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1 Introduction
The fractional differential equations have received increasing attention during recent
years and have been studied extensively (e.g., [–] and the references therein). This is
mostly due to the fact that fractional calculus provides an efficient and excellent instru-
ment to describe many practical dynamical phenomena which arise in viscoelasticity, elec-
trochemistry, control, porous media, electromagnetic, etc.

In the left and right fractional derivatives cDα
a+ x and cDα

b– x, a and b are called a left base
point and a right base point, respectively. Both a and b are called base points of fractional
derivatives. A fractional differential equation (FDE) containing more than one base point
is called a multiple base points FDE []. In this paper, we study the following the three-
point boundary value problem of nonlinear multiple base points fractional differential
equations with impulse:

⎧
⎪⎪⎪⎨

⎪⎪⎪⎩

cDα
∗x(t) = f (t, x(t), cDβ

∗ x(t)), a.e. t ∈ [, T], (.)

�x(tk) = Ik(x(t–
k )), �x′(tk) = Ĩk(x(t–

k )), k = , , . . . , m, (.)

x() + x(η) = , cDγ
+ x(η) + cDγ

t+
m

x(T) = ,  < η < t, (.)

where α ∈ (, ), β ,γ,γ ∈ (, ), α – β ∈ (, ). cDα∗ is the standard Caputo fractional
derivative at the base points t = tk (k = , , . . . , m); that is, cDα∗ |(tk ,tk+]x(t) = cDα

t+
k

x(t) for

© The Author(s) 2017. This article is distributed under the terms of the Creative Commons Attribution 4.0 International License
(http://creativecommons.org/licenses/by/4.0/), which permits unrestricted use, distribution, and reproduction in anymedium, pro-
vided you give appropriate credit to the original author(s) and the source, provide a link to the Creative Commons license, and
indicate if changes were made.

http://dx.doi.org/10.1186/s13662-017-1111-8
http://crossmark.crossref.org/dialog/?doi=10.1186/s13662-017-1111-8&domain=pdf
mailto:fangli860@gmail.com


Hu and Li Advances in Difference Equations  (2017) 2017:55 Page 2 of 14

all t ∈ (tk , tk+]. Ik ,̃ Ik ∈ C(R,R), f : J × R × R → R are appropriate functions to be speci-
fied later. The impulsive moments {tk} are given such that  = t < t < · · · < tm < tm+ = T ,
�x(tk) represents the jump of function x at tk , which is defined by �x(tk) = x(t+

k ) – x(t–
k ),

where x(t+
k ), x(t–

k ) represent the right and left limits of x(t) at t = tk respectively. �x′(tk)
has a similar meaning for x′(t).

Some recent results on the solvability of boundary value problems of differential equa-
tions involving Caputo fractional derivatives can be found in many papers [–]. It fol-
lows from the definition of fractional order derivative that the solution of (.)-(.) should
belong to the space AC((tk , tk+],R) (k = , , . . . , m) [, ]. However, some researchers ne-
glected this fact [, , ]. In this paper, we shall provide detailed proofs of our Lem-
mas .-. which ensure x(t) ∈ AC((tk , tk+],R) (k = , , . . . , m) to be the solution of (.)-
(.) under the weak assumption for f . To the best of our knowledge, there has been little
study on the existence of solutions for the multiple base points fractional differential equa-
tions with impulsive and three-point boundary conditions.

The rest of the paper is organized as follows. In Section , we state some basic concepts,
notations and preliminary results about fractional calculus. In Section , we present the
definition of solution for (.)-(.). In Section , by applying some standard fixed point
principles, we verify the existence of solutions for problem (.)-(.). An example is given
in Section  to demonstrate the application of our main result.

2 Preliminaries
In this paper, we denote by Lp(J ,R) the Banach space of all Lebesgue measurable func-
tions ξ : J → R with the norm ‖ξ‖Lp = (

∫

J |ξ (t)|p dt)

p < ∞ and by AC([a, b],R) the space

of all the absolutely continuous functions defined on [a, b]. ACn([a, b],R) (n = , , . . .) is
the space of functions f such that f ∈ Cn–([a, b],R) and f (n–) ∈ AC([a, b],R). In particular,
AC([a, b],R) = AC([a, b],R).

Definition . ([, ]) The fractional integral of order θ with the lower limit a for a func-
tion g(t) ∈ L([a, +∞),R) is defined as

(
Iθ

a+ g
)
(t) =


	(θ )

∫ t

a
(t – s)θ–g(s) ds, t > a, θ > ,

where 	(·) is the gamma function.

