no infected people in each of the other cells outside the patch, the disease spreads towards
the corners and borders faster than in the first case in Figure . For instance, at instant
i = , the number of infected people has increased in the vicinity of the patch P and
in V, and as we move away to the corners and borders, infection is still low. At instant
i = , ICpq takes values more important in most cells except at the corners, which is the
result we can reach until instant i =  in Figure , noting that the number of infected
people in the patch P, and ICpq in the vicinity of the patch P, has reduced due to death or
natural recovery from the disease, while the infection becomes important in cells which
are near to the corners and borders. The corner cells at instant i =  conserve their
number of infected individuals while some cells at the borders of � and the ones which
are close to the center lose more people due to the number of dead or removed people,
which increases more and more at further instants as observed in i =  and i = 
where the number of infected people in P does not exceed  infected individuals, which
is bigger than the number of infected people in the case when the infection has started
from the corner. Thus, as deduced in Figure , it also shows the impact of infection which
starts close to the targeted patch even if it does not start exactly in the vicinity of the
patch P.

In Figure , when we suppose there are  susceptible people in cell C, and  others
in each of the other cells, we can see that simultaneously, at instant i = , the number
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Figure 9 SCpq behavior in the presence of optimal controls (11). The case when the disease starts from
the center of �.

RC takes a value close/or equal to five, while RCpq in cells of V are zero, and as we
move away from V, RCpq is still zero. Similarly, at instant i = , the number RCpq is
zero at the three opposite corners and borders of �, while it takes values between  and
 in other cells, but the number of removed people in the patch P is still very close to zero
due to very few people who have been infected there. At instant i = , RCpq takes values
between  and  except at the corners and borders, while P is still not containing any
individual in its removed compartment. Finally, at last instants, RCpq converges to  at i =
 in all cells except in P, which does not exceed three removed people, and between  in
all cells at i =  and a number of individuals close to five in P since not many individuals
have been infected to move to the removed compartment. As regards Figure , when we
consider SC = , we can see that at instant i = , in all cells Cpq, the number of the
removed people increases to  in the corner cells, and  in most cells of �, and to 
when we go forward in time as we can observe at instant i = , while the number of
removed people in the patch P has not exceeded about eight removed people.

4.4 Discussions
In Figures ,  and , we investigate the effectiveness of the travel-blocking vicinity op-
timal control approach on the SIR populations of � when it is applied to two patches P
and P′ = {C}. We can see that at instant i =  the number of SIR people in the patch
P is the same as shown in Figures , , , ,  and  regardless of the source of infec-
tion (from the corner cell C or from C). However, the most interesting idea we can
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Figure 10 ICpq behavior in the presence of optimal controls (11). The case when the disease starts from
the corner C11.

extract from this figure is that regardless of the source of infection, the number of suscep-
tible people in the patch P′ has not decreased significantly. When we aim to control only
one cell, the vicinity set associated with this cell contains eight cells, while in the patch P
considered here, each cell Cpq ∈ P is under control with a travel-blocking strategy applied
to only five cells in its vicinity. Consequently, the movements of infected travelers enter-
ing from the three remaining obvious neighboring cells are not restricted. For instance,
in Figure , the number of susceptible people in P′ is equal to  on both sides, which
means it has decreased by only five people from its initial condition. On the other hand,
in the patch P, the number of susceptible people has decreased by more than  and 
people from the initial conditions when the epidemic starts from the corner cell C and
C, respectively. Also, in Figure , the number of infected people in P′ is equal to zero
on both sides, which means it has not increased at all; while in the patch P, the number
of infected people has increased by more than  and  people from the initial conditions
when the epidemic starts from the corner and near the center of �, respectively. Finally,
in Figure , we can observe on both sides that the number of removed people has not
increased at all in P′ since there was no real infection; while in the patch P the number
of removed people has increased by two to five individuals from the corner and near the
center of �, respectively.

