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Abstract

This paper considers two kinds of novel decoupled algorithms for the non-stationary
Stokes-Darcy model. In this way, the considered problem is decoupled into one
time-dependent Stokes equations and one linear parabolic equation. For the two
algorithms, we establish the stability and the optimal error estimates. Furthermore,
the existing result in Mu and Zhu (Math. Comput. 79:707-731, 2010) can be improved
to the optimal order O(At) following our proof. Finally, some numerical experiments
are conducted to validate the established theoretical results.
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1 Introduction
There are many multimodeling problems in real applications of complex systems. They
consist of multiple models in different regions coupled through interface conditions. The
local models may be varied in type, scale, control variable, and many other physical and
mathematical properties. In this paper, we focus on the coupled fluid flow and porous me-
dia flow modeled by the non-stationary Stokes-Darcy problem. There is a rich literature
on the mathematical analysis, numerical methods and applications for this model, see, e.g.,
[2-10] and the references therein. Among them, the decoupled method might be one of
the most popular approaches for solving the multimodeling problems because the decou-
pled method makes the existing single-model solvers applicable locally with little extra
computational and software overhead. Other appealing reasons were discussed in [11, 12].

In [1], authors developed a decoupled method for the Stokes-Darcy model based on
the numerical solutions from previous time level and established the corresponding error
analysis. Unfortunately the estimates for us and ¢ are not optimal, namely, the order is
(’)(At% )- These estimates may be improved to O(At), as suggested by numerical experi-
ments in [1]. It motivates us to propose some new decoupled algorithms and derive the
optimal estimates of the order of O(At) for both uy and ¢.

The rest of the paper is organized as follows. A coupled non-stationary Stokes-Darcy
model and its weak formulation are introduced in Section 2. Numerical algorithms, in-
cluding the coupled scheme and decoupled schemes, are developed in Section 3. The sta-
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bilities of these developed algorithms are provided in Section 4. Convergence is derived
in Section 5 to show that these new decoupled algorithms keep the same order of approx-
imation accuracy as the coupled method. Numerical results are reported in Section 6.

2 The non-stationary Stokes-Darcy model
Let us consider a fluid in ©; coupled with a porous media flow in 2, where Qf, 2, € R4
(d = 2 or 3) are bounded domains, r N 2, = ¥, and §f n §p =T'. Denote by Q = ;U
Q,,ns and n, the unit outward normal directions on 32 and 9€2,, respectively. 7;,i =
1,...,d — 1 the unit tangential vectors on the interface I' and ny = —n, on I".

Let T > 0 be a finite time. The fluid motion is governed by the Stokes equations:

aaltf—vAuf+fo:gf in Qr x (0,71,
V-ur=0 in Qf x (0, T7, (2.1)
us(x,0) = u})(x) in Q,

where us(x, £) represents the velocity of the fluid flow in 2, ps(x, £) the kinetic pressure,
g the external force, and v > 0 the kinematic viscosity.
The porous media flow motion is governed by the following equations [13, 14]:

So%+V~q:gp in Q, x (0,T],

q=-KV¢ in Q, x (0, T], (Darcy law)
u,=1 inQ, x (0, T1,
(x,0)=¢°(x) inQ,

(2.2)

where ¢(x, ¢) is the piezometric head, q is the specific discharge defined as the volume of
the fluid flowing per unit time through a unit cross-sectional area normal to the direction
of the flow, u, is the fluid velocity in €2, Sy is the specific mass storativity coefficient, K is
the hydraulic conductivity tensor, # is the volumetric porosity, and g, is the source term.
Note that ¢ =z + ﬁ—f; , the sum of elevation head plus pressure head, where z is the elevation
from a reference level, p, is the pressure in €2, p is the density of the fluid, and g is the
gravity acceleration. Without loss of generality, we assume z = 0. Furthermore, we assume
that K = diag(K...,K) with K € L*°(R2,),K > 0, which implies that the porous media is
homogeneous. Finally, by using Darcy’s law in (2.2), the first continuity equation in (2.2)
in , can be written in the parabolic form

50% -V (KV$)=g, in,x(0,T]. (2.3)

A key part in a mixed model is the interface coupling conditions. For the Stokes-Darcy
model, the following interface conditions have been extensively studied and used in the
literature [15—-20]

uf~nf+;1p~np:0 onT x (0,T],

u

pf - Unf# = ,Og(f) onl x (01 T]r (2.4)
9 ,

—vriﬁzﬁufﬁi,zzl,...,d—l onTI x (0,T].

