Zhou et al. Advances in Difference Equations (2017) 2017:90 ® Advances in Difference Equations

DOI 10.1186/513662-017-1142-1

a SpringerOpen Journal

RESEARCH Open Access

CrossMark

Topological properties of solution sets of
fractional stochastic evolution inclusions

Yong Zhou'?', Li Peng', Bashir Ahmad? and Ahmed Alsaedi?

“Correspondence:
yzhou@xtu.edu.cn

'Faculty of Mathematics and
Computational Science, Xiangtan
University, Hunan, 411105, PR. China
2Nonlinear Analysis and Applied
Mathematics (NAAM) Research
Group, Faculty of Science, King
Abdulaziz University, PO. Box 80203,
Jeddah, 21589, Saudi Arabia

@ Springer

Abstract

In this paper, we investigate the topological structure for the solution set of Caputo
type neutral fractional stochastic evolution inclusions in Hilbert spaces. We introduce
the concept of mild solutions for fractional neutral stochastic inclusions and show
that the solution set is nonempty compact and Rs-set, which means that the solution
set may not be a singleton but, from the point of view of algebraic topology, it is
equivalent to a point in the sense that it has the same homology group as one-point
space. Finally, we illustrate the obtained theory with the aid of an example.
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1 Introduction

Stochastic differential inclusions play an important role in characterizing many social,
physical, biological and engineering problems, see, for example, Gawarecki and Man-
drekar [1], Kisielewicz [2], and Prato and Zabczyk [3]. Neutral stochastic differential equa-
tions and inclusions can be used to describe some systems such as aeroelasticity, the loss-
less transmission lines, stabilization of lumped control systems and theory of heat con-
duction in materials with fading memory when noise or stochastic perturbation is taken
into account; for details, see Herndndez and Henriquez [4], Luo [5], Mahmudov [6] and
the references therein.

Fractional calculus tools are found to be quite effective in modelling anomalous diffu-
sion processes as fractional-order operators can characterize the long memory processes.
In the recent years, there has been a significant development in ordinary and partial dif-
ferential equations involving fractional derivatives, see the monographs of Kilbas et al. [7],
Diethelm [8], Zhou [9, 10], the recent papers [11-17], and the references therein. There-
fore, it is reasonable and practical to import fractional-order operators into the investi-
gation of stochastic differential systems. Recently, Toufik [18] obtained the existence of
mild solutions for the fractional stochastic evolution inclusions. Zhou [10] derived topo-
logical properties of solution sets for fractional stochastic evolution inclusions. An impor-
tant aspect of such structure is the Rs-property, that is, an R;-set is acyclic (in particular,
nonempty, compact and connected) and may not be a singleton but, from the point of view
of algebraic topology, it is equivalent to a point in the sense that it has the same homol-
ogy group as one point space. There has been a great interest in the study of topological
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structure of solution sets; for instance, see Andres and Pavlackova [19], Bothe [20], Bres-
san and Wang [21], Chen et al. [22], De Blasi and Myjak [23], Deimling [24], Gabor and
Quincampoix [25], Gérniewicz and Pruszko [26], Hu and Papageorgiou [27], Staicu [28],
and Wang et al. [29, 30] and the references cited therein.

In this paper, we consider the following problem of fractional stochastic evolution in-

clusions in Hilbert spaces

DY, [x(t) - h(t, x,)] € Ax() + Dt x) 22, te]0,0], a1
x(£) = p(t), tel-1,0], '

where ¢D?_ is the Caputo fractional derivative of order g € (%,1), A is the infinitesimal
generator of a strongly continuous semigroup {7'(¢) : £ > 0} in a Hilbert space H with inner
product (-,-) and norm | - |, i :J x C([-7,0],H) - H, £ : ] x C([-7,0],H) — L(K,H) is
a nonempty, bounded, closed, and convex multimap, {W(t) : ¢ > 0} is a given K-valued
Brownian motion or Wiener process with a finite trace nuclear covariance operator Q > 0.
Here C([-7, 0], H) is the space of all continuous functions from [-7, 0] to H equipped with
the norm |[|c|| = supy(_, o) Elc(8)[?, K is a Hilbert space with inner product (-, -)x and norm
| - |k, LK, H) denotes the Banach space of all bounded linear operators from K to H.
Let g € (0,1] and x: [0, +00) — X. Then the fractional integral operator is defined by

t

1L x(t) =g, (t) xx(t) = /0 g,(t—s)x(s)ds, t>0,

where * denotes the convolution and g,(t) = %. Similarly, the Riemann-Liouville frac-

tional derivative operator is defined by
DE,x(0) = (&1-4(0) * 2(2))’

and the Caputo fractional derivative operator can be defined by
“Df,x(t) ="Df, (x(¢) — x(0))

for all £ > 0. For more details, we refer the reader to [7-9].

The study of inclusions (1.1) constitutes an important area of research. However, this
topic is relatively less developed and needs to be explored further [31]. To the best of our
knowledge, the investigation of topological properties of the solution set for (1.1) is yet
to be addressed. In this paper, our objective is to establish that the solution set for the
inclusions (1.1) is nonempty compact R;-set.