Definition . ([, ]) If g(t) ∈ ACn([a, b],R), then the Riemann-Liouville fractional
derivative (LDθ

a+ g)(t) of order θ exists almost everywhere on [a, b] and can be written as

(LDθ
a+ g

)
(t) =


	(n – θ )

dn

dtn

∫ t

a
(t – s)n–θ–g(s) ds, t > a, n –  < θ < n.

Definition . ([, ]) If g(t) ∈ ACn([a, b],R), then the Caputo derivative (cDθ
a+ g)(t) of

order θ exists almost everywhere on [a, b] and can be written as

(cDθ
a+ g

)
(t) =

(

LDθ
a+

[

g(s) –
n–∑

k=

g(k)(a)
k!

(s – a)k

])

(t), t > a, n –  < θ < n;

moreover, if g(a) = g ′(a) = · · · = g(n–)(a) = , then (cDθ
a+ g)(t) = (LDθ

a+ g)(t).
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Remark . ([, ]) If g(t) ∈ Cn([a, b],R), then (cDθ
a+ g)(t) ∈ C([a, b],R), n –  < θ < n.

We present here some properties of the fractional calculus as follows.

Lemma . ([, ]) For θ > , a general solution of the fractional differential equation
cDθ

a+ u(t) =  is given by

u(t) = c + c(t – a) + c(t – a) + · · · + cn–(t – a)n–,

where ci ∈ R, i = , , , . . . , n –  (n = [θ ] + ), and [θ ] denotes the integer part of the real
number θ .

Lemma . ([, ]) The Caputo fractional derivative of order n –  < θ < n for ts is given as

cDθ
a+ ts =

⎧
⎨

⎩

	(s+)
	(s–θ+) (t – a)s–θ , s ∈N, s ≥ n or s /∈N, s > n – ,

, s ∈ {, , . . . , n – }.
(.)

Lemma . ([, ]) If θ > θ >  and f ∈ Lp([a, b],R) ( ≤ p ≤ ∞), then (cDθ
a+ Iθ

a+ f )(t) =
(Iθ–θ

a+ f )(t).

Let B(·, ·) be the beta function, we need the following result.

Lemma . For p > , q > ,  < a < t,
∫ t

a (t – s)p–(s – a)q– ds = (t – a)p+q–B(p, q).

Proof Let τ = s – a, then
∫ t

a (t – s)p–(s – a)q– ds =
∫ t–a

 (t – a – τ )p–τ q– dτ = (t – a)p+q– ×
B(p, q). �

Lemma . For ς ∈ (, ] and  < a ≤ b, |aς – bς | ≤ (b – a)ς .

3 Solutions for the boundary value problem
Set Jk = (tk , tk+], k = , . . . , m, J = [, t]. We define

X =
{

x : [, T] →R : x ∈ C(Jk ,R) and x
(
t+
k
)
, x′(t+

k
)
, cDβ

t+
k

x
(
t+
k
)

exist, k = , , . . . , m
}

with the norm

‖x‖ := max
{

sup
k=,,...,m

sup
t∈Jk

∣
∣x(t)

∣
∣, sup

k=,,...,m
sup
t∈Jk

∣
∣x′(t)

∣
∣, sup

k=,,...,m
sup
t∈Jk

∣
∣cDβ

t+
k

x(t)
∣
∣
}

.

Obviously, X is a real Banach space.
In this paper, we consider the following assumption.
(H) f : J ×R×R→R satisfies f (·, v, w) : J → R is measurable for all v, w ∈ R and

f (t, ·, ·) : R×R →R is continuous for a.e. t ∈ J , and there exists a function
μ ∈ L 

σ (J ,R+) (σ ∈ (, α–
 )) such that

∣
∣f (t, v, w)

∣
∣ ≤ μ(t)

(|v|λ + |w|λ
)
,

where  < λ < λ <  are real numbers.
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Definition . A function x : [, T] →R is said to be a solution of (.)-(.) if
() x ∈ AC(Jk ,R);
() x satisfies the equation cDα

t+
k

x(t) = f (t, x(t), cDβ

t+
k

x(t)) a.e. on Jk ;
() for k = , , . . . , m, �x(tk) = Ik(x(t–

k )), �x′(tk) = Ĩk(x(t–
k )) and x() + x(η) = ,

cDγ
+ x(η) + cDγ

t+
m

x(T) = .

Next, we present the following lemmas.

Lemma . For any τ, τ ∈ Jk (k = , , , . . . , m) and τ < τ,
∫ τ

tk

[
(τ – s)α– – (τ – s)α–]μ(s) ds → , as τ → τ.