Here o is a positive parameter depending on the properties of the porous medium and
must be experimentally determined. The first interface condition ensures the mass con-
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servation across the interface I', and using the second and third equations in (2.2), it can

be rewritten as

K 9
uf~nf:—a—¢ onT x (0,T].
n on,

The second one is a balance of normal forces across the interface. The third one states that
the slip velocity along I' is proportional to the shear stress along I'.

Several types of boundary conditions for this coupled model are discussed in [15]. In
this paper, we consider the homogeneous Dirichlet boundary conditions for the coupled
model, that is,

ur=0 ondQA\I' and ¢=0 ondQ,\I.
Denote W = Hy x H, and Q = L*(€2), where
Hy={ve (H(Q))"|v=0 ondQ\T}
and
H,={y e H'(R,) |¥ =0 ondQ,\I'}.

The space L*(D), where D = Q; or €, is equipped with the usual L*-scalar product (-, -)
and L%-norm || - || 12(p)- The spaces Hy and H, are equipped with the following norms:

ol = V772 ) = (VO Vay)o, Yoy € H,

Pllx, = ||V¢||i2(9p) =(V9,Vo)o, V¢ €H,.
We equip the space W with the following norms: Vu = (us,¢) € W

llullf = n(ay, ur)g, + pgSo(@, g,

lullfy = nv(Vuy, Vuy)g, + 0gK(Ve, Ve)a, = [Vullg,

where (-, -)p refers to the scalar product (-, -) in the corresponding domain D for D = Q; or
Q,. For simplicity, we assume 7, p, g, So, v and K are constants.
We also recall the Poincaré and trace inequalities that are useful in the following analysis.
There exist constants C, and C; which only depend on € such that
V2o < Gollvimepy, — WIwy < GV, VI, Vv € HYD). (2.5)
The weak formulation for the non-stationary Stokes-Darcy problem reads as follows:
Find u = (us,¢) € W, pr € Q such that for all £ € (0, T']

(34,v) + a(u,v) + b(v,pp) = (f,v) Vv=(v,¥) e W,
b(u,q) =0 Vq € Q, (2.6)
u(x,0) = u°,
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where

d 0 0
(a_j’v> = n(%w) + pgSo(a—(f,t/f),
a(u,v) = aq(u,v) + ar (u,v) = ag,(ay,v) + ag, (@, ) + ar (u, v),

with

d-1
o
de(uf,V) = n/Qf vVuy - Vv + 1 Z/r ﬁ(uf STV T);
i=1

ag,(®, V) = ng

Qp

KV¢ - Vi; ar(u,v) = npg/(q)v -ng —yuy - ny);
r
b(v,pr) = —n/ prdivv; (f,v) = n/ g v+ pg/ oV
Qf Qf Qp

It is well known [4] that ag, (-,),aq,(-,-) and ar(.,-) are continuous, and a(, -) is coercive.
Furthermore, de(', -) and ag, (-, ) are symmetric,

ar(u,v) = —ar(v,u) and ar(u,u)=0 Vu,veW. (2.7)

The well-posedness of the model problem (2.6) can be found in [2, 4, 5] for the stationary
case. We also proceed to apply the Babuska-Brezzi theory to prove that (2.6) is well posed
for the non-stationary case. After assuming the inf-sup condition for b(:, -), we restrict the
monolithic formulation (2.6) to the null space of b(:,-). With the help of Riesz represen-
tation theorem, we can define an operator u — Au in a standard way by (Au,v) = a(u, v)
for the bilinear form a(-,-). Then it follows form continuity and coercivity and the Lax-
Milgram theorem that this operator is maximal monotone. As a consequence, thanks to
the Hille-Yoshida theorem, we can obtain the existence of solution for the evolutionary
problem.

Lemma 2.1 Assume that
g €L*(0,T,L*()Y), g eL*(0,T,L*(Q,)"), KeL™(Q,)",

and Kis uniformly bounded and positive defined in Q,, i.e., there exist constants Kyin, kmax >
0 such that

Komin %> < Kx - % < kipax [%|* €. x € Q).

In addition, let u}) € LX), ¢° € LX(,), then the solution (us,ps,¢) € (L*(0, T, Hy) N
HY0, T, L*()%) x L*(0,T,Q) x L*(0, T, H,) of (2.1)-(2:2) is also the solution to (2.6).
Conversely the solution of (2.6) satisfies (2.1)-(2.2).