The rest of the paper is organized as follows. Section 2 contains some preliminary mate-
rial on differential inclusions and the notation to be followed in the sequel, while Section 3
presents the concept of mild solutions for fractional neutral stochastic inclusions. In Sec-
tion 4, we show that the solution set for the inclusions problem (1.1) is nonempty compact
and discuss its Rs-structure. The paper concludes with an example demonstrating the ap-

plication of the work established in this paper.
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2 Preliminaries

Let H, K be real separable Hilbert spaces, and (2, #,[P) be a complete probability space
equipped with a normal filtration %;, ¢ € [0, b] satisfying the usual conditions (that is, right
continuous and ¥, contains all P-null sets). We consider a Q-Wiener process on (2, ¥, P)
with the linear bounded covariance operator Q satisfying the condition Tr(Q) < co. We
assume that there exists a complete orthonormal system {e,},>1 on K, a bounded se-
quence of non-negative real numbers {A,} such that Qe, = A,e,, n =1,2,..., and a se-
quence {W,},>1 of independent Brownian motion such that

(W) e)e =D VinlenmxWa(®), ecK,tel0,b],
n=1

and ¥; = ¥, where ¥, is the sigma algebra generated by {W(s): 0 < s < t}. Let L) =
Lz(Q%K ; H) be the space of all Hilbert-Schmidt operators from Q%K to H with the inner
product (¥, T)Lg =tr[wQY*].

Denote by L%(2; H) the Banach space of all F,-measurable square integrable random
variables with values in H with the norm || - ||. Let C[-7, ] be a subspace of all continuous
H-valued stochastic processes x € C([—t, b]; L2($; H)) endowed with the norm

S

2
I#llerean = ( sup Elx(e)]*)”.
b]

tel-r,

We assume that A is the infinitesimal generator of an analytic semigroup {7'(¢) : t > 0}
of uniformly bounded linear operators on H. Let 0 € p(A), where p(A) is the resolvent set
of A. Under these conditions, it is possible to define the fractional power A?, 0 < 8 <1, as
a closed linear operator on its domain D(A?). For an analytic semigroup {7'(¢) : £ > 0}, the
following properties will be used:

(1) there exists M > 1 such that M := sup,., | T(£)|| < oo;

(ii) for any B € (0,1], there exists a positive constant Cg such that

[T < 2, 0<t=b

Let P(H) stands for the collection of all nonempty subsets of H. As usual, we denote
P.,(H) = {D € P(H) : compact}, Py, (H) = {D € P(H) : closed and convex}, P, ,(H) =
{D € P(H) : compact and convex}, co(D) (resp., co(D)) be the convex hull (resp., convex
closed hull in D) of a subset D.

Definition 2.1 A subset D of a metric space is called an R;-set if there exists a decreasing
sequence {D,} of compact and contractible sets such that

We need the following well-known results in the forthcoming analysis.

Lemma 2.1 ([32]) Let H be a Hilbert spaces and ¢ : H — P(H) a closed quasicompact
multimap with compact values. Then ¢ is u.s.c.



Zhou et al. Advances in Difference Equations (2017) 2017:90 Page 4 of 20

Lemma 2.2 ([20]) Let ¢ : D C H — P(H) be a multimap with weakly compact convex
values. Then ¢ is weakly u.s.c. if and only if {x,} C D with x,, — %o € D and y, € ¢(x,)
implies y, — Yo € @(x0), up to a subsequence.

Theorem 2.1 ([16]) Let D be a bounded convex closed subset of Banach space X. Let ¢ :
D — X be a single-valued map and ¢, : D — Py, (X) be a multimap such that ¢,(x) +
©2(x) € P(D) for x € D. In addition, it is assumed that

(a) 1 is a contraction with the contraction constant k < %, and

(b) @9 is u.s.c. and compact.

Then the fixed point set Fix(¢; + ¢2) := {x: x € ¢1(x) + ¢2(x)} is a nonempty compact set.

3 Statement of the problem
To study the fractional stochastic evolution inclusions (1.1), we assume that

(Hy) The function 4 : [0,b] x C([-7,0]; H) — H is continuous and there exist constants

2
B e (1) and d,dy > 0 with \/Zd(||A*ﬂ||2 + %bzqﬁ) < 1 such that & € D(4%) and

forany ¢;, ¢, € C([-7,0]; H), the function APh(t, -) is strongly measurable and AP h(z, -)

satisfies the Lipschitz condition
E[APh(t,¢)) - AP, ))|” < dllc; - ca)?
and the inequality
E|Aﬂh(t, c1)|2 <d; (1 + ||c1||i) for every t € [0, b].

(Hy) The multimap ¥ : [0,5] x C([-7,0]; H) — P(LY) has closed bounded and convex val-
ues and satisfies the following conditions:
(i) 2(¢ -) is weakly u.s.c. for a.e. t € [0, b], and the multimap X(-,¢) has a strongly
measurable selection for every c € C([-7,0]; H);

(ii) there exists q; € [%, q) and a function @ € quii-l ([0, b]; R*) such that
E|=(t0) ||i0 <a()(1+|c|?) forae.te[0,b]andce C([-1,0];H),
2

where E|| Z(t, c)||ig = sup{Ella(t)Hig co € B(t, )}

Given x € C[-1, b], let us denote
Sels (x) := {0 € LZ([O,b];Lg) 1o (t) € X(¢,;), fora.e. t € [0, h]}.

Notice that the set Sely (x) is always nonempty by Lemma 3.1 stated below. Now we state
some more well-known results [10] that we need later.

Lemma 3.1 Let the condition (H,) be satisfied. Then Sels : C[-t,b] — P(L*([0,b]; L)) is
weakly u.s.c. with nonempty, convex and weakly compact values.