Proof It follows from Hölder’s inequality that
∣
∣
∣
∣

∫ τ

tk

[
(τ – s)α– – (τ – s)α–]μ(s) ds

∣
∣
∣
∣

≤ ‖μ‖
L


σ

[∫ τ

tk

∣
∣(τ – s)α– – (τ – s)α–∣∣


–σ ds

]–σ

= ( – α)‖μ‖
L


σ

(∫ τ

tk

∣
∣
∣
∣

∫ τ

τ

(ζ – s)α– dζ

∣
∣
∣
∣


–σ

ds
)–σ

≤ M
[∫ τ

tk

(
(τ – s)θ – (τ – s)θ

)
ds

]–σ

=
M

( + θ )–σ

[
(τ – τ)+θ – (τ – tk)+θ + (τ – tk)+θ

]–σ

→ , as τ → τ,

where M >  is a constant and θ = α––σ
–σ

∈ (–, ). �

For y > σ and ti– ∈ [, T] (i = , . . . , m + ), from Hölder’s inequality, we have

∫ ti

ti–

(ti – s)y–μ(s) ds ≤
(∫ ti

ti–

(ti – s)
y–
–σ ds

)–σ

‖μ‖
L


σ

=
(

 – σ

y – σ

)–σ

(ti – ti–)y–σ‖μ‖
L


σ

. (.)

Noting that α > α –  > σ , α – γ > σ , α – γ > σ , we have

∫ ti

ti–

(ti – s)α–μ(s) ds ≤
(

 – σ

α – σ

)–σ

(ti – ti–)α–σ ‖μ‖
L


σ

,

∫ ti

ti–

(ti – s)α–μ(s) ds ≤
(

 – σ

α –  – σ

)–σ

(ti – ti–)α––σ‖μ‖
L


σ

,

∫ ti

ti–

(ti – s)α–γ–μ(s) ds ≤
(

 – σ

α – γ – σ

)–σ

(ti – ti–)α–γ–σ ‖μ‖
L


σ

,

∫ ti

ti–

(ti – s)α–γ–μ(s) ds ≤
(

 – σ

α – γ – σ

)–σ

(ti – ti–)α–γ–σ‖μ‖
L


σ

.

(.)
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Lemma . Assume that (H) holds. Then, for x ∈ X, k = , , . . . , m,

[
Iα

t+
k

f
(
s, x(s), cDβ

t+
k

x(s)
)]

(t) ∈ AC([tk , tk+],R
)
.

Proof For t ∈ [tk , tk+], from (.), we have

∫ t

tk

(t – s)α–

	(α)
∣
∣f

(
s, x(s), cDβ

t+
k

x(s)
)∣
∣ds

≤
∫ t

tk

(t – s)α–μ(s)
	(α)

ds
(‖x‖λ

 + ‖x‖λ


)

≤
(

 – σ

α – σ

)–σ (t – tk)α–σ

	(α)
‖μ‖

L

σ

(‖x‖λ
 + ‖x‖λ


)
, (.)

∫ t

tk

(t – s)α–

	(α – )
∣
∣f

(
s, x(s), cDβ

t+
k

x(s)
)∣
∣ds

≤
∫ t

tk

(t – s)α–μ(s)
	(α – )

ds
(‖x‖λ

 + ‖x‖λ


)

≤
(

 – σ

α –  – σ

)–σ (t – tk)α–σ–

	(α – )
‖μ‖

L

σ

(‖x‖λ
 + ‖x‖λ


)
, (.)

which means that (t – s)α–f (s, x(s), cDβ

t+
k

x(s)) and (t – s)α–f (s, x(s), cDβ

t+
k

x(s)) are Lebesgue
integrable with respect to s ∈ [tk , tk+] for all t ∈ [tk , tk+] and x ∈ X.

Obviously, it follows from the definition of derivative for the Lebesgue integration that

d
dt

([
Iα

t+
k

f
(
s, x(s), cDβ

t+
k

x(s)
)]

(t)
)

=
[
Iα–

t+
k

f
(
s, x(s), cDβ

t+
k

x(s)
)]

(t) (.)

is continuous with respect to t ∈ [tk , tk+].
Next, we show that [Iα–

t+
k

f (s, x(s), cDβ

t+
k

x(s))](t) ∈ AC([tk , tk+],R). In fact, for every finite
collection {(ai, bi)}≤i≤n on [tk , tk+] with

∑n
i=(bi – ai) → , noting (.) and Lemma .,

we have

n∑

i=

∣
∣
∣
∣

∫ bi

tk

(bi – s)α–f
(
s, x(s), cDβ

t+
k

x(s)
)

ds

–
∫ ai

tk

(ai – s)α–f
(
s, x(s), cDβ

t+
k

x(s)
)

ds
∣
∣
∣
∣

≤
n∑

i=

∣
∣
∣
∣

∫ bi

ai

(bi – s)α–f
(
s, x(s), cDβ

t+
k

x(s)
)

ds
∣
∣
∣
∣

+
n∑

i=

∫ ai

tk

∣
∣
[
(bi – s)α– – (ai – s)α–]f

(
s, x(s), cDβ

t+
k

x(s)
)∣
∣ds

≤
[ n∑

i=

∫ bi

ai

(bi – s)α–μ(s) ds

+
n∑

i=

∫ ai

tk

[
(ai – s)α– – (bi – s)α–]μ(s) ds

]
(‖x‖λ

 + ‖x‖λ


)
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≤
[(

 – σ

α –  – σ

)–σ n∑

i=

(bi – ai)α–σ–‖μ‖
L


σ

+
n∑

i=

∫ ai

tk

[
(ai – s)α– – (bi – s)α–]μ(s) ds

]
(‖x‖λ

 + ‖x‖λ


)

−→ .