3 Numerical algorithms
Let Wi = Hy, x Hpp C W oand Q; C Q denote the finite element subspaces. The finite
element spaces Hp, and Qy, approximating velocity and pressure in the fluid flow region are
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assumed to satisfy the well-known discrete inf-sup condition [21]: There exists a constant
B > 0 independent of /4, such that there exists a v, € W), for all g5, € Qy,

b(vnqn) = Bllvullw lIgnllo- (3.1)

Several families of finite element spaces designed for the Stokes problem are provided in
[4, 21]. They all satisfy the discrete inf-sup condition (3.1) and can thus be applied for Hp,
and Qy. Standard finite element approximations of H'(€2,) can be applied for H,, in the
porous media flow region. For illustration, we assume that the finite element spaces of the
first-order approximation O (/) are used in the fluid flow, such as the well-known MINI
elements, and the porous media flow regions, such as the linear Lagrangian elements. The

corresponding inverse estimates are well known:
IVVillo < Cnh ™M Ivillo ¥Vi € Hps  IIV¥hllo < Cah™ I¥hllo V¥ € Hipi-
We also introduce a subspace Vj, of W}, defined by
Vi ={vi € Wy : b(vi, qn) = 0 Yy, € Qu},
and the projection Ry, : v=(v,¥) € W R,v = (R,v, Ry ) € V), defined by
((th, vh)) = ((v, vh)) Yve W,v, eV,
where

((u, v)) =nv(Vu, Vv)gf +pgK(Vo,¥)a,, u=(us¢),v=(v,¥)eW.

Without loss of generality, we assume a uniform mesh applied to the time interval [0, T']
with ¢, = mAt,m=0,1,...,], where At = % is the time step.

3.1 Coupled marching schemes for the mixed model

Recall that the mixed model (2.6) is formulated as an abstract time-dependent saddle-
point problem. It is natural to consider the following first-order implicit marching scheme
by applying the backward divided difference for the temporal discretization and the finite
element Galerkin method for the spatial discretization, which leads to the coupled back-

ward Euler scheme:

Algorithm 3.1 (Coupled backward Euler scheme (CBES))
Find u}’ = (uf”;l,cb,’l”) e W), and pf’Z € Qp with m =1,...,J, such that for all v, = (v, ¥,) €
W), and g;, € Qy

A Vi) +alug’,vi) + b(vi, pg) = (F™, vi),
b, qn) =0, 32)
M2 = Rhuo,

where f" = f(t,,) and u° = (u}), #°). Note that at each time level, CBES amounts to solving
a stationary Stokes-Darcy problem and is well-posed. Theoretical analysis and numerical
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experiments have been provided by Mu and his co-worker. In [1], authors not only pro-
vided the upper bounds for the numerical solution (u}, ijh) of (3.2), but also established
the corresponding optimal error estimates.

Theorem 3.1 (see [1]) For CBES (3.2), we have

J J
a2+ 863" Ny |2+ a6 |Vt |2 < Mo 33

m=1 m=1

Furthermore, there exist constants C, > 0 and C* > 0 independent of h such that if

C.h < At <C*h, (3.4)
then
2 4 2
|Vda, |, + AtZ”dttuZ” |5 < M. (3.5)
m=2

Here and below, the positive constant M; (i = 0,1,...) is independent of At and h.

In order to derive error estimates, we assume the regularity u € (Hz(Qf))d x H?*($2,) and
p € H' (), and the finite element spaces as described above of first-order approximation
O(h) are used for the fluid and porous media regions. For convenience, from now on, we
will use x < y to denote that there exists a positive constant C, such that x < Cy.

Theorem 3.2 (see [1]) For CBES (3.2) withm =1,...,], we have

||u(tm) —uy ||0 < At+ 4,
[ uttn) ~ )], < A6+

() -2 < At+h+ AR
lor ) = pially <

From CBES (3.2), we know that the variables ug,, pg, and ¢, are coupled together by the
boundary condition. When we solve this coupled system directly, the numerical difficulties
increase as the mesh size decreases. In order to solve the non-stationary Stokes-Darcy
model efficiently, some decoupled algorithms will be developed in the next subsection.

3.2 Decoupled marching schemes for the mixed model
Firstly, we recall a decoupled approach based on the temporal extrapolation on the inter-
face, which has been researched in [1].