Lemma 3.2 Assume that (Hy) is satisfied. Then there exists a sequence {¥,} with %, :
[0,6] x C([~7,0]; H) — Peyey(LY) such that
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(i) Z(t,¢) C Tyt c) C Zy(¢, ¢) Cco(X(t, Byi-n(c))), n > 1, for each t € [0,b] and
ce C([-1,0]; H);
(i) E|Z,(t, c)||i(2) <a@®)(3+2lcl?), n>1,forae.t € [0,b] and each c € C([-7,0]; H);
(iii) there exists E C [0, b] with mes(E) = 0 such that for each x* € H, € > 0 and
(¢,¢) € [0,b) \ E x C([~7,0]; H), there exists N > 0 such that for alln > N,

(x*, PIM(A c)) C (x*, x(t, c)) + (—€,€);
(iv) Z(t,-): C([~7,0); H) — Py (L) is continuous for a.e. t € [0,b] with respect to
Hausdorff metric for each n > 1;
(v) for each n > 1, there exists a selection &, : [0,b] x C([-7,0]; H) — LS of =, such
that 6,,(-, ) is measurable for each C([-t,0]; H) and for any compact subset D C H
there exist constants Cy > 0 and § > 0 for which the estimate

~ ~ 2
E[6u(t,c1) = Gu(t,c2) [ g < Cra®ller - a3

holds for a.e. t € [0,b) and each c1,co € V with V := D + B;(0);
(vi) X, verifies the condition (Hy)(i) with X, instead of ¥ for each n > 1.

Let us first introduce two families of operators on H:
[ee]
S,(t) = / £,0)T(¢70)do, fort>0,
0
o0

K,(t) = / qGSq(G)T(tqQ) do, fort=>0,
0

where
1 — ra
£ =23 o T Gotng), 60, +00).
q n!

Definition 3.1 A stochastic process x € C[-7,b] is said to be a mild solution of the
problem (1.1) if x(¢) = ¢(¢) for t € [-7,0] and there exists o € L([0,b];L9) such that
o(t) € 2(t,x;) for a.e. t € [0, ], and x satisfies the following integral equation

x(t) = S,()[9(0) — h(0,p)] + h(t,x,) + /t(t — )1 AK(t - $)h(s, x5) ds
0
+ /t(t - s)q_ll(q(t —8)a(s)dW(s), te]0,b].
0

Lemma 3.3 ([9]) The operators S,(t) and K,(t) have the following properties:
(i) foreach fixed t > 0, S,(t) and K,(t) are linear and bounded operators, i.e., for any
x€H,

|S,(0)x| <Mlx| and |Ky(t)x| < M—q

(i) {S4(t):t >0} and {K,(t) : t > 0} are strongly continuous;
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(iii) {S4(¢):t >0} is compact if {T(t): t > 0} is compact;
(iv) foranyx € H, B € (0,1), we have AK,(t)x = Al‘ﬁKq(t)Aﬂx and

_ M
|4 K] < St

qC1gT(1+B)

where Mg = i)

Remark 3.1 For any x € C[-t,b], define a solution multioperator F : C[-7,b] —
P(C[-7, b)) as follows:

F = Fix) + Fa(x),

where
F)(0) = S0, 9) + it %) + [L(t - $)ILAK, (t — (s, x;) ds, t € [0,b],
O te[-1,0],
B0 = | yeClot,bl:3(0) = ls(a)"f)"’ €Selz(, te0b], |
#(2), te[-1,0]

and the operator S : L2([0, b]; L) — C[-7, b] is defined by

S(o) = S,(t)¢(0) + At(t - s)q’qu(t —35)o(s)dW (s).

Observe that the fixed points of the multioperator F are mild solutions of the problem
(1.1).

Lemma 3.4 Let D be a bounded set of C[-t,b]. If (H1) holds, then {®(x)(t) : x € D} is

equicontinuous on [0, b], where
t
O(x)(t) = / (t —s)q_lAKq(t —s)h(s,x,)ds, te]0,b].
0
Proof For each x € Dwith 0 < ¢; <t < b, we obtain
E|o®)(t:) - 2)(1)|”
ty
<3t -t) f (ts — s CVE| AP K, (1, - )AP h(s, x,)| ds
5]

51
+34 / (£ = )7 = (11 — )17 E[AYP K, (82 — 5)AP h(s, x,)|* dis
0

51
+34 / (11 — s CVE|[AYP K, (8 — 5) - AP Ky (11 — 5)|AP h(s, x,) | dis
0

= Ji(t, &) + Ja(t, 2) + J3(ta, £2).
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After a fundamental calculation, one can estimate each term as follows:

ty

Nty 1) < 3d M3 (1 — tl)/ (t2 =PV (1 + |l ]12) ds

5]
(tr — 0)*P

< SdlM?; (1+ ||x||é[_t,b])w

5]
ha(ti, 1) < 3dh Mty / (b2 = )T = (61— 9)71) (2 — 1P D (1 + [|,112) ds
0

5]
<3 Mty (1+ %13 ) / (2 =00 — (5 = 9*T) (0 )17V dis
0

— — 2
J(t, ) < 34 sup HAl ﬁ1<q(t2 —-) —A! ﬁ1<q(t1 —-) ||
s€[0,£1-6]

-6
X f (t =924V (1 + ||xs)12) ds
0

t
+ 6d1M§t1 / (t —s)2@ [(tz — 824D 4 (g — s)zq(‘g’”] (1 + || ||i) ds
-6

82q—1 _ (tl _ 5)27_1
<30 (L4 Il ) ——

2g-1
- _ 2
X sup ||A1 ﬂKq(tz —s)—Al ’31(q(t1 —s)||
s€[0,t1-8]
) ) 2qp-1
+12d M5t (1 + || —_—
M (14 1)

Therefore, for ¢, — t; sufficiently small, /;(#1, %) and J3(4, ;) tend to zero by Lemma 3.3.
For J5(t1, ), notice that

5]
f ((tz —8)2@ D _ (g - S)Z(q—l))(t2 — 524D gg
0
5]
< / (£ — S)Z(qﬂ—l) + (- S)Z(q—l)(t2 _ S)Zq(ﬂ—l) ds
0

5]
< / (ty — )2 P 4 (8 — )29PD gs < 00.
0

Using Lebesgue’s dominated convergence theorem, one can deduce that /;(¢,£,) — 0 as

t, — 1 — 0. Hence we obtain the result. O

4 Main results
In this section we study the topological properties of solution sets. For computational

convenience, set

A WLTHQ <1 -q )“‘ﬂ
(g \gq-aq ’
2 h2qp

- M2b
d = 4d1<||A"3 I” + 2;;}7_1) F AP Do
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The following compactness characterization of the solution set to the problem (1.1) will
be useful.