Hence, [Iα–
t+
k

f (s, x(s), cDβ

t+
k

x(s))](t) is absolutely continuous on [tk , tk+]. Now, we can see

that [Iα
t+
k

f (s, x(s), cDβ

t+
k

x(s))](t) ∈ AC([tk , tk+],R). Furthermore, for almost all t ∈ [tk , tk+],

[cDα
t+
k

Iα
t+
k

f (s, x(s), cDβ

t+
k

x(s))](t) exists. �

Lemma . Assume that (H) holds. Then, for x ∈ X, k = , , . . . , m,

[cDα
t+
k

Iα
t+
k

f
(
s, x(s), cDβ

t+
k

x(s)
)]

(t) = f
(
t, x(t), cDβ

t+
k

x(t)
)
, a.e. t ∈ Jk .

Proof Let F(τ , s) = (t – τ )–α|τ – s|α–μ(s). Clearly, F(τ , s) is a nonnegative measurable
function on [tk , t] × [tk , t], then

∫ t
tk

(
∫ t

tk
F(τ , s) ds) dτ =

∫ t
tk

(
∫ t

tk
F(τ , s) dτ ) ds. Noting (.) and

Lemma ., we get

∫ t

tk

(∫ t

tk

F(τ , s) ds
)

dτ

=
∫ t

tk

(t – τ )–α

[∫ τ

tk

(τ – s)α–μ(s) ds +
∫ t

τ

(s – τ )α–μ(s) ds
]

dτ

≤
(

 – σ

α – σ

)–σ

‖μ‖
L


σ

∫ t

tk

(t – τ )–α(τ – tk)α–σ dτ +
∫ t

tk

(∫ t

τ

μ(s) ds
)

dτ

=
(

 – σ

α – σ

)–σ

‖μ‖
L


σ

(t – tk)–σ B( – α,α +  – σ ) +
∫ t

tk

(∫ t

τ

μ(s) ds
)

dτ .

Therefore, F(τ , s) = (t –τ )–α|τ –s|α–f (s, x(s), cDβ

t+
k

x(s)) is an integrable function on [tk , t]×
[tk , t], then

∫ t
tk

dτ
∫ τ

tk
F(τ , s) ds =

∫ t
tk

ds
∫ t

s F(τ , s) dτ . According to Lemmas . and ., we
have

(LDα
t+
k

Iα
t+
k

f
(
s, x(s), cDβ

t+
k

x(s)
))

(t)

=


	( – α)	(α)
d

dt

∫ t

tk

(t – τ )–α

[∫ τ

tk

(τ – s)α–f
(
s, x(s), cDβ

t+
k

x(s)
)

ds
]

dτ

=


	( – α)	(α)
d

dt

∫ t

tk

dτ

∫ τ

tk

F(τ , s) ds

=


	( – α)	(α)
d

dt

∫ t

tk

f
(
s, x(s), cDβ

t+
k

x(s)
)

ds
∫ t

s
(t – τ )–α(τ – s)α– dτ

=
d

dt

∫ t

tk

(t – s)f
(
s, x(s), cDβ

t+
k

x(s)
)

ds

= f
(
t, x(t), cDβ

t+
k

x(t)
)
, a.e. t ∈ [tk , tk+]. (.)
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Noting (.), we have [Iα
t+
k

f (s, x(s), cDβ

t+
k

x(s))](i)(t+
k ) = , i = , . Then, from Definition .,

with g(t) replaced by [Iα
t+
k

f (s, x(s), cDβ

t+
k

x(s))](t) and applying (.), we derive

[cDα
t+
k

Iα
t+
k

f
(
s, x(s), cDβ

t+
k

x(s)
)]

(t) =
[LDα

t+
k

Iα
t+
k

f
(
s, x(s), cDβ

t+
k

x(s)
)]

(t) = f
(
t, x(t), cDβ

t+
k

x(t)
)
.

This completes the proof. �

Set Ĉ = 	(–γ)	(–γ)
η–γ 	(–γ)+(T–tm)–γ 	(–γ) .