Algorithm 3.2 (Decoupled backward Euler scheme 1 (DBES1))
Find u}y = (uyy, ¢4 € W), and piy € Q, with m = 1,...,], such that for all v, =
(Vi ¥n) € Wy, and g, € Qy

gty - mh mh m m-L
(T: Vh) + aQ(u?,,z ’Vh) + h(Vh’pg,z ) = (f ’Vh) - al"(ug.z :Vh)r
b(uyy', qu) = 0, (3.6)

0 0
u, = Ryu’.
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From the coercivity of ag(-,-) and b(:, -) satisfies the discrete inf-sup condition, we can
see that the DBESI is well-posed. Furthermore, at each time step, the discrete model (3.6)
is equivalent to two decoupled problems that correspond to a Stokes problem in ¢ and a
Darcy problem in ©,, respectively, with associated boundary conditions defined by w5’y L
from the previous time level of I". In order to simplify the expression, we denote €%’, =

(e, £Y5) with e’y = ugy - ug'g” and £, = @) — b3y mh In particular, €2, = (0,0).

Theorem 3.3 (see [1]) Under the condition of (3.4), for DBES!1 (3.6) withm =1,...,], we

have
Hesz||o+AtZ||V%z||o<M (37)
j=1
m .
| Very o +2a8 > |didh, |y < A (3.8)
j=1

Combining Theorems 3.2 and 3.3, we can obtain the optimal order error estimates for
the decoupled numerical solution w7y and ¢2" in L*> norm. But the H' norm for u}’
and ¢5§'f§h are suboptimal, namely, the order is O(At%). This estimate may be improved
to O(At), as suggested by numerical experiments in [1]. It motivates us to propose some
novel decoupled algorithms and derive the optimal error estimates. Our algorithms can

be described as follows:

Algorithm 3.3 (Decoupled backward Euler scheme 2 (DBES2))

Step 1. The discrete Stokes problem in the fluid region €2 reads as follows: Find w e
Hﬂ,,pgféh € Qu withm =1,...,], such that for all vj, € Hyp, and g € Qy,

U3, 3h us's R
Vl(i,Vh) + de(ug 3 )Vh) + be(Vhrpgg )

= (ngf rvh fr leg¢3.3 vh ny,

bo, (W55, q1) = 0
uj, = Riuy.

Step 2. The discrete Darcy problem on the porous media region reads as follows: Find
¢§f’§h € Hy, with m =1,...,/, such that for all ¢, € Hy,

m-Lh

{ pgSo(BE" )+ ag, B2 vn) = (ogglh vn) + fy npgnuld - my,
39 = Ryg".

The Steps 1 and 2 in Algorithm 3.3 can be rewritten as: Find uy’ = (u}y, ¢53") € W), and
p3.3 € Qu withm =1,...,], such that for all v, = (v, ¥,) € W), and Vg, € Qp,

Mm,h_um—l,h i i
(%11/14) + aQ(ugé ’Vh) + b(Vh;Pgé )
m-1,h

= (", vi) — ar W™, vp) + /i npgyu(uyy —uysth). nf, (3.9)
b(ug.g ,qh) =0,
ul) = Ryu®.
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Algorithm 3.4 (Decoupled backward Euler scheme 3 (DBES3))
Step 1. The discrete Darcy problem on the porous media region reads as follows: Find
q);'if’ € Hy, with m =1,...,], such that for all ¢, € Hpp,

m-1,h
pgSo (B ) & ao (B2 v) = (ogglhs W) + [ npgynuliy™ - ny,
®p = Ryop”.

Step 2. The discrete Stokes problem in the fluid region 2 reads as follows: Find ug’.’;f’ €
Hp, and Pl e Qu with m =1,...,J, such that for all v, € Hp, and g, € Qy
mh__m-1,h

u. u.
n(2454 y,) +ggf(u34 Vi) + th(Vh Pia 4)

= (ngf",vi) — J1 npgdyy Vi - vy,
be(u;?;r.lzlh’qh) =0,
uj‘?h = Rhu}).

The Steps 1 and 2 in Algorithm 3.4 can be rewritten as: Find 13y’ = (0§, ¢3%") € W),
and pg'ﬁf’ € Qu withm =1,...,], such that for all v, = (v, ¥,) € Wy and g5, € Qy

mh_ m-Lh

(%, vh) + asz(ug”;h, Vi) + b(vy, p’rff)

= (", vi) — ar (53" vi) = [fr nog 935" — @55 v -y, (3.10)
b(u3.4 ,qh) =0,
ul) = Ryu®.

Similar to the DBES], we can see that both Algorithms 3.3 and 3.4 are well-posed. In
scheme (3.6), we use the numerical solution z},"~ Y from the previous time level to ap-
proximate the interface conditions. One advantage of algorithm (3.6) is that it can be used
in parallelism based on the solution of previous time level. In order to improve the compu-
tational accuracy, we separate the coupled model (2.6) into two steps (one Stokes equation
in Qf and one Darcy problem in €2,), and use the numerical solution obtained in step 1 to

approximate the boundary condition of step 2 at the same time level.

