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Abstract

This paper investigates the absolute stability problem of time-varying delay Lurie
indirect control systems with variable coefficients. A positive-definite
Lyapunov-Krasovskii functional is constructed. Some novel sufficient conditions for
absolute stability of Lurie systems with single nonlinearity are obtained by estimating
the negative upper bound on its total time derivative. Furthermore, the results are
generalised to multiple nonlinearities. The derived criteria are especially suitable for
time-varying delay Lurie indirect control systems with unbounded coefficients. The
effectiveness of the proposed results is illustrated using simulation examples.

Keywords: nonlinear systems; Lurie indirect control systems; absolute stability;
Lyapunov stability theorem

1 Introduction

In the middle of the last century, the concept of absolute stability was introduced in [1].
Since then, the absolute stability problem of Lurie system has been extensively studied
in the academic community, and there have been many publications on this topic [2-6].
As for time-delay Lurie systems with constant coefficients, fruitful results have been ob-
tained. In [7], Khusainov and Shatyrko studied the absolute stability of multi-delay regula-
tion systems. In [8], by applying the properties of M-matrix and selecting an appropriate
Lyapunov function, Chen et al. established new absolute stability criteria for Lurie indi-
rect control system with multiple variable delays, and they improved and generalised the
corresponding results in [9]. In [10, 11], different Lyapunov-Krasovskii functionals were
constructed. The absolute stability problem of Lurie direct control system with multiple
time-delays became the stability problem of a neutral-type system based on the Newton-
Leibniz formula and decomposing the matrices, and some stability criteria were obtained.
The authorsin [12,13] made greater improvements. They avoided the stability assumption
on the operator using extended Lyapunov functional and gave less conservative stability
criteria than those in [10, 11]. [14] and [15] studied the absolute stability of Lurie systems
with constant delay and the systems with time-varying delay, respectively. Improved ro-
bust absolute stability criteria were obtained in [16] and [17] based on a free-weighting
matrix approach and a delayed decomposition approach. Additionally, for a class of more
complicated Lurie indirect control systems of neutral type, some relevant stability condi-
tions were derived in [18—20].
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At the same time, Lurie system has been generalised by researchers from different as-
pects. Time-varying Lurie system is a natural generalisation. For the absolute stability of
such a system, there have been lots of useful results. In [21], the absolute stability of Lurie
indirect control systems and large-scale systems with multiple operators and unbounded
coefficients were studied. The discussed system was taken as a large-scale interconnected
system composed of several subsystems. By constructing a Lyapunov function for each
isolated subsystem, a certain weighted sum of them was considered as the Lyapunov func-
tion of the original system. Thus some stability criteria were derived. The authors in [22,
23] developed some sufficient conditions for the absolute stability of Lurie direct control
systems and large-scale systems with unbounded coefficients.

Regarding the absolute stability of time-varying Lurie systems, uncertain Lurie systems
and stochastic Lurie systems, lots of research results have been reported in the literature.
However, most of the results on the absolute stability of Lurie systems require that the
system coefficients be bounded. Motivated by this, we will study the absolute stability of
time-varying Lurie indirect control systems with time delay. Especially, the coefficients
of the system studied in this paper can be unbounded. Lyapunov’s second method will
be used. In fact, the research methods in [14, 15, 21] can be combined and modified ap-
propriately to investigate the systems considered in this paper. The proposed Lyapunov-
Krasovskii functional not only keeps the components related to a quadratic form together
with an integral term in the above references, but also adds an integral of a quadratic form
related to the time delay. Finally, several new simple absolute stability criteria are estab-
lished. The novelty of the paper can be summarised as follows: The elements of the system
coefficient matrices can be unbounded functions; and also the time delay can be very large
if its time derivative is less than one. At the same time, the obtained results are also appli-
cable to time-varying delay Lurie indirect control systems with bounded coefficients and
the systems with constant coefficients.