From Lemmas . and ., we have the following result.

Lemma . Assume that (H) holds. A function x ∈ X is a solution of problem (.)-(.) if
and only if x(t) is a solution of the following fractional integral equation:

x(t) =

⎧
⎨

⎩

(Fα
 f )(t) + (Pf )(t) + (Qf )(t), t ∈ J,

(Fα
k f )(t) + (Pkf )(t) + (Qf )(t), t ∈ Jk , k = , , . . . , m,

(.)

where

(
Fα

k f
)
(t) =

∫ t

tk

(t – s)α–

	(α)
f
(
s, x(s), cDβ

t+
k

x(s)
)

ds, k = , , . . . , m,

(Pkf )(t) =
k∑

i=

((
Fα

i–f
)
(ti) + Ii

(
x
(
t–
i
)))

+
k∑

i=

((
Fα–

i– f
)
(ti) + Ĩi

(
x
(
t–
i
)))

(t – ti)

–


(
Fα

 f
)
(η), k = , . . . , m,

(Qf )(t) = Ĉ
(

t –
η



)[

–
(
Fα–γ

 f
)
(η) –

(
Fα–γ

m f
)
(T)

–
(T – tm)–γ

	( – γ)

m∑

i=

((
Fα–

i– f
)
(ti) + Ĩi

(
x
(
t–
i
)))

]

,

(Pf )(t) = –


(
Fα

 f
)
(η).

(.)

Proof (Necessity) Let x ∈ X be the solution of (.)-(.). From Lemma ., cDα
t+
k

x(t) =

f (t, x(t), cDβ

t+
k

x(t)) implies cDα
t+
k

(x(t) – (Fα
k f )(t)) = , k = , , . . . , m.

If t ∈ J, then Lemma ., (.), Lemmas . and . imply

x(t) =
(
Fα

 f
)
(t) + c + ct, x′(t) =

(
Fα–

 f
)
(t) + c, (.)

cDγ
+ x(η) =

(
Fα–γ

 f
)
(η) +

cη
–γ

	( – γ)
, (.)

x
(
t–

)

=
(
Fα

 f
)
(t) + c + ct, x′(t–


)

=
(
Fα–

 f
)
(t) + c,

for some c, c ∈R. Applying the boundary condition x() + x(η) = , we obtain

c = –


(
Fα

 f
)
(η) –

cη


. (.)
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If t ∈ J, then Lemma . and (.) imply

x(t) =
(
Fα

 f
)
(t) + c + c(t – t), x′(t) =

(
Fα–

 f
)
(t) + c,

for some c, c ∈R. Thus, we have x(t+
 ) = c, x′(t+

 ) = c. Applying the impulsive condition
(.), we derive that

c =
(
Fα

 f
)
(t) + c + ct + I

(
x
(
t–

))

, c =
(
Fα–

 f
)
(t) + Ĩ

(
x
(
t–

))

+ c.

Then, for t ∈ J,

x(t) =
(
Fα

 f
)
(t) +

(
Fα

 f
)
(t) + I

(
x
(
t–

))

+
((

Fα–
 f

)
(t) + Ĩ

(
x
(
t–

)))

(t – t) + c + ct,

x′(t) =
(
Fα–

 f
)
(t) +

(
Fα–

 f
)
(t) + Ĩ

(
x
(
t–

))

+ c,

x
(
t–

)

=
(
Fα

 f
)
(t) +

(
Fα

 f
)
(t) + I

(
x
(
t–

))

+
((

Fα–
 f

)
(t) + Ĩ

(
x
(
t–

)))

(t – t) + c + ct,

x′(t–

)

=
(
Fα–

 f
)
(t) +

(
Fα–

 f
)
(t) + Ĩ

(
x
(
t–

))

+ c.

If t ∈ J, then Lemma . and (.) imply

x(t) =
(
Fα

 f
)
(t) + c + c(t – t), x′(t) =

(
Fα–

 f
)
(t) + c,

for some c, c ∈R. Then x(t+
 ) = c, x′(t+

 ) = c. Applying the impulsive condition (.), we
obtain

c =
∑

i=

((
Fα

i–f
)
(ti) + Ii

(
x
(
t–
i
)))

+
((

Fα–
 f

)
(t) + Ĩ

(
x
(
t–

)))

(t – t) + c + ct,

c =
∑

i=

((
Fα–

i– f
)
(ti) + Ĩi

(
x
(
t–
i
)))

+ c.

Then, for t ∈ J,

x(t) =
(
Fα

 f
)
(t) +

∑

i=

((
Fα

i–f
)
(ti) + Ii

(
x
(
t–
i
)))

+
∑

i=

((
Fα–

i– f
)
(ti) + Ĩi

(
x
(
t–
i
)))

(t – ti) + c + ct.