1
Lemma 4.1 Suppose that T(t) is compact for t > 0 and there exists y € L>171([0,b];R*)
such that

E|| (¢, c)Hio <y(t) fora.e te€[0,blandce C([—r,O];H).
2
Then the multimap F, is compact in C[-t, b].
Proof Let D be a bounded set of C[-7, b]. For each t € [-7, b], it will be shown that A(¢£) =
{F2(x)(2) : x € D} is relatively compact in L2(2; H).

Obviously, for £ € [-7,0], A(t) = {¢(¢)} is relatively compact in L2(Q2; H). Let £ € [0, b] be
fixed, for x € D and y € A(¢), there exists o € Selx (x) such that

y(t) = Sy()[9(0) — h(0, )] + /0 (t - )T Ky (t = s)o (s) AW (s).

Let t € [0, D] be arbitrary and ¢ > 0 be small enough. Define the operator ¥, : A(f) —
L*(Q;H) by

Wey(t) = Sy(8)[#(0) - 1(0,¢)]

+ T(&95) /Ot_g /:o qo(t — )17, (0) T ((t - 5)70 — £78) 0 (s) A0 AW/ (s).

Using the compactness of T'(¢) for ¢ > 0, we deduce that the set {W.y(¢) : y € A(¢)} is rela-
tively compact in L2(Q; H) for every ¢, 0 < & < t. Moreover, we have

2

t $
E|W,y(t) - y(t)|2 < ZEH fo fo g0t — )T E,(0) T ((¢ - 5)70) 0 (s) dO AW (s)

2
2
+2E

0
LZ

/t /ooqe(t—s)q’léq(é’)T((t—s)qe)o(s) do dW (s)
t—e J§
5

2
< 2Tr(Q)<Mf q9§q(9)d9) /t(t—s)z(q—l)EHg(s)Hio ds
0 0 >
o 2
+2Tr(Q)(M / q€§q(9)d9> / t (t =24 VE|o(s)| o ds
s t—e 2

) 2 ot
§2Tr(Q)<M /0 qesq(e)de) /0 (t=9)"y(s)ds

2M2Tr(Q) [
Fz(Q) t-e

5 2 ) l-qi 2-2q1
§2Tr(Q)<M f qQEq(Q)dG) b(””(q > Iyl
0 - 1-1

q1

2 _ 2-2q1 t 2q1-1
. 2M 2Tr(Q) (1 611) o20@-a) (/ yﬁ (s) ds)
g \g-a te

— 0, ase—0.

(t-9)* "y (s)ds
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Thus ||V, y(¢) — y(£)|lc — 0, which shows that there is a relatively compact set arbitrarily
close to the set A(¢). Thus the set A(t) is also relatively compact in L2($2; H) for each
t € [0,b]. Hence A(t) = {T'5(x)(t) : x € D} is relatively compact in L2($2; H) for each t €
[-7,b].

Next we verify that the set {F,(x)(¢) : x € D} is equicontinuous on (0, b]. For each y €
Fr(x) and 0 < £; < £, < b, we obtain

E|y(ts) - y(t)|” < 4E|(S,(t2) - S4(1)) [$(0) — h(0,)]|*

ty 2
+ 4E / (ty — s)q_ll(q(tz —8)a(s)dW (s)
31 L3
5} 2
+4E / (G $)I — (4 - s)q_l)l(q(tz —8)o(s)dW (s)
0 Lg
15} 2
+4E / (t1 = )T Kyt = 5) = Ky(t1 = 9)]o () AW (s)
0 2]
=:L1(t1, 1) + L(t, &) + I3(t1, £2) + La(t1, £2).
As before, one can obtain the following estimates:
Lt 1) < 4]S,(82) - Sy(1) | Elo 2,
4M2T :2
bt 1) < 2T 2, oy (94
r (CI) 5l
< Ayl (6 = 0",
B3(t, 1) < M ! [(fz —9)1 = (1 - S)q_l]zV(S) ds
- T2g) Jo
m q—ql 4
S Al (6" =6+ (- F ),
Ii(ty,t) <8Tr(Q) sup ||K (tr —5) — Ky(ta —s)|| / - s)z(q_l)y(s) ds
s€[0,61-6

| 8M2THQ) 8M2 TI”(Q / (4 S)zq 1) )/(S) ds

-

2-2q1
<8Tr(Q) sup ||1< (tr—s) - K, (tl—s)”( ql) Iyl o g
q—qQ 171

s€[0,t1—

FANS T )| 1
91—

Therefore, for ¢, — t; sufficiently small, the right side of each inequality tends to zero by
Lemma 3.3. The equicontinuity of the cases t; < £, <0 and #; <0 <, is obvious.

Thus, an application of Arzela-Ascoli theorem justifies that {F;(x) : x € D} is relatively
compact in C[-7, b]. Hence F; is compact in C[-7, b]. This completes the proof. d
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Let a € [0, ). We consider the singular integral equation of the form for

o(t) + h(t,x) + f;(t - $)TLAK, (¢ — s)h(s, x,) ds
x(t) =1+ [t =) T Kt - 9)5 (5,%5) AW (s), t € [a,b], (4.1)
@(t)’ te [—‘L’,ﬂ],

where ¢ € C([a, b]; H) and ¢ € C([-7,a]; H) are such that ¢(a) = ¢(a) — h(a, p). Similar to

the proof of [30], Lemma 3.2, we can get the following lemma.