Notation Throughout this paper, A(A) stands for any eigenvalue of the square matrix A;
Let vector x = [x; %y --- %,,]7, and ||| represents the Euclidean norm of the vector x,
ie. ,|lxll = /Y7 x% The matrix norm ||A]|, induced by the Euclidean vector norm ||,
is defined as ||A| = max -1 [|Ax|, and it can be easily verified that |A| = v/Amax(ATA);
lim,_,, refers to the upper limit. For simplicity, let ¢(0) = [x((f(t)e)], 0 € [-h,0],t >0,

g1l =/ /% 1o@)1 do.

Lurie indirect control systems with single nonlinearity will be first studied, and then
the derived results will be extended to multiple nonlinearities. Lyapunov’s theorem on
asymptotic stability of time-delay systems used in the proof is given in [24, 25]. For the
case of multiple nonlinearities, o (¢) in ¢(0) is taken as a vector.

2 Absolute stability of Lurie systems with single nonlinearity
Consider the following time-varying delay Lurie indirect control system with variable co-
efficients and single nonlinearity:

x(t) = A(0)x(t) + B()x(¢ — T(2)) + b(£)f (0 (1)),
G (8) = T (6)x(t) - p(E)f (0 (1)), @)
x(t) =¢(t), tel-h0]
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where x(¢t) € R"; o(t) € R; A(t), B(t) are n x n matrices, b(t), c¢(t) are n-dimensional col-
umn vectors; 7(¢) is time delay; p(¢£) > p > 0, p is a constant. A(t), B(t), b(t), c(t), p(t) are
continuous in [0,00). ¢(¢) is the initial condition. The nonlinearity f(-) is continuous and

satisfies the sector condition:

Fii ko) = {fOIF(0) = 05 k1o (t) < o (6)f (0 (1)) < koo *(2),0(£) € R—{0}},
where ki, k are given constants satisfying ky > k; > 0.

Definition 1 ([26]) System (1) is said to be absolutely stable if its zero solution is globally
asymptotically stable for any nonlinearity f(-) € Fi, k-

For system (1), the following assumptions are made.
Al: The time delay t(¢) denotes the continuous and piecewise differentiable function

satisfying
0<t(t)<h,  t@t)<a<l,
where /1, a are constants. At the non-differential points of t(¢), 7(£) represents
max[z(¢-0),7(¢t+0)].
A2: Forany t € [0, 00), there exist symmetric positive-definite matrices P and G such
that

AM(PA() + AT(H)P + G) < -8(t) < -£ <0,

where 8(¢) > 0 is a function and & > 0 is a constant.

A3: For any ¢ € [0, 00), assume that

|IPB(2)|| - I1Ph(2) + 5c(t)|
=1 — =V
8(5) A — &) Amin(G) V@) p(t)

where 7, y are constants.

Theorem 1 Under Al, A2 and A3, if the inequality
n”+y’<l
holds, then system (1) is absolutely stable.

Proof Using the matrices P and G, a Lyapunov-Krasovskii functional candidate is chosen
as

t

o(t)
V(t, ) = xT (£)Px(t) + / 27 (s)Gx(s) ds + / f(s)ds.
0

t—7(t)



Liao et al. Advances in Difference Equations (2017) 2017:38 Page 4 of 20

It can be proved that if f € Fi, 1,), then 1ko%(¢) < fog(t)f(s) ds < 1kyo*(t) hold. Thus, V
satisfies

Ain PO + S0
2 1. 0 2
V(L) < )\max(P)”x(t) ” + EkZU () + Amax(G) /h ”x(t + 9)” de.

Further, we have

min{kmin(P), %k; } ||¢>(0) Hz

1 0
<V(t,) < max{xmax(m, 51(2} |6O)]* + Amax(G) / s |* .
That is, let
u(s) = min{)hmin(P)’ %kl }521 vi(s) = max{)hmax([))r %kZ}SZ: vy(s) = )Lmax(G)S2;

then the following will hold when ¢ > 0:

u(¢0)]) <Vt 9) <vi(]@(0)]) +va(llgllL,)-

Consequently, V (¢, ¢) satisfies the conditions required by Lyapunov’s theorem.
The time derivative of V (¢, ¢) along the trajectories of system (1) will be calculated, and
its upper bound will be estimated as follows:

d

= 22" (O)Pi(t) + 2T (1) Gx(t) — (1 - 1 (1))« (£ - T()) Gr(t - T(8)) +f (0 ()5 (2)
=2x" (OP[A@®)x(t) + BO)x(t — T(0)) + b()f (o(0))] + 2" (£)Ga(2)
- (1-1@)x" (t - @) Gx(t - 7(®) +f (0 @) (<" ®)x(t) - p(E)f (o (2)))
=x" ([PA(t) + AT ()P + G|x(t) + 2" () PB(t)x(t - T(2))
+2xT(OPb()f (o (1)) — (1 - T(&))x" (t - () Gx(t - (2))
+f(e®)c" Ox(@) - p(O)f* (o (1))

By virtue of Al, A2 and the property of norm, the following will be obtained:

d

@
<=8 x| + 2 PBO| |20 | |x(c - =)

[x@]|f (o ®)]
~ (1= Dhin( G| x(t - @) |* - p () (0 (1))

+2

’Pb(t) + %c(t)
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In order to make full use of A3 and the unbounded terms in the coefficients of system (1),

take /S(&)[[x(D) ||, /(1 — ) Amin(G) [|x(2 — T(8)) | and /p(¢)|f (o (£))| as the following variables
of the quadratic form. By further estimating the right-hand side of % V(t,¢)|q) based on
A3, let us note that

d

<-8(0)]x(]”
2||PB({)|

* Friar—g VOO [V - 0hin( @) J(z - 7(0) ]
1Pb() + Le(t)]
o VORI [Veol )]

~ (1= &) hnin( @) x(2 ~ 7(®) | * - p () (0 ()

=30 |x@)[* + 20[V50 |+(0)[]- [V = @)hin( &) (2 - 70) ]
+27[V3@ =[] - [Ve@lf (e ®)]]

~ (1= Dhin( G| 2(t - @) |* = p(8) (0 (1)).

IA

Then, rewriting the right-hand side of the above inequality yields

p NOGIEOL
SV©9)| < | VT=amin@lx(e - T(0))]
® Vo@)lf (o (2))]

V@) llx@)ll
XD V(1= a)Amin(G) 5 - () |, (2)
Ve@)lf (o @)

where

In the following, we will show that the right-hand side of (2) is a negative-definite function.
To establish this result, let us prove that matrix D is negative definite. It is easy to obtain
the characteristic polynomial of D given by

M -D|=(+D[(+1)* - (n* +y?)].
Thus, the eigenvalues of D are as follows:

A=-1, Ay =—1++/10%+y2, Az =—-1—+/n%+yp2
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It can be seen that if % + y2 < 1, three eigenvalues of D are negative, i.e., D is a negative-
definite matrix. Clearly, A, is the maximum eigenvalue of D. This implies that

d
dt M

< (-1+ Vi ) (3@ |50 + (1~ )imin( @) (2~ @) | + p(0)|f (0 0)[)
< (L2172 (3]0 + olf (0 @) ).
Since o (£)f (o (t)) > kio2(¢t), we have |[f(o (£))| > k|0 (¢)]. Thus,

d

. V(t1 ¢)

< (1 + VP ) B0 + k0 0)

2
x(t)
ol

This shows that, as to all f € Fi, x,), % V(t, )| is negative definite. Based on Lyapunov’s

< (=1 + /1% +y2)min(s, pki®)

theorem, system (1) is absolutely stable, which completes the proof of Theorem 1. O

Because asymptotical stability is a property of the trajectories of a system as time tends
to infinity, we just need to ensure that the above requirements can be met when time ¢
is sufficiently large. Therefore, A2 and A3 can be rewritten as follows. There exists 7> 0
such that when ¢ > T, the corresponding conditions hold. Particularly, A3 can be rewritten
as a new form of the upper limit, that is, the following A4 is valid.

A4: Ttis assumed that

m I1PB(2)]| _ i o 1PB() + %C(t)ll _;
=00 SEOA - Auin(G) 2o [5(0)p(D) '

where 7, y are constants.
The following corollaries are more convenient in practical situations.

Corollary 1 Under Al, A2 and A4, if the inequality
0+ pt<l (3)
holds, then system (1) is absolutely stable.