By repeating the process, for t ∈ Jk , k = , , . . . , m, we have

x(t) =
(
Fα

k f
)
(t) +

k∑

i=

((
Fα

i–f
)
(ti) + Ii

(
x
(
t–
i
)))

+
k∑

i=

((
Fα–

i– f
)
(ti) + Ĩi

(
x
(
t–
i
)))

(t – ti) + c + ct.

By (.), we obtain

x(t) =
(
Fα

k f
)
(t) + (Pkf )(t) + c

(

t –
η



)

, t ∈ Jk , k = , , . . . , m. (.)
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It follows from (.) and Lemma . that we have

cDγ
t+
m

x(T) =
(
Fα–γ

m f
)
(T)

+
m∑

i=

((
Fα–

i– f
)
(ti) + Ĩi

(
x
(
t–
i
))) (T – tm)–γ

	( – γ)
+

c(T – tm)–γ

	( – γ)
. (.)

Applying the boundary condition (.) to (.) and (.), we get

c = Ĉ

[

–
(
Fα–γ

 f
)
(η) –

(
Fα–γ

m f
)
(T)

–
(T – tm)–γ

	( – γ)

m∑

i=

((
Fα–

i– f
)
(ti) + Ĩi

(
x
(
t–
i
)))

]

. (.)

Now, it is clear that (.)-(.) imply (.).
(Sufficiency) Let x(t) satisfy (.). Noting Lemmas . and ., (cDα

t+
k

t = ), (cDα
t+
k

x)(t)

exists and cDα
t+
k

x(t) = f (t, x(t), cDβ

t+
k

x(t)) for a.e. t ∈ Jk (k = , , . . . , m). Moreover,

x
(
t+
k
)

– x
(
t–
k
)

=
(
Fα

k f
)(

t+
k
)

+ (Pkf )
(
t+
k
)

+ (Qf )
(
t+
k
)

–
[(

Fα
k–f

)(
t–
k
)

+ (Pk–f )
(
t–
k
)

+ (Qf )
(
t–
k
)]

= –
∫ tk

tk–

(tk – s)α–

	(α)
f
(
s, x(s), cDβ

t+
k

x(s)
)

ds +
(
Fα

k–f
)
(tk) + Ik

(
x
(
t–
k
))

= Ik
(
x
(
t–
k
))

,

similarly, x′(t+
k ) – x′(t–

k ) = Ĩk(x(t–
k )). The boundary conditions (.) are clearly satisfied, that

is, x(t) satisfies (.)-(.). �

4 Existence result
In this section, we deal with the existence of solution for problem (.)-(.). To this end,
we consider the following assumption.

(H) There exist positive constants lk , l̃k and λ ∈ [, ), λ ∈ [, ] such that

∣
∣Ik(u)

∣
∣ ≤ lk|u|λ ,

∣
∣̃Ik(u)

∣
∣ ≤ l̃k|u|λ , u ∈R, k = , , . . . , m.

For convenience, we introduce the following denotations.

δy =
(

 – σ

y – σ

)–σ

· Ty–σ

	(y)
‖μ‖

L

σ

, y > σ ,

C̃ = m
(

 +
ĈT –γ

	( – γ)

)

δα– + Ĉ(δα–γ + δα–γ ),

M̃ = max

{(

m +



)

δα , δα–, δα–β

}

+ max

{

, T ,
T –β

	( – β)

}

C̃,

M̂ =
(

 +
ĈT –γ

	( – γ)

)

max

{

, T ,
T –β

	( – β)

} m∑

i=

l̃i.
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Theorem . Assume that (H) and (H) are satisfied, then problem (.)-(.) has at least
one solution x ∈ X if λ ∈ [, ), or λ =  with M̂ < .

Proof Define an operator � on X as follows:

(�x)(t) =

⎧
⎨

⎩

(Fα
 f )(t) + (Pf )(t) + (Qf )(t), t ∈ J,

(Fα
k f )(t) + (Pkf )(t) + (Qf )(t), t ∈ Jk , k = , , . . . , m,

(.)

then

(�x)′(t) =

⎧
⎨

⎩

(Fα–
 f )(t) + (Qf )′(t), t ∈ J,

(Fα–
k f )(t) + (Pkf )′(t) + (Qf )′(t), t ∈ Jk , k = , , . . . , m,

(.)

and

(cDβ

t+
k
�x

)
(t) =

⎧
⎨

⎩

(Fα–β
 f )(t) + (cDβ

+ Qf )(t), t ∈ J,

(Fα–β

k f )(t) + (cDβ

t+
k

Pkf )(t) + (cDβ

t+
k

Qf )(t), t ∈ Jk , k = , , . . . , m,
(.)

where for t ∈ Jk , k = , . . . , m,

(Pkf )′(t) =
k∑

i=

((
Fα–

i– f
)
(ti) + Ĩi

(
x
(
t–
i
)))

,

(Qf )′(t) = Ĉ
[

–
(
Fα–γ

 f
)
(η) –

(
Fα–γ

m f
)
(T) –

(T – tm)–γ

	( – γ)
(Pmf )′(t)

]

,

(cDβ

t+
k

Pkf
)
(t) =

(t – tk)–β

	( – β)
(Pkf )′(t),

(cDβ

t+
k

Qf
)
(t) =

(t – tk)–β

	( – β)
(Qf )′(t).