1
Lemma4.2 Letq € [%, q), 6 (-,¢) be L*171 -integrable for every c € C(la—t,al, H). Assume
that {T(t) : t > 0} is compact. In addition, suppose that
(i) for any compact subset K C H, there exist § > 0 and Li € L'([a, b);R*) such that

E[(6.e) - 6(6.e)| g < Le@ller - call,

fora.e.t € a,b] and each c1,cy € Bs(K);

(ii) there exists y1(t) € L7 ([a, b);R*) such that E||G (¢, c)||i0 <n@)(c + llcl|?) for ae.

t € [a,b] and every ¢ € C(la — t,al, H), where ¢’ is arbitrary, but fixed.
If 4d,|A~%||? < 1, then the integral equation (4.1) admits a unique solution for every ¢ €
C([-t,al; H). Moreover, the solution of (4.1) depends continuously on ¢ and ¢.

Proof Step 1. A priori estimate. Assume that x is a solution of (4.1). Then

t
El(t)? < 4E|A AP h(t, x> + 4(t - a) / (¢ - PO DE|AIPK, (¢ - ) AP (s, x,)| ds
a
t
+ 4E|g0(t)‘2 +4Tr(Q) / (t- s)z(q’l)EH1<q(t —5)0 (s, %) ”ig ds

t
<4di|A™P ”2(1+ ll112) + 4dy M (¢ - a) / (t - 2D (1 + |, )12) ds

2 t
Wrz—f;gQ) ; (t_S)Z(qfl)yl(S)(C/ + ”xs”i) ds

<4d JA P (1+ 123 pr)

+ 41[22)](}(/)(1‘” +

t
ralb- )t [ (=P (1 el ) ds

4M2 Tr(Q)

t
— f (£~ 2TV ()¢ + el e ds

+ 4m.%1xE‘<p(L‘)|2 +
[a,b]
for t € [a, b], and notice that |x(¢)| = |@(¢)| for ¢ € [-1,a]. Let t* € [a — t,t] be such that

le@)l = l*llcla—r,g- Furthermore, we have

2 2
1% era—r.q = 1% La—r,

1

4d\ M3 (b — a)*??
< —_ - 7
T 1-4d,|AP)?

[4(11 e

+ A+ 4maxE|<p(t)|2
[a,b]
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t* 2
. / (4(b —QdM (e -5 WFZ—E;Q)(t* _S)z(q—l)yl(s))

X ”x”C[a—r,s] dS:|,

with A = ¢/ A(b — a)24=1) ||
[l (=z,p) < M.
Step 2. Local existence. Let ¢ € C([a,b];H) and ¢ € C([-1,a];H) be fixed. From

4d;||A?||? < 1, we can find one £ arbitrarily close to a such that

S By Gronwall’s inequality, there exists M > 0 such that
41—

+AGE-a) Ty 2 <1

M>(& — a)*P
4d1<||A‘ﬂ||2+7ﬂ(§ 4) )
L2017 (a8

2gB -1

Then, for such an &, we can choose p satisfying

_ A _
4di(|AP)? + =L o=—) + 4 maxue El(©)|? + ¢ AE - a)* Ty
qB L2171 [g8]
0= 5 ==,
M (-a)2aP
1-4d,(|A-P|% + ﬂZqT) - A(E —a)a-n) ||y, ”Lﬁ ]
that is,

M3(& - a)e”
2g8 -1

+AE - a) (' + p) Il <p.

2 Tge)

4dy(1 + p)<||Aﬁ 12+ ) +amax (o)

Let us define

B, () = {x eCl-7,£]: sup Elw(t)|” < pandx(t) = (t) for t € [—r,a]},
te[-t.¢]

and introduce an operator E on B, (£) as follows:

Ex(t) = E1x(t) + Eox(2),

where
h(t,x:) + [1(t—s)TVAK (t — $)h(s,x;) ds, t € [a,b],
alx(t) = “
0, te[-t,al,
and
o) + [t —8)T K, (t - 5)5 (5,%5) AW (s), ¢ € [a, D],
sz(t) = “

o(t), tel-t1,al].
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For x € B,(£), we have

E|Eyx(2) + Box(t)|

t
<4|A7P|d(1+ ||x||%[a_m]) +4E - a)dlMg f (t — 5)*@F-1) 1+ ||x||é[a_m]) ds

4AM?* Tr(Q)

I'(q)

M (& - ape?
2gp -1

+ A€ —a)? (' + p) (A

20171 [g,]

t
2 _
+41[1;a5E|<p(t)| - / (=92 TV y(s)( + %112, ) ds
’ a

§4d1(1+,0)<HA_‘3||2+ )+4r[nag>](E]<p(t)|2
=p

for ¢ € [a,&]. Obviously, E maps B,(£) into itself.
Foranyx,y € B,(£) and t € [a,£], we have