Proof According to the property of the upper limit, if A4 holds, for any ¢ > 0, there exists
T (T > 0) such that when ¢ > T the following hold:

IPB() 3 IPb(2) + (@)l _
=n+¢, _— <
VO[T = ) Amin(G) 5(0)p(0)

Let

n=n+e¢, Y=y +¢,
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then inequality (2) in Theorem 1 holds when ¢ > T'. By Theorem 1, if there exists ¢ > 0 such
that

Y(e) =@ +e)+ (7 +e) <1,

then system (1) is absolutely stable. We notice that the known condition ¥ (0) = 7% + % <1,
and ¥ (¢) is a continuous function of ¢, thus a positive real number ¢ which is sufficiently
small can be found such that ¥ (¢) < 1. This completes the proof of Corollary 1.

In fact, if we define § = 1 — (72 + 72) and take ¢ = ~ LV (@+7)7+0 W, then we have £ > 0 and
f+e)+(y+e)f=1-%<1 O

Corollary 2 Under Al, A2 and A4, if the inequality
n+y<l
holds, then system (1) is absolutely stable.

Proof From 1 > 0, y > 0, obviously, we have

P+ <@ +7)
Ifij+7 <1,ie., (i +7)* <1, then inequality (3) is valid. Thus, Corollary 2 holds by Corol-
lary 1. O

Particulary, if the coefficients of system (1) are bounded, the above conclusions are still
accurate. Certainly, the above criteria are also true for Lurie systems with constant coeffi-

cients.

3 Absolute stability of Lurie systems with multiple nonlinearities
Consider the following time-varying delay Lurie indirect control system with variable co-
efficients and multiple nonlinearities:

x(t) = A(t)x(t) + B(t)x(t — T(8)) + Z]'ZI bj(t)fj(a,(t)),
6i(t) = ¢ (Ox(0) — pi)fiou(2))  (i=1,2,...,m), (4)
x(t) =), tel-h0],

where x(¢) € R"; 0;(t) € R (i = 1,2,...,m); A(t), B(t) are n x n matrices; b;(¢), c;(¢) (i =
1,2,...,m) are n-dimensional column vectors; t(t) is time delay; p;(t£) > p; >0 (i =
1,2,...,m), p; are constants. A(t), B(¢), b;(t), ci(t), pi(t) are continuous in [0, 00). ¢(¢) is
the initial condition. The nonlinearities f;(-) (i = 1,2,...,m) are continuous and satisfy the
sector condition:

Fiiy ki) = {ﬁ(')[ﬂ(o) = 0;ky02(t) < oi(t)fi(oi(t)) < kno*(t),0:(t) € R - {0}},
where k;1, kip are given constants satisfying k;» > ki > 0.

Definition 2 System (4) is said to be absolutely stable if its zero solution is globally asymp-
totically stable for any nonlinearity f;(-) € Fix, k5 (i=1,2,...,m).
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In addition to Al and A2, the following assumptions are needed for system (4).

A5: For any ¢t € [0, 00), assume that

I PB()|l - I1P;(t) + Lc,(@)

500 - O hein(G) oo

where 1, y; (j =1,2,...,m) are constants.

Theorem 2 Under Al, A2 and A5, if the inequality

m
n’ + Zy,»z <1
i=1

holds, then system (4) is absolutely stable.

Page 8 of 20

Proof Using matrices P and G, a Lyapunov-Krasovskii functional candidate can be chosen

as

V(t, ) = xT (£)Px(t) + / t

t—t(t

m oi(t)
T d i d »
)x ()Gx(s) s+i2=1:/0 fi(s)ds

where ¢(0) = [xT(t + 0) 01(¢) -+ 0,()]T, 6 € [=h,0], t > 0. Similarly to the proof of The-
orem 1, it can be verified that V (¢, ¢) satisfies the conditions required by Lyapunov’s the-

orem.