4 Stability
This section is devoted to establishing the upper bounds for the solutions 2" and w4
of decoupled Algorithms 3.3 and 3.4, respectively, which will be used in the error esti-
mates for e’y = (uf; — uyy, o — ¢5y') and e, = (u, — wy ¢ — ¢ in Section 5. For
convenience, let us introduce the following notations. We denote the backward divided
difference operator d; by

uy —uy™!

diu)! =--2—"2— form=12...,J.
Uy, Az ]

When m = 0, we define dtug = (dtu})h, dt(pg) as the solution to the following problem:

(deuy,vi) +a(uf,vi) = (f%vn) VYvne Vi (4.1)
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We also denote
form=1,2,...,].

Similarly, we introduce the divide differences dtugf’;h and dttu?;h form=1,...,J]and i =
2,3, 4 for the solutions 2" of Algorithms 3.2, 3.3 and 3.4, respectively. For m = 0,d;u3, is
defined in the same way as dtug in (4.1).

Lemma 4.1 For DBES2 (3.9), under the condition (3.4) we have

J ]
1 3
a2 o 202 S a2+ 2 e Y iz I < a0

Proof We subtract the decoupled backward Euler scheme (3.9) on two adjacent time levels

and notice the definition of d,u3 ,, for all v, € Vj, and m = 1,...,] we have

deusy' — dyug's L
<+,Vh> + ag(dtugféh,vh)
1

- ") - ﬂl"(dtug’,l;Lh:Vh)+At2/‘npgwhdﬂu33 -y (4.2)

r

Taking vj, = 2Ata’tu33 = 2At(a’tu§"3h,dt¢ "\ € V, in (4.2) one finds

dou d le 1,h
2At(% dt > + 2At{lQ(dtu33 1dtu )

_1
At

+2At3/npg dttu33 dt¢33 ny.
r

" [ QAL - 2Atar (dds Y dud)

Then by using the equality (a — b, 2a) = a® — b* + (a — b)* and (2.7) we have
| deadyd o — a5 ™ g + AL | duady | + 288 deadsy |,

<2n /Q (g7 —g") - dmfy' +2pg fQ (@' -g") - dupiy
‘f

P

_ZAmr(d[ug‘Blh dug’ )+2At /n,og dﬁu33 dtqb
r

tm tm
<cm / g% dt + Cpgikc™ / g2 de + mo At V|2

tm-1 m-1

+ pgK At| Vg o + 2Atar (s — dudys ™, dyuyy)

+2A8 / npg - dplyd - dipty (4.3)
r

For the last two terms in right-hand side (4.3), thanks to the trace theorem, the inverse
and Cauchy inequalities, and (3.4), we can treat them as follows:
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2Atar(dtu33 dtusslh duy )
= 2At ar (dttugné ,dﬂ/lmy )

<2Af ||dnu§" HL2 ) ”dﬁuB Sh ||L2

<2C2 Ak |duat ||”2||dn o A el Ny e
4

< L Ada |2+ 2 (0C7) A | |22 a2 g |2

1 4

< o Ada |2+ 2 (00 A2 | dua |2 a7 A |2
3

1 2 (3

< ity s 5o (3) ol ],

8C.

+ 2 Ct Cm At”dtugnéhn(z)

1 1 24C8¢;

;Arndtu;":nw2M||duuz,";no 0 e dud (4.4

2At3/n,og d:tugs dt¢33
r

§2At3n,og||dnu3 ||L2(F ||df¢ ||L2
1/2 1/2 1/2 1/2

= 2C; AP npg|[duey | g 4SS | ey 141035 | 2, 141855 L1

<202, AL nog |t s |5

1
EnAtZ ||dttug”3h ||L2

ALCIC?
%Ot’” pgSo At 7 - (4.5)

Combining (4.4)-(4.5) with (4.3) and summing m form 1 to / we have

1 / 3 <
|dedsh o + I L o+ 20t dais I

m=1 m=1

T T
<om [ gl drs ook [ gl + | |

24C8Cy, AtCHC? .
+< t npg ¢ )At2||dtu33h”0

3 So

m=1

Applying the Gronwall lemma, we obtain the desired result. O

Lemma 4.2 Under the condition of (3.4), for the decoupled Algorithm 3.4 with m =
1,2,...,] we have

1 / 3 <
|duadsy o + e ;Hdnuéﬁh o+ 2O ;Hdtué’?f I = Ms

Proof For all v, € V), the following error equation can be obtained by using (3.10) on two

adjacent time levels
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dtu34 dtum Lk
A