E|Z1x() - Euy(t)|”
< 2E|h(t,x,) - h(t,5.)|" +2(t - a) / (-5 E |AK, (¢ = 9)[ s, %) = (s, )] | ds
= 2E|A AP [(t,x) - it )]

t
+2(t - a)M> / (¢ — )2 PVE|AP[h(s, x,) - h(s, )] ds
t
<2d[| AP |l - ye 1% + 24t - a)M;, / (t — $)29PD) 1, — y,||% ds
a

t
_B12 _
< 2] A |1 g+ 20 M [ (=50 =y s
a
2

M
<20+ 5P 6 = Y=y

Noting that E;x(¢) = 0 for ¢ € [-7, a], we get

2
[ B1x — Eryliciare <4 2d HMHH&W % = yllcla—r.e1,
S 28 -1 '

which shows that E; is a contraction.
Next, we will prove that &, is continuous on B, (£). Let x", x € B,(£) with x” — x on
B,(£). Noting that

t t
/ (¢ = )TV Lie(s) a2 =, |2 ds < 2 / (¢ = )2 DL (s) (|7 + llas11?) s
a a

t
<4p / (t - 5)*VL(s)ds < o0,
a
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by (i) and the fact that x} — x, for ¢ € [a, £], it follows from Lebesgue’s dominated conver-
gence theorem that

4AM2T
E| 801" (£) - Bax(t)]” < rz(rgQ) / (t =" TVE| G (s,47) — 5 (s, %) ||ig ds
2
L AMTTHQ) (t_s)z(q—nLK(S)”x;« x|

I'2(q)

— 0, asn— oo.

Moreover, from the pf of Lemma 4.1 we see that E, is a compact operator. Thus, Ej; is
a completely continuous operator. Hence, Krasnoselskii’s fixed point theorem shows that
there is a fixed point of &, denoted by x, which is a local solution to equation (4.1).

Step 3. Uniqueness. In fact, let y be another local solution of equation (4.1). According
to condition (i), we obtain

Elx(t) - y(®)|” < 3d| APl = 31210

t
#3d(e- M [ (6= V=5l ds

3M2Tr(Q)

t
STl O 8P UVLi($) 10 = YN Epar 5 s
a

fort € [a,&),and E|x(£)—y(t)|> = 0 for t € [-T,a). Let £ € [a—1,t] be such that || x(£) - y()|| =
Il2 = ¥ll¢[a—r,5. Thus we obtain

2 2
”x _y”(j[g_-[,t] = ”x —J’||C[ﬂ_,,;]

1 t .
<————— | |3d(E - a)M:(E - s)X?PD
—1—3dnAﬂn2/a[ (€~ M2 (i —s)

SM?Tr(Q) -
T (= ) TV Lk (s) | o6 = Yl (s .
Applying Gronwall’s inequality, we get ||x — y||é[a_”] = 0, which implies x(¢) = y(¢) for t €
[—'E, E]

Step 4. Continuation. In the sequel, the operator E is treated as a mapping from Cla, b]
to Cla, b]. Define an operator

v [ﬂ,b] X C[a: b] — C[a, b], \I/(t’y)(s) — _)/(S), s€ [61, t]:

Let ] = {t € [a,b] : ¥ € C[a,b),y" = ¥(t, E(»"))}. Then it follows from x* = ¥ (&, E(x%)) and
A =W(t,x) that ] # P and [a,t] C J forall t € ]. Letting £, = sup/, there exists a sequence
{t,} C J such that

t, <tya formeN, lim ¢, = to.
n— 00
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By the continuity of ¢ and the assumption (H;), and following the argument employed in
Lemmas 3.4 and 4.1, we conclude that E|x™ (¢,) — x™ (to)|*> = E|x™ (t,,) — ™ (£,)]> = 0 as
n — 00. Accordingly, lim,,_, o, ¥ (£o) exists.

Consider the function

x'(s), s€la,ty],
P (@,
hmn—>oo xl (tO)x se [tO,b]-

Clearly equicontinuity of the family {x™*} implies that x0 is continuous. Using Lebesgue’s

dominated convergence theorem again, we have

x0(ty) = lim x™(¢,)
n—0o0

tn
lim |:(p(t,,) + h(tnx)t) + / (tw — )1 AK (8, — $)h(s,x%") ds
a

n—00

+ / b = 1K (- 5)5 (s,27) dW(s)]

t
o(to) + h(to, x2) +/ (t - )T AK, (& — )h(s, x%0) ds

+ /t(t — )T K, (t = $)5 (5,%2) AW (s).

Thus, we find that x% = W(z,, E(x®)), which yields #, € J.
Next, we show that £y = b. If this is not true, then £, < b. Let us set

to to
o(t) = o(t) + / (t- s)q’lAI(q(t - s)h(s, xﬁo) ds + / (t - s)q_ll(q(t —8)0 (s,%5) AW (s),
with ¢ € C[#, b] and consider the following integral equation:
t
x(t) = @(t) + h(t,x;) + / (t - s)q’lAKq(t —8)h(s,x5)ds
to

+ /t(t — )T K, (t = $)5 (5,%2°) AW (s).

0

Applying the earlier arguments, one can obtain that z € C[ty, fo + &']. Let x +'(5) be equal
to x™(s) for s € [a, ty], equal to z(s) for s € [ty, to +&'] and equal to z(ty +&’) for s € [ty +&/, b].
Then it is clear that 0¥ (s) € C[a, b]. Moreover,

t
X0 (8) = p(t) + (6,207 ) + / (t - 5)TLAK ( — )h(s, 07" ) ds
a

t
+ f (t -9 Ky(t - 5)5 (s, x§°+§/) dW(s) forte [a,to+¢&'].