Next calculating the time derivative of V (¢, ¢) along the trajectories of system (4) yields

d
E V(t’ ¢)

(4)
= 2T (£)Px(t) + xT (£) Gx(¢)

m

—(1-1@)xT (- 7)) Gx(t - 1(0) + Y fi(0i(0)6:(2)

i=1
=27 ()P |:A(t)x(t) +B(t)x(t - T(0)) + Z bi(t)f; (U/(t)):|
j=1
+xT () Gx(t) - (1 - i(t))xT(t - r(t))Gx(t - ‘L'(t))
+ Y filoi®) (e (©x(0) - pilt)fi(0u(8)))
i=1

=x"(t)[PA(t) + AT(O)P + G]x(t) + 22" () PB(t)x(t — T(£))

+2xT (P bi(e)f(03(0)) — (1 - 2(8))a” (£ — T(2)) G (£ — T (2))
j=1

m m

+ Y filo®)e] Ox() = Y pi)f*(0:(2)).

i=1 i=1
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Likewise, in the light of A1, A2 and the property of norm, the following will be obtained:

(4)
<=5 [#0)]* +2[2BO| |x(0) (¢ ~ =) |

[=@]1f(5)]

1
ij(t) + ECj(t)

- (1= a)Amin(G ”x t T(t ” - Z pi(t Ul(t

In order to take advantage of A5 and the unbounded terms in the coefficients of system

(4), let us take +/5(2) [x(2) |, /(1 — @) Amin(G) 2t — T ()| and v/ pi(®) [filoi(£)] (i =1,2,...,m)
as the following variables of the quadratic form. Further estimating the right-hand side of
% V(t, )| based on A5 yields

(4)
<-8@)|x)|”

+ = (VA0 ) [V = @)@ £(0) ]

1P;(t) + 1c;(0)
vy B O o] [0l
j=1

- (1 - Ol))"mm ”x t 7: ” - Z Pl Uz(t
<=8)]x®)]|* + 20 [ [x(®)]]] - [V A — )hanin (@) (¢ ~ ()| ]
+23 y[Ve@]x®]]- [y @ (0;0))]
j=1

~ (1= i@ 2t = 7)) |* = D~ i) (0:0)).

i=1

Rewriting the right-hand side of the above inequality, it follows that

a7

V(@) 1x(2)
kY, (1 - a)kmin(G)||x(t - T(t))H
%v@@ < NIGIACAD),
(4) .

V Om(2) lfm (om(@®)]

V@) lx(@)l
V(L =) Amin(G) (¢ = T(@))l
x D V)il ()] , (5)

V o) fin(0m(2))]
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where
-1 n o Vm
n -1 0 0
D=y 0 -1 0
Ym O 0 ..o -1

In the following section we will prove that the right-hand side of (5) is a negative-definite
function. Firstly, let us show that matrix D is negative definite. Calculating the character-
istic polynomial of D yields

|AI - D|
A+l -n =i —Vm
-n A+l 0 -~ 0
=l-» 0 A+l -~ O
~VYm O 0 - A+l

(h+1)™" [(x +1)2 - (n2 + ny)}.

i=1

It can easily be seen that A = —1 is an eigenvalue of multiplicity 72, and the other two eigen-

values are given by A = -1+ /52 + > 2. Therefore, if n* + >, y:* < 1, all eigenvalues
of D are negative, i.e., D is negative definite.

Let us denote the largest eigenvalue of D by 8, namely, 8 = -1+ /9% + Y 1, ¥?. From
(6), the following will be obtained:

d

(4)

<B (a(t) [2®)] + 1 = ) rin( @ (£ = T @) |* + D i) |fi(0:(0)) |2)

i=1

<p (a [x@)]” + Zp,-UFi(a,-(t>)|2>.

i=1

Since o;()fi(04(t)) > kﬂaiz(t), then [f;(0:(2))| = kaloi(2)| (i =1,2,...,m) holds. Therefore,
from the above inequality, we obtain

d

% V(tx ¢)

(4)
<p (8 ||x(t) H2 + Z pikilzgiz(t)>
i1

x(t)

) ) 5 o1(t)
< Bmin(3, prku’s ..., pymkim®)

Om(t)
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Because B < 0, for any nonlinearity f(-) satisfying the given sector condition, we get
% V (¢, 9)|(a) is negative definite. Thus, system (4) is absolutely stable by Lyapunov’s theo-
rem. This completes the proof of Theorem 2. d

Similarly to the case of single nonlinearity, in order to guarantee that system (4) is ab-
solutely stable, A5 in Theorem 2 can be rewritten as follows: There exists 7' > 0 such that
when ¢ > T the corresponding conditions hold. Therefore, 1, y; (j=1,2,...,m) in A5 can
be calculated by the upper limit (if the corresponding upper limit is a finite value).