; 7Vh) +aq(dayy, vi)

1

= E m _fmfl’ Vh) —ar (dtugzl,h’vh) _ Atz/ legdt@;qzihvh ‘ny. (46)
r

Taking vy, = 2Atdtu34 = 2At(dtu§”4h,dt¢ ") € V), in (4.6) we obtain

Ao — duly M
(%,ZAMM;’;?) +2Atag (dtug’;}h,dtugjlh)

1
N

—2At3/npgdtt¢§'.’4hdtu§'.’4h -1y,
r

" [ 2Nl - 2Atar (dd " dod)

As a consequence we have
[ g = N [ + A2 [ g + 28| day [,

<2n /Q (g7 —g/") - dmfy +2pg fQ (@' -g") - dupiy
‘f

P

—2Atar (dtug',‘f’h,dtug’;h) - 2At3/ npg - dtugﬁf‘ .dtt¢§f‘éh -1y
r

tm tm
< ! / Igal2dt + Cogk ™ / g2 de + mo At Va2
tm-1 tm-1
+ pgK At| Vg |2 + 2Atar () - dudys ™, dyyy)

—2AF / npg - dpa)y - dudy - ny. (4.7)
r

For the last term in (4.7), using trace and inverse inequalities and (3.4) yields

2At3 / npg - d;ug’i’f . dtt¢)gjl¢1h . nf
r

<2At leg”dt“g 4h ”Lz ||dtt¢3 h||L2

12

53 o 14e95% |1,

<2C2APmog| | o[
<2C;Ciusnpg| Ay | 2 g, | dudts: hHLz @)

4npgCrCE At

SO nAt ” d[ugn4h

= pgSoAt it hHLZ(Qp + HLZ(Qf (4.8)
Combining (4.4), (4.8) with (4.7), summing m from 1 to /, and applying the Gronwall

lemma, we complete the proof. 0

5 Convergence analysis

In this section we present the error estimates for the decoupled Algorithms 3.3 and 3.4.
As we have mentioned before, the suboptimal H'-norm error estimates for u’;' and ¢7%"
have been derived by Mu and Zhu in [1]. The estimate (3.8) can be improved to O(At), as
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suggested by numerical experiments. Firstly, we improve the estimate (3.8) to the optimal

order.

Lemma 5.1 Let (uf’Z, o)) and (ug”zh, d)é'zh) be the solutions of the discrete models (3.2) and

(3.6), respectively. Denote €5, = (e}, %) = (“}Z - ug"zh, oy - ¢§f‘éh ) we have
m
2 )
[Vesally + ALY [ldics, [, < A2
j=1

Proof Forallvy, € Vj, and ef, withm =1,...,J, the following error equation can be obtained

by comparing the discrete models (3.2): and (3.6)

171 m—1
<e3.2 — €32

= ,vh> +ag (€5, vn) +ar (u) —uys',vy) = 0. (5.1)

Taking vy, = 2(e}, — e75") € Vj, in (5.1), we have

6?2 B egr.zz—l m m—1 g “ m—1
YV 2(63‘2 — €35 ) taq (63‘2’ 2(63‘2 €32 ))

= —ar (uy' - ugy"",2(ef, — €551)). (5.2)
For the right-hand side term of (5.2), we can estimate it as follows:
ar (uy —uzs™",2(e5 — €55"))
=2Atar (uZ’ —up )t - u?;l’h, dtegf’z)
=2AFar (du), deyy) + 2Atar (e, dyel,)
<208 |duai | o oy | e | o oy + 288 €5 | oy e | oy
0o 1 1 1 1
<2C AL |da |5 | Ve | deess |5 (| Vaeesh |5

1 1 1 1
+2C eyt g Ve[ g [deess | g [ Veies g (53)
For the first term of the right-hand side in (5.3), using the Young inequality, we obtain

2 m % m % 71 % " %
AL deay! |3 ||Vt |5 [ deess g [ VareSh g

1 1 1 1
= At [dyuf! |3 | Vo |3 | deel | - A2 | Vel |

IA

2 2 2 1
A2 |3 | Ve | ey | + A2 | Ve,

2 2 2 1
A [dyuf? |3 | V! |3 - A8 ey |+ 5 AP | Vdiel g

3

2 3 m m 1 m |2 1 2 m |2
) AL | daiy || Vit |, + 3 At drel g + 3 A Vel

IA
win BIW njw

N
| w

3

(3) arldugl, - act | vaa

1 1
- o+ 5 Al diess g+, AP Vdiels

[SSRIN\®)
= w
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For the second term of the right-hand side in (5.3), by the Young inequality we get
1 1 1 1
Atlless 5 1vess g [ deesz s | vies s