From (H), � : X → X is clearly well defined. It is obvious that the fixed point of � is the
solution of problem (.)-(.) by Lemma .. Next, we split the proof into several steps to
prove the existence of the fixed point of �.

Step . We prove that the operator � is continuous.
Let {xn} be a sequence such that xn → x in X, then there exists ε >  such that

‖xn – x‖ ≤ ε for n sufficiently large. By (H), we obtain

∣
∣f

(
t, xn(t), cDβ

t+
k

xn(t)
)

– f
(
t, x(t), cDβ

t+
k

x(t)
)∣
∣ ≤ μ(t)

[(
ε + ‖x‖

)λ +
(
ε + ‖x‖

)λ].

Moreover, f satisfies (H), for almost every t ∈ J , we get f (t, xn(t), cDβ

t+
k

xn(t)) → f (t, x(t),
cDβ

t+
k

x(t)) as n → ∞. It follows from (.), the Lebesgue dominated convergence theorem
and the continuity of Ik , Ĩk that

‖�xn – �x‖ → , as n → ∞.

Now we can see that � is continuous.
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Step . For r > , we define Br = {x ∈ X : ‖x‖ ≤ r}. For x ∈ Br , k = , , , . . . , m, from (.)
and (.), we have

∣
∣
(
Fy

k f
)
(t)

∣
∣ ≤ δy

(
rλ + rλ

)
, (.)

where y can be replaced by α, α – , α – β , α – γ or α – γ.
Furthermore, for t ∈ Jk , k = , , . . . , m, by (.)-(.), we get

∣
∣
(
Fα

k f
)
(t) + (Pkf )(t) + (Qf )(t)

∣
∣

≤
[(

m +



)

δα + TC̃
]
(
rλ + rλ

)
+

m∑

i=

lirλ + T
(

 +
ĈT –γ

	( – γ)

) m∑

i=

l̃irλ ,

∣
∣
(
Fα–

k f
)
(t) + (Pkf )′(t) + (Qf )′(t)

∣
∣

≤ (δα– + C̃)
(
rλ + rλ

)
+

(

 +
ĈT –γ

	( – γ)

) m∑

i=

l̃irλ ,

∣
∣
(
Fα–β

k f
)
(t) +

(cDβ

t+
k

Pkf
)
(t) +

(cDβ

t+
k

Qf
)
(t)

∣
∣

≤
(

δα–β +
T –β

	( – β)
C̃

)
(
rλ + rλ

)
+

T –β

	( – β)

(

 +
ĈT –γ

	( – γ)

) m∑

i=

l̃irλ ,

which implies

‖�x‖ ≤ M̃
(
rλ + rλ

)
+ rλ

m∑

i=

li + M̂rλ .

Next, we show that there exists some r >  such that �Br ⊂ Br . Suppose, on the
contrary, that for each r > , there exist x̃r(·) ∈ Br and some t̃ ∈ Jk such that ϒ :=
max{|(�x̃r)(t̃)|, |(�x̃r)′(t̃)|, |cDβ

t+
k

(�x̃r)(t̃)|} > r. Then

r <
∥
∥�̃xr∥∥

 ≤ M̃
(
rλ + rλ

)
+ rλ

m∑

i=

li + M̂rλ .

Dividing both sides by r and taking r → ∞, we get

⎧
⎨

⎩

 ≤ limr→∞(M̃(rλ– + rλ–) + rλ– ∑m
i= li + M̂rλ–) =  for λ ∈ [, ),

 ≤ limr→∞[M̃(rλ– + rλ–) + rλ– ∑m
i= li + M̂] = M̂ for λ = .

This is a contradiction.
Step . We prove that �Br is equicontinuous on a finite closed sub-interval on Jk (k =

, , . . . , m). Let x ∈ Br , for any τ, τ ∈ Jk (k = , , , . . . , m) and τ < τ, clearly, we have

∣
∣
(
Fα

k f
)
(τ) –

(
Fα

k f
)
(τ)

∣
∣

=
∣
∣
∣
∣

∫ τ

tk

(τ – s)α–

	(α)
f
(
s, x(s), cDβ

t+
k

x(s)
)

ds –
∫ τ

tk

(τ – s)α–

	(α)
f
(
s, x(s), cDβ

t+
k

x(s)
)

ds
∣
∣
∣
∣
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≤
[


	(α)

∫ τ

tk

[
(τ – s)α– – (τ – s)α–]μ(s) ds

+


	(α)

∫ τ

τ

(τ – s)α–μ(s) ds
]
(
rλ + rλ

)

→ , as τ → τ.