A6: Itisassumed that

T | PB(2)]| _ — IPBi(2) + 3D
m =1, lim ————=— =7,
=00 /8(£)(1 — &) Ain(G) t—>00 5(8)p;(0)

where 7, y; (j = 1,2,...,m) are constants.

Corollary 3 Under Al, A2 and A6, if the inequality

m
P+ Y pi<l
i=1

holds, then system (4) is absolutely stable.

The proof follows similar steps as in the proof of Corollary 1, and thus is omitted here.
According to Corollary 3, it is easy to obtain the following Corollary 4.

Corollary 4 Under Al, A2 and A6, if the inequality

ﬁ + Z j < 1
j=1
holds, then system (4) is absolutely stable.

4 Numerical simulations
In this section, the validity of the proposed approach will be shown by numerical examples.

Example 1 Consider the time-varying delay Lurie indirect control system with variable
coefficients and single nonlinearity

jCl(t) _ —2t—% 1 xl(t)
Lo | ot 8t-1]|x0®

30 0 | {me-t@)]  [-4¢
o e [xzu—r(t))}[op (o), ©

t)=[t i [xl((ﬂ —(t+1)f (0(0)),

%2 (t)

where 7(t) =3 + 0.5sin¢, f(-) € F{o.01,100]-

Page 11 of 20
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In comparison with system (1), the coefficient matrices are as follows:
-1 1 5 O ~Lt
A(t) = 2 e Bt)y=|V? , bit)=| 2|,
t  -3t-1 0 \/Z 0
6

ot) = [\2} o) =t +1.

Now let us verify that this system satisfies all the conditions of Theorem 1.
Firstly, it is obvious that 0 < 7(¢) < 3.5 =4, 7(¢) = 0.5cost < 0.5 < 1. We have o = 0.5.

Thus, Al is satisfied.
Then, let P = G =1, it follows that

—4t t+1
PA®) + AT()P + G = .
t+1 -6t

It is easy to obtain
A(PA(t) + AT(OP + G) < -5t + V262 + 2t + 1.
Furthermore, let 7' = 1.5, when ¢ > T, we have
A(PA(t) + AT(P + G) < =5t + V/2(t +1) = ~(5 - V2)t + V2 < ~(4 - V2)t.
Thus, we can choose
8(t) = (4- V2.
Note that if £ > T', we have
-8(t) < —§ = -(4v2-2).

Thus, A2 is satisfied. In addition,

IPB(@®)|l _ 1 . 1
\/S(t)(l — 0)Amin(G) \/4 - \/E «/E,
1PB(®) + 5e@)ll _

VtI2 1 1
< —.
Vé(©)p(t) (4= VD)t - (£+1) _«/Z-\/16—4ﬁ<x/ﬁ

Hence, n = %, y = \/%, that is, A3 is satisfied.
It is clear that n? + y2 = % < 1. Summarising the conditions obtained, we conclude that
Theorem 1 is applicable and system (6) is absolutely stable. In order to carry out a numer-

ical simulation, let

f(o(t)) =20 (t) + sino ().
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Now it can be proved that f (o (¢)) belongs to Fio 01,100]. Obviously, f(0) = 0. Thus, we just
need to show that if o () # 0, the following inequalities

0.016°(¢) < o ()[20(¢) + sino ()] < 1000%(¢)

sino ()
0.01<2+ <100 )
o(?)

are valid.

First we know, if 0 < |0 (¢)| < 7, we have

sino ()
o(t)

coso(t) < <1

Hence,

sino (¢)

2+ o)

<2+1=3<100,

sino (¢)

o(t)

>2+coso(t)>2-1=1>0.01.