= AL ey |2 | Vers |2 |dies |2 - ALt [ Viely | 2
3 2 2 2 1
< 2 A ent |3 Vet el + 7 a2 Vet 5

3 2 2 2 1
A et |5 | erst | - Aed a4 7 A2 Vdiels
3
2/3\2 1 . B 1 1
<2(3) a1 oI vl + arlde ]y« jac]vae

On the other hand, for the left-hand side of (5.2), using the trick of [1] we have

eg.lZ - eg.IZ_I m m—1 m m m-1
Ar 2(‘33‘2 —€3) ) +agq (‘33‘2’ 2(63‘2 —€3) ))
= 2At(d,eyy, diel,) +aq(esy, ey) —aa(eds’, eg’z’l) + Atlagq (diel'y, dyelyy)

= 2At”dte§72 “i + ||Ve§f2 “(2)

ey 1) = [ Vet + A2 | Vi g

d-1
o
-HII;/I‘V‘H'KH(

d-1 d-1
o m-1 2 2 f o m-1 2
-n ——— (e} - Ti) +nAt —(dse}5 - T) . (5.4)
X;/F N L ), Zewe e )
Combining (5.3), (5.4) with (5.2), we obtain

Al dies |+ [Vess g~ Ve

d-1 d-1
§ : o 2 o 9
+ ——  _(e™ . 1)) = / em—l T
n L ‘/1_ 7, K1, ( 3.2 1) n ; NI <7 ( 3.2 z)

3
2(3)\?
<2 (3) 182 1dag ), art|vaag ], act ez | vl 69)

According to the definition of 3, we know that €2, = 0. From (3.3) as / = 1 one finds
2 2
|dew, ||, + At|| Vdyu, | < M.

From (5.5)asm =1
d-1
sdaically o [9edall oY [ =t n)’
V3

1
< Y202 du |- AL |V |, S A2

Then we see that Lemma 5.1 holds for all m <] —1, that is to say,

J-1
[Ve5allg + arY " [ldess g < A
m=1
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Now, we take » = J in (5.5) and use Theorem 3.1 and the trace theorem to obtain

2 2 — o 2
sdaally+ 196l oy [ =t )

V3 1 v _
< (82|, Act | Vdug |+ Arz e || vers ]

”Veé ”0+n2/m ey’ Ti)ZSAt2~

Then we finish the proof of Lemma 5.1. 0
For the decoupled Algorithm 3.3, we have the following error estimates.

Lemma 5.2 Let (up, ¢p) and (ug”;’, b33 ) be deﬁned by the discrete models (3.2) and (3.9),
denote €5’y = (e55,£33) = (ufy — uly, o - ), under the condition of (3.4) we have

|6133||0 ZAt||333HW<At ”V%BHO-'—AtZHdt333”0<At

m=1

Proof By comparing the discrete models (3.2) and (3.9), we have the following error equa-
tion for all v, € V), and e; withm =1,...,]:

6?3 - e;?;r.l?jl m m m-1,h
=S ) +ag (€8s, vi) + ar (u)) — uys™",vi)
mh Y
= / npgyu(uzy —uis™") - ny. (5.6)
r

Taking v, = 2Ate}'; in (5.6), we have
€53 egngl
NI J2Ate)s | +aq(eys, 2Ates)
= —ar (ul — uy" 20t - 2At/ npg&ly (wyy' —uys ™) - ny. (5.7)
Note that the left-hand side of (5.7) can be rewritten as

le5slg — lesst g + A [diess g + 28] es ],

d-1
¥ ZnAtlZl:/r \/% (e - 7). (5.8)
For the terms of the right-hand side in (5.7), following the trick used in [1], we have
ar (u — uy5 ™", 2Atels)
Ar(legs ]y = 16551 15) + A [deels g + CAL | duasy [ (5.9)

1
2

ZAt/”ﬂg%?)(ugn?,h ugn:«;lh) ny
r
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<2Anpg||EY, ||L2 ”dt“g.léh ||L2

<27 Atinpg €55 1o s | g Vs | g ) - Att Ve g,

1 3

< 200 VEs g, (Zcznpg)§At2 e [t | Vewss 20,

. At3 &35 ||2/3

1

ZAt”V%S ”L2 () t3 At”$33”L2(Q

L 0Cinpe)? ned | |, - A | Vi) (5.10)

4 pg tU33 12(Q tU33 129" .