This shows ty + & € J, which is a contradiction.
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Finally, let 9" — ¢° in C([a,b); H) and ¢" — ¢° in C([-7,a]; H) as n — oo, and x" be
the solution of (4.1) with the perturbation ¢”, i.e.,

x"(t) = " () + h(t, x;’) + /t(t — s)q_lAKq(t —s)h (s, xg’) ds
+ /t(t - s)q‘ll(q(t —35)o (s, xf) dW (s) (4.2)

for t € [a,b] and x"(£) = ¢"(¢t) for t € [-7,a]. It is clear that lim,,_, ., " exists in C[-T,a].
From Lemma 4.1, it follows that the set

{/t(t - s)q_ll(q(t —5)0 (s,xf) dw (s):n > 1}

is relatively compact in C[a, b]. This implies that the family
t
{x"(t) - h(t,x?) - / (t- s)q_lAKq(t - s)h(s,xs”) ds:n> 1}

is relatively compact in C[a, b]. Next we only need to prove that lim,_.» x” exists in C[a, b].
On the contrary, if lim,,_, . ¥ does not exist in C[a, b], then for any n € N, we have ny, 1y
with ny, 13 > 1 such that [|[x™ — x"2||¢[45 > €0 (€0 > O is a constant), that is, there exists t*
such that

E| (1) = () = ot = > €5

Let " (£) = x"(£) — h(t, ) — [*(¢ — 5)1 AK, (¢ — s)h(s, x7) ds. Using (Hy), we have
3E|I/lnl (t*) —um (t*) |2

2

> B (1) - 22 (¢°) - 3E(e" 22) ~ (e )

Lt* (t* - s)q_lAKq (¢ - s) [h (s,x:“) - h(s,x;‘2)] ds

2
*

2
-3E

= E (1) - (1) = 3 A | 2 2

t*
sai(e—a) [ (o) e - s

M2 - B
2 B () - @) -3 Ja? |+ S -

M2bP
> [1_3d(||A—ﬂ [+ L)}g,
g

which contradicts the compactness of #” in Cla, b]. Hence {x"} converges in C[-7, ], the
limit is denoted by x. Therefore, taking the limit in (4.2) as # — oo, one finds again by
(Hz2) and Lebesgue’s dominated convergence theorem that x is the solution of (4.1) with
the perturbation ¢°. This completes the proof. d

Next we present an approximation result. We do not provide the proof as it is similar to
that of [33], Lemma 2.4.
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Lemma 4.3 Let {T(t): t > 0} be compact and (Hy) holds. Suppose that there exist two
sequences {0,} C L*([0,b];L)) and {x"} C C[-t,b] such that lim, 0, = 0 weakly in
L*([0,b]; LY) and lim,,_. o x" = x in C[-7,b], where x" is a mild solution of the stochastic
problem

CDE [x"(t) - h(t,x7)] = Ax"(t) + 0,,(£) 22 dt ), telo,b],
x"(2) = ¢ (1), te[-1,0].

Then x is a mild solution of the limit problem

DY, [x(t) - h(t, x,)] = Ax(t) + o ()22, te[0,b],
x(8) = ¢(2), te[-t,0].

Theorem 4.1 Let the conditions (Hy) and (Hy) be satisfied. In addition, assume that T(t) is
compact for t > 0. If d < 1, then the solution set of the inclusion problem (1.1) is a nonempty
compact subset of C[—1,b] for each ¢ € C([-7,0], H).

Proof Let us fix

Ip112 + 8M2[dy |AP |21 + [|¢12) + El$(0)*] + d
1-d

R>

and consider

BR(b):{xeC[—r,b] sup E|x(t <R}
te[-1,b]

Clearly Bgr(b) is a closed and convex subset of C[-t,b]. We first show that F(Bg(b)) C
Bgr(b). Indeed, taking x € Br(b) and y € F(x), there exists o € Selx(x) such that

t
Ely@)]" < 4E|AP AP kit x)|” + 4t / (£ =) VE[A P, (e - A h(s,x) [ ds
0
t
+4E\Sq(t)[¢(o)—h(o,¢)]|2+4Tr(Q)f0(t—s DE| K, (¢~ s)o HLods

t
<4d,|A* H2(1 113 ) + 4 Mt / (t = )X 1PV (1 + ||xl|Z(_, 4 ) ds
0

+8M[dy| AP (1 + 116112) + E[¢(0)[]

AM*T t
e [ = s ) ds
MEbP
<441 +R)(||A P m) + 8M2[d AP (L + 1612) + E|9(0)]

+ AV TQ 4 R 1
2q1-1
for t € [0, b]. With y(¢) = ¢(¢) for ¢ € [-7, 0], we have

Ely@)|* < 1911 + 8M*[dy || AF|* (1 + 1611%) + E|$(0)] + d(1 + R) < R
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fort € [-7,b].
Letting x,y € C[-7, b] and applying the argument employed in Lemma 4.2, we obtain

E|Fix() - Fiy(e)|* < 2E|A7P AP [(t, %) — h(t,2)] |

t
+ 2UM3, /0 (t — ) 9PVE| AP [ h(s, x,) - hs, y5)] ’2 ds

2 M
= 2d<”A_ﬁ H + mbzqﬂ> ”x_yné[—r,h]‘

As Fix(t) = 0 for t € [-7,0], we have

M?
2 -2 B 248 2
”‘le - fly”C[*ﬁb] = Zd(”A ” + 26],3 _ lb . )”x_y”C[r,h]'

This shows that ; is a contraction, since /2d(||A#||2 + MMT%_lbzqﬂ ) < %

It follows from Lemma 3.1 that Sely is weakly u.s.c. with convex and weakly compact
values. Moreover, using Lemmas 4.1, 4.3 and an argument similar to the one described
in Zhou [10], we find that F, : C[0,b] — P(C[0, b]) is quasi-compact, closed (and there-
fore has closed values). This implies that F; is u.s.c. due to Lemma 2.1, and therefore has
compact values. Hence the operators /7 and J; satisfy all conditions of Theorem 2.1, and
consequently the fixed points set of the operator F; + F, is a nonempty compact subset

of C[-1,D]. O

In the next result, we denote by ®(¢) the set of all mild solutions to the inclusion problem
1.1).