Thus, in such a case, (7) hold.

If |o(¢)] > Z, because of |sino (£)| < 1, we have

— 21
sino (t) | sino (2)| 1 1
<2+ <2+ <2+ —<100,
o(t) lo (8] o (8)] m/2

that is, the right-hand side of (7) is valid. Moreover,

sino (¢) |sino (¢)] 2
S >0 >2-2>2-1=15001,
o(t) lo ()] lo ()] b4

that is, the left-hand side of (7) is valid. Thus, f(o (£)) € Fo.01,100]-

The numerical simulation is carried out by Matlab. Suppose the initial condition is
[1(2) 22(8) 0 (0)]7 = [110]7, ¢ € [-h,0]. The state response of system (6) is shown in Fig-
ure 1.

It can be seen from Figure 1 that the zero solution of system (6) is asymptotically sta-
ble. Changing the form of f (o (t)) and carrying out a corresponding numerical simulation
demonstrate that system (6) is asymptotically stable as long as f(-) € Fjo.01,100;- Thus, it is
absolutely stable. This example illustrates that the simulation result is in perfect accor-
dance with theoretical conclusions.

Furthermore, in this paper, the derived theorems and corollaries are sufficient condi-
tions. This implies that system (1) may be still asymptotically stable although some condi-
tions are not satisfied. For this example, let f(o (¢)) = o%(¢), and the rest of the parameters
remain unchanged. Although f (o ()) does not belong to any Fi, «,}, it is found that sys-
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Figure 1 The state response of system (6) (with f(o (t)) = 20 (t) + sino (t)).
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Figure 2 The state response of system (6) (with f(o (t)) = o2(t).

tem (6) is still asymptotically stable by simulation, as shown in Figure 2. Therefore, it is
possible to extend the absolute stability region of parameters for system (1). This will be
explored in our future works.

The above selected 7(¢) is derivable everywhere. Next, t(t) is rewritten as a continuous
and piecewise differentiable function.
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Example 2 We still consider system (6), the time delay is given by

1, t<2,
t(t)=14 0.5t 2<t<d4,
2, t>4.

The other parameters remain unchanged. Here 7(¢) < 2 means % = 2. Note that 7(¢) is
not derivable at £ = 2 and ¢ = 4, but it has right and left derivative. Combined with Al, we
have 7(¢) < 0.5. Thus, « = 0.5. Similarly to Example 1, this system is absolutely stable. By
utilising Matlab, the simulation result is shown in Figure 3.

It is worth noting that the coefficients A(¢), B(t), b(t), c(¢), p(t) in Example 1 and Ex-
ample 2 are unbounded. This is the novelty of the paper. All theorems and corollaries are
suitable for systems whose coefficient matrices are unbounded. Actually, for Lurie systems
with bounded or constant coefficients, all results are also true. Now an example of Lurie
system with constant coefficients is presented.

Example 3 Consider the time-varying delay Lurie indirect control system with constant

coefficients

M| _(-11 02|{m@)| |03 03|[m(-7()
w@)| |01 -1||x) 0.3 0.2 x(t—1(2)

+ Hf(am), ®)

s(t)=[-1 -1] ["1(”} ~10f (o (1)),

x2(t)

Page 15 of 20
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where 7(¢) =3 + 0.5sin¢, f(-) € Fjo.o1,100- Here,
-11 0.2 03 03

A(t) = , B(t) = ,
01 -1 03 0.2

b(t):m, c(t)z[:j, (1) =10

are all constant matrices or constants.

Now we verify that this system satisfies all the conditions of Theorem 1.

Page 16 of 20

First, it is obvious that 0 < t(¢) < 3.5 =4, 7(t) = 0.5c0st < 0.5 < 1. We have o = 0.5.

Thus, Al is satisfied. Then let P = G = I, it follows that

PAR) +AT(®)P+G = [_0132 (113} )

It is easy to obtain

A(PA(t) + AT(HP + G) < -11+V0.1.
Thus, we have

£=8(t)=11-01.