In Figures ,  and , we illustrate SIR dynamics in � at instant i =  by giving a
comparison between two cases:
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Figure 11 ICpq behavior in the presence of optimal controls (11). The case when the disease starts from
the center of �.

- when the travel-blocking vicinity optimal control is applied to all cells Cpq which
belong to the patch P.

- when the travel-blocking vicinity optimal control is applied to all cells Cpq which
belong to the patch P, except in C.

The cellular simulations on the right side are associated with the first case, while the
other ones on the left side are associated with the second case.

As we can observe in Figure , on the left side, the number of susceptible people in
Cpq ∈ P has not changed significantly compared to the initial conditions. It loses now more
people as seen in the cellular simulations on the right side. Even when we consider an in-
fection which starts from the left lower corner cell C and the travel-blocking vicinity
optimal control strategy is considered to be missed in only one cell C, the number of
susceptible people in P \ C has decreased to smaller values which equal  individu-
als in each cell. Moreover, obviously, cell C loses more susceptible people towards ,
which is due to the movements of infected people that were not restricted in V. As re-
gards the cellular simulations in Figure , we can see in cellular simulations on the left
side that when the travel-blocking vicinity optimal control approach was followed in all
cells Cpq ∈ P, the number of infected people has not increased and conserved the zero
value, while in cellular simulations on the right side, the number of infected people has
increased to  in each cell in P \ C and to  in C. Simultaneously, we can see in Fig-
ure  that the number of the removed people in cellular simulations on the left side has
not increased since there was no real infection after applying the travel-blocking vicinity
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Figure 12 RCpq behavior in the presence of optimal controls (11). The case when the disease starts from
the corner C11.

optimal control strategy in all cells Cpq ∈ P. However, when we do not restrict movements
of infected people coming from V, we can see that the number of removed people has
increased to five and ten individuals in P \ C and C, respectively. All that means that
if the infection started from the upper right corner cell, the situation would be more se-
vere. Also, this comparison shows the importance and utility of the application of the
travel-blocking vicinity optimal control strategy in all cells which belong to the vicinity
set VP since the infection which comes from only one cell could lead to undesirable re-
sults.

In Figure , we can see the shapes of the optimal controls associated with cells C,
C, C and C which belong to the patch P. Since each cell in � that is not located at
the corners and borders has eight neighboring cells, based on the location of the patch
P we consider here, each cell in P has also eight cells in its vicinity. However, the travel-
blocking vicinity optimal control strategy is proposed to be applied exactly to the patch P
or to all cells in P together, and not to each cell alone. In fact, we may not suggest a control
strategy which aims to restrict movements of people traveling from one cell to another
cell belonging to the same patch. It would lead to saying that in each cell in P we should
not isolate people without letting them reach other cells which belong to the same patch.
However, in terms of the costs of an optimization approach, it would be more beneficial
to control a patch rather than controlling cell by cell in the patch. Thus, the neighbor-
ing cells in P associated with a cell Cpq ∈ P are not subject to any movement restriction,
which means the number of optimal controls that have to be introduced in the vicinity
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Figure 13 RCpq behavior in the presence of optimal controls characterized in (11). The case when the
disease starts from the center of �.

Figure 14 SCpq behavior at the final instant i = 900 in the presence of optimal controls characterized
in (11) with a travel-blocking vicinity optimal control strategy followed in the two patches P and
P′ = {C26}. On the left side, the case when the disease starts from the corner cell C1010. On the right side, the
case when the disease starts near the center of �, exactly at C65.

of a cell Cpq ∈ P is five rather than eight since the three neighboring cells which belong
to P are missed. Then, for the patch P containing four cells, we have  optimal controls
as we can observe in Figure . The optimal controls share similar shapes where most of
their curves vary from  to . × –. The values of the optimal controls are small but
realize our main objective presented in (), but the most important idea we can extract
from the results in both Figures  and  is that there is an analogy between shapes of
infection and optimal control functions since whenever the infection is maximal, the op-
timal controls which are associated with it become simultaneously maximal. Respectively,
this remains true when the infection is minimal as we can see at final times. In fact, even
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Figure 15 ICpq behavior at the final instant i = 900 in the presence of optimal controls characterized
in (11) with a travel-blocking vicinity optimal control strategy followed in the two patches P and
P′ = {C26}. On the left side, the case when the disease starts from the corner cell C1010. On the right side, the
case when the disease starts near the center of �, exactly at C65.