Theorem 4.2 Let the hypotheses of Theorem 4.1 be satisfied. Then the solution set of the

inclusion problem (1.1) is an Rs-set.

Proof Consider the fractional stochastic evolution inclusion

DY, [x(t) - h(t,x,)] € Ax(t) + Z,() 222, te[0,b], @3
x(8) = (1), te[-7,0], '

where ¥, : [0,b] x C([-7,0],H) — Py,,(LY) are the multivalued functions already estab-
lished in Lemma 3.2. Let ©,,(¢) be the set of all mild solutions to the inclusion problem
(4.3).

From Lemma 3.2(ii) and (vi), it follows that {X,} verifies the conditions (H,) for each
n > 1. Then, from Lemma 3.1, we find that Sely, is nonempty weakly u.s.c. with convex
and weakly compact values. As shown earlier, the solution set of the inclusion problem
(4.3) is nonempty and compact in C[-7, b] for each n > 1.

Now we show that ®,(¢) is contraction for all # > 1. To do this, let x € ®,(¢) and 7,

be the selection of X,,n > 1. For any X € [0,1), we are concerned with the existence and
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uniqueness of solutions to the integral equation

Ab
y(£) = S4(2) [¢>(0) - h(0,¢)] +h(t,y) + /0 (t- s)q_lAKq(t —8)h(s,x5)ds

t

b
+ / (t- s)q_lK,Z(t —8)o*(s)dW (s) + / (t- s)q_lAKq(t —$)h(s,ys) ds
0 Ab

+ t(t - s)q_ll(q(t —8)0,(s)dW (s), forte[rb,Db], (4.4)
Ab
where o € Selx(x) and y(¢) = x(¢) for ¢t € [Ab — 7, AD]. Since the functions 6, satisfy the
conditions of Lemma 4.2 due to Lemma 3.2(ii) and (v), it follows by by Lemma 4.2 that
the problem (4.4) has a unique solution on [Ab, b], denoted by y(¢, 1b, x(Ab)). Moreover,
y(¢, Ab,x(Ab)) depends continuously on (A, x).
Next we define a function /; : [0,1] x ®,(¢) = ©,(¢) as

x(8), te[-1,\b],
hl()\"x) =
y(t, Ab,x), te€ (Ab,b],

and observe that /1 is well defined and continuous. Also, it is clear that
m(0,x) =y(t,0,¢), and h(l,x)=x.
Thus ®,,(¢) is contraction for each n > 1.
Finally, by applying the arguments used in Zhou [10], we find that ©(¢) =, ©.(9).
In consequence, we conclude that ©(¢) is a compact Rs-set. The proof is completed. [
5 An example

Setting H = L?([0, 7]; R*) and K = R, we consider the fractional partial differential inclu-
sions of neutral type given by

M (z(t,8) — [ UE,9)z(0,y) dy)
€ P2 L G, 2,0,6) YY) te0,1],€ € [0, 7],

% di (5.1)
z(t,0) = z(t, ) = 0, t€0,1],
Z(@,r‘;:) = ¢(9)(E)r 0 e [_fr 0],‘5 € [0,7'[]:

where 9/ is the Caputo fractional partial derivative of order ¢ € (%, 1], W(¢) is a standard
one-dimensional Wiener process defined on a stochastic basis (2, ,P), ¢(f) € H and
z,(0,&)=z(t +0,&),t €[0,1], 0 € [-7,0].

Define an operator A : D(A) C H — H by

d 92
D(A) = {z €H :z é are absolutely continuous, 8_; € H,z(0) = z(w) = 0},

82
Az = —Z.
02
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Then
o0
AZ = Z I’lz(z, Zy[)zn,
n=1

where z,,(f) = \/g sin(nt), n =1,2,..., constitute the orthogonal basis of eigenvectors of A.
It is well known that A generates a compact, analytic semigroup {7(¢) : £ > 0} in H (see
Pazy [34]). Then the system (5.1) can be reformulated as

CDg+ [x(t) - h(t;xt)] € Ax(t) + 2:(t)xt) d\th(t)’ te [0:1]1

x(t) = ¢(t)’ le [—'L',O],

where x(¢)(§) = z(¢t,&), %:(0, &) = z,(0, &), (¢, x,)(§) = G(¢,2,(0,)). Let the function a(t, x;) :
[0,1] x C([-7,0]; H) — H be defined by

hmmhK;U@wmaw@.

Moreover, we assume that the following conditions hold:

(hy) the function U(§,y) is measurable and

/0” /O” U (§,y) dy d§ < oo;

(hy) the function 9 U(&,y) is measurable, U(0,y) = U(r,y) = 0, and let

_ g N
H_<./o ./0 (8§U($,y)) dydé) < 00.

Clearly, (H;) is satisfied.
Let X(¢,¢) = [fi(t, ¢), f2(t, ¢)]. Now, we assume that f; : [0,1] x C([-7,0; H) - R, i=1,2,
satisfy

(F1) fiisls.c.and gy isus.c;
(F2) fi(t ) < fa(t,¢) for each (¢, ¢) € [0,1] x C([-7,0]; H);
(F3) there exist o, a9 € L([0,1]; R") such that

Mmm@smmwﬁﬂma i=1,2,

for each (¢, ¢) € [0,1] x C([-7,0]; H).

In view of assumptions (F;)-(F3), it readily follows that the multivalued function X(-,-) :
[0,1] x C([~7,0]; H) — P(L9) satisfies (H,). Thus, all the assumptions of Theorems 4.1 and

4.2 are satisfied and the conclusion of our result applies to the inclusion problem (5.1).
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