Then, A2 is satisfied. In addition,

IPB@)| /0155 +4/0.023125

_ 0.9,
8(6)(1 — o) Amin(G) \/m )

1Pb(2) + Sc(t)]

NG
= <0.3.
Vé@r®  f10a.1-/01)

Hence, we have n=0.9, y = 0.3 in A3.

It is clear that n? + 2 = 0.9 < 1, which means that the conditions of Theorem 1 are

satisfied. The conclusion could be made that system (8) is absolutely stable. Let

f(o(8) =20(t) +sino ().

Suppose the initial condition is [x;(¢) x5(£) a(0)]F =[110]%, ¢ € [-h,0]. The simulation

result is obtained using Matlab, as shown in Figure 4.

Figure 4 indicates that the zero solution of system (8) is asymptotically stable. This veri-

fies theoretical results. Changing f (o (¢)) to simulate yields that system (8) is asymptotically

stable so long as f(-) € Fo.01,100], i-€., system (8) is absolutely stable. Thus, the results in this

paper are true for Lurie systems with constant coefficients.

Next, an example of Lurie system with multiple nonlinearities is introduced.
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Figure 4 The state response of system (8).

Example 4 Consider the time-varying delay Lurie indirect control system with variable

coeflicients and two nonlinearities

(1) = A(O)x() + BOx(t - T(0) + Xy bi()fi(0u(0)),
Gi(t) = ¢] ()x(t) - pi(O)fi(0:(t)  (i=1,2),

where 7(t) =3 + 0.5sin¢, fi(-) € Fjo.01,100), i = 1,2 and

_3r-1 t i LA
A(p) = 2 . Bo=|V* ,
1 -1 0o/t

by(t) = {ﬂ by(t) = ;ﬂ

alt) = [_1%] , al)- _ﬂ ,

pi(t)=t+1,

p2(t) = 2t + 1.

)

Now we verify that this system satisfies all the conditions of Corollary 4.
Firstly, it is obvious that 0 < t(¢) < 3.5=h, 7(t) = 0.5cost < 0.5 < 1. We know that « =

0.5. Thus Al is satisfied.
Then let P = G =], it follows that

- 1
PA()+AT(P+G=| O TFL]
t+1 -8t
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It is easy to obtain
AM(PA@) + AT()P+ G) < -7t + V262 + 2t + 1.
Further, let T = 2. Then, when ¢ > T, we have
A(PA(t) + AT(H)P + G) < -5t < -10.

Thus A2 is satisfied with §(¢) = 5¢, & = —10. In addition,

L IPBE)I Vi

1m =lim ——— = —,

1500 \/8(1)(1 — ) Amin(G) =% 24/5¢-0.5 /10
IPb(0)+ SO 05+

lim — 2 TRy 22 EVE
N G N
|I1Pby(2) + 3ea(2) |
im —=— " =
N OO

We recall the fact that the upper limit always exists if the limit exists, and it is equal to
the limit value. Hence, for A6 we have 71 = J%’ y1=9,=0.

Itis clear that 7 + 1 + » = ﬁ < 1. Thus, all the conditions in Corollary 4 are satisfied,
that is, system (9) is absolutely stable.

In order to carry out the numerical simulation, let

a(t), lo(®)l<L,
fi(o @) =20(8) +sino (2), Lo@®)=1c%0), 1<|o@®) <2,
4o (t), lo(t)|>2.

— - —X
1N 1]
AN - %
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©
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Figure 5 The state response of system (9).
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Suppose the initial condition of the system is given by
T T
[xl(t) xz(t) 01(0) 0’2(0)] = [1 1 0 0] , L€ [—h,O]

With the aid of Matlab, the state response of system (9) is shown in Figure 5. It illustrates
that the numerical simulation result is completely consistent with the theoretical conclu-

sion.

5 Conclusion

The absolute stability problem of time-varying delay Lurie indirect control systems with
variable coefficients has been investigated in this paper. Based on Lyapunov stability the-
ory, some sufficient conditions and several simple and practical corollaries have been ob-
tained. The results in this paper are especially applicable to checking the absolute stability
of time-varying delay Lurie indirect control systems with unbounded coefficients. The

validity of the proposed criteria has been demonstrated by numerical examples.
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