Figure 16 RCpq behavior at the final instant i = 900 in the presence of optimal controls characterized
in (11) with a travel-blocking vicinity optimal control strategy followed in the two patches P and
P′ = {C26}. On the left side, the case when the disease starts from the corner cell C1010. On the right side, the
case when the disease starts near the center of �, exactly at C65.

Figure 17 SCpq behavior at instant i = 600 in the presence of optimal controls characterized in (11).
On the left side, the case when the travel-blocking vicinity control approach is applied to all cells Cpq ∈ P. On
the right side, the case when the travel-blocking vicinity optimal control strategy is followed in P \ C33. The
infection starts from the lower left corner cell C1010.

under the initial conditions, there is an analogy between upqCrs and ICrs . This means that
once an infection is detected, maximized or minimized in the vicinity of the targeted cell,
the travel-blocking optimal control function responds automatically and similarly at the
same time.

5 Conclusion
Some researchers have exploited the framework of compartmental modeling in epidemi-
ology and tried to introduce the concept of networks-based models either for the descrip-
tion of social contagion processes as done in [] or for the study of the propagation of
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Figure 18 ICpq behavior at instant i = 600 in the presence of optimal controls characterized in (11). On
the left side, the case when the travel-blocking vicinity control approach is applied to all cells Cpq ∈ P. On the
right side, the case when the travel-blocking vicinity optimal control strategy is followed in P \ C33. The
infection starts from the lower left corner cell C1010.

Figure 19 RCpq behavior at instant i = 600 in the presence of optimal controls characterized in (11).
On the left side, the case when the travel-blocking vicinity control approach is applied to all cells Cpq ∈ P. On
the right side, the case when the travel-blocking vicinity optimal control strategy followed in P \ C33. The
infection starts from the lower left corner cell C1010.

electronic and computer viruses as in [, ]. Not very far from the main goals of this
kind of epidemic models treated in the mentioned references, which aim to highlight the
nature of infection connections which participate in the rapid spread of an epidemic, in
this paper we have devised a multi-regions discrete-time model which describes infec-
tion dynamics due to the presence of an epidemic in one region and its spreading to other
regions via travel. Regions have been assembled in one grid of cells, where each cell repre-
sents a region, in order to exhibit the impact of infection which comes from the vicinity of
a patch. In fact, by this kind of representations, we have succeeded to show the effective-
ness of the travel-blocking vicinity optimal control approach when it is applied to patches.
Then, we demonstrated that when we restrict movements of infected people coming from
the vicinity of a targeted patch, we can keep this patch safe without or with important in-
fection.

These modeling and optimal control approaches have also led us to three major results:
- when an epidemic starts near the center of a global domain of interest, the situation

becomes more severe in terms of the number of infected individuals compared to the
case when the epidemic starts from a corner. This is due to the number of cells in the
vicinity of the cell that represents the source of infection.

- the optimal controls introduced in our mathematical model respond automatically to
the epidemic once it is detected, and there is an analogy between their shapes and the
shape of infection.
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Figure 20 The optimal controls (11) associated with each cell in P (i.e., C33, C34, C43 and C44).

- if we do not apply the travel-blocking vicinity optimal control strategy to only one cell
of the targeted patch, the other optimal controls are not sufficient to stop or to reduce
the infection in the controlled patch.
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Figure 21 ICrs behavior in the vicinity set VP , with Crs ∈ VP .

The cellular simulations we presented in the numerical results section have illustrated
the case of  cells threatened by infection coming from one cell first located in the corner
of a global domain of interest, and then near the center of this domain, while the patch
targeted for control was chosen to contain four cells located near the center.
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