Therefore,

∣
∣(�x)(τ) – (�x)(τ)

∣
∣

≤ ∣
∣
(
Fα

k f
)
(τ) –

(
Fα

k f
)
(τ)

∣
∣ +

∣
∣(Pkf )(τ) – (Pkf )(τ)

∣
∣ +

∣
∣(Qf )(τ) – (Qf )(τ)

∣
∣

≤ ∣
∣
(
Fα

k f
)
(τ) –

(
Fα

k f
)
(τ)

∣
∣ +

[

C̃
(
rλ + rλ

)
+

(

 +
ĈT –γ

	( – γ)

) m∑

i=

l̃irλ

]

(τ – τ)

→ , as τ → τ.

Similarly, by Lemma . and (.),

∣
∣(�x)′(τ) – (�x)′(τ)

∣
∣

=
∣
∣
(
Fα–

k f
)
(τ) –

(
Fα–

k f
)
(τ)

∣
∣

≤
[


	(α)

∫ τ

tk

[
(τ – s)α– – (τ – s)α–]μ(s) ds

+


	(α)

∫ τ

τ

(τ – s)α–μ(s) ds
]
(
rλ + rλ

)

→ , as τ → τ,

and by Lemma .,

∣
∣
(cDβ

t+
k
�x

)
(τ) –

(cDβ

t+
k
�x

)
(τ)

∣
∣

≤ ∣
∣
(
Fα–β

k f
)
(τ) –

(
Fα–β

k f
)
(τ)

∣
∣

+
(τ – τ)–β

	( – β)

[

C̃
(
rλ + rλ

)
+

(

 +
ĈT –γ

	( – γ)

) m∑

i=

l̃irλ

]

→ , as τ → τ.

Hence the set {(�x)(·) : x ∈ Br} is equicontinuous. From the above steps, it follows that �

is completely continuous. Now, it follows from Schauder’s fixed point theorem that � has
a fixed point x ∈ Br , which corresponds to a solution of problem (.)-(.). �

5 Application
In this section, we give an example to illustrate the usefulness of our main result.
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Example . Consider the following impulsive boundary problem of fractional order:

⎧
⎪⎪⎪⎪⎨

⎪⎪⎪⎪⎩

cD

∗ x(t) = x 

 (t) + 
√t

sin |cD

∗ x(t)| 

 , a.e. t ∈ (, ] \ { 
 },

�x( 
 ) = |x( 


–)| 



+e|x( 


–)| , �x′( 
 ) = |x( 


–)|

+|x( 


–)| ,

x() + x( 
 ) = , cD



+ x( 

 ) + cD





+ x() = .

(.)

Set

f
(
t, x(t),c D


∗ x(t)

)
= x


 (t) +


√t

sin
∣
∣cD


∗ x(t)

∣
∣


 ,

I

(

x
(




–))

=
|x( 


–)| 



 + e|x( 


–)| ,

Ĩ

(

x
(




–))

=
|x( 


–)|

 + |x( 


–)| .

Obviously,

∣
∣f

(
t, x(t),c D


∗ x(t)

)∣
∣ < μ(t)

[∣
∣x(t)

∣
∣


 +

∣
∣cD


∗ x(t)

∣
∣



]
,

∣
∣I(x)

∣
∣ ≤ 


|x| 

 ,
∣
∣̃I(x)

∣
∣ ≤ 


|x|,

where μ(t) = 
√t

∈ L 
σ ([, ]) (σ = 

 ) and ‖μ‖L = 

 . Assumptions (H) and (H) now

hold. Noting that α = 
 , β = 

 , γ = 
 , γ = 

 , σ = 
 and l = 

 , l̃ = 
 , we get

Ĉ =
	( – γ)	( – γ)

η–γ	( – γ) + (T – tm)–γ	( – γ)
=

	( 
 )	( 

 )

( 
 ) 

 	( 
 ) + ( 

 ) 
 	( 

 )
≈ .,

M̂ =
(

 +
ĈT –γ

	( – γ)

)

max

{

, T ,
T –β

	( – β)

} m∑

i=

l̃i =


	( 
 )

(

 +
Ĉ

	( 
 )

)

≈ . < .

Therefore, due to the fact that all the assumptions of Theorem . hold, problem (.) has
at least one solution.
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