Combining (5.8)-(5.10) with (5.7) and summing it over m from 1 to / we obtain

3 1
ES 2 > atfens |y, + gAtHeé’TsHiv

m=1
ﬁ ]
< 00 (Y anse st - ATV

J
- 1
+CALY | ||3V> + §AtZ||eg‘?3 I (5.11)
m=1 m=1

Thanks to Theorem 3.1, Lemma 4.1, and the Gronwall lemma, one finds
2 3 /
leaalls+ 5 D atlessly + 5 e < A2 (5.12)
P

Taking vy, = 2(ef5 — e5") € Vj, in (5.6), we get

em. — em—l
3.3 3.3 m—1 m m—1
( At ’2(633 —€33 )) + 2“9(63‘37333 €33 )

= —ar (uj - ”gs_l’h’ 2(efty - egnsl))
/ npg(&55 - €557 - (“gnsh “gnslh) ny. (5.13)

For the first term of the right-hand side in (5.13), we can treat it as (5.3). For the second

term, we have

2 [ mog(egs - €157) - (3~ w5 -y

=2A8 f npgd.£s - dyuy Iy
r

e 1 P L2

= 2C npgAL: [diggh | g, I |t s |3t - A2% it [

1/2 mh || 1/2

< 2C2n,ogAt2 ”dtéggu ”df Uz3 ”Hl ()

1/2

1

< ZAtz |vdey, ”i%sz,,)



Zhang and Jin Advances in Difference Equations (2017) 2017:42 Page 16 of 23

4
3A

3
+ 5 (2CTn0g)* AP et o e | By [ e v,

1

=2 2”th533||L2 +3 At”dtéaz“ﬂ

\Z/L_(ZCzn,og) At Hdtu33 ||L2 - At ||altu33 ||H1(Q (5.14)

Combining (5.3), (5.14) with (5.13) we obtain
2 m |2 m |2 m—1112
3 Atldiegs g + [ Vess o - [ vess' ]

(55" 7o)

% (em ) %
+n;/r«/ri~l(ri(e3‘3 Tl) n;/r«/ryl(r,-
V3

< [0+ (2Cnpg)’) AP 'y - A2 [ Vel | + A2 e[ Vg5 )
4

By the induction method and Lemma 4.1, similar to Lemma 5.1, we complete the proof.
O

For the decoupled Algorithm 3.4, we have the following error estimates.

Lemma 5.3 Let (ug, ¢y) and (u§"4h , ¢3 ") be defined by the discrete models (3.2) and (3.10).
Denote e3, = (e5),,653) = (uf; - W @ — o), under the condition of (3.4) we have

3 J J
[alls+ 5 Do arlenll, <ac [Vehg+ aey [disy s < ar
4 m=1

m=1

Proof By comparing the discrete models (3.2) and (3.10), we have the following error equa-
tion for all v, € V), and €, withm=1,...,]:

eg.lél e§n4l m m m-1,h
=) tag (e84, vi) +ar (uh —uyy ", vh)
- fr npg(¢5 — o5 "") - vi - my. (5.15)

Choosing v;, = 2Atey’, in (5.15), we have

e§n4 - eBmAII m m m
————,2Ates, | +aq (63'4, 2Ate3,4)
At
= —ar (ul — w7, 20t),) — 24t / npg(pyy — 5" - ey - my. (5.16)
r
For the last term of the right-hand side in (5.16) we have

241 / nog (621 — M) - e, -y

<2At leg||eg4||L2(1—*) ||dt¢3 h||L2

1/2 1/2

L2Q)

< 2C2At4n,og||eg4|| 2(2,) .95 hHi/ZZ(Q | va.gy | At ||Ve34||1/2
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1
;Atumny
+2(2Cnpg) 2 gyl [ |Vt 2 A €212
1
ZAt”V934”L2 +3 Atlles4||Lz
3
+ L 0Cnpg APt gy ANV 617

Combining (5.8)-(5.9), (5.17) with (5.16), one finds

3 1 ” ”
[e5allo =5t lo + g aclesiliy + 5 aellesaly - lesaly)
\/_ 2 -~ m |2
< A2 (X2 (2C2n0g)" [t | oy - AV AL g + sty [,
Loovm g2
- §At||e3‘4||0. (5.18)

Summing (5.18) over m from 1 to J and using Theorem 3.1, Lemma 4.2, and the Gronwall

lemma, we have

54l + ZAth!Iw Ade [} < a2, (519)
m=1

Next, we take v, = 2(e%’, — e5") in (5.15) and obtain

m—1

€5y — €5y 2 -1 ) m-1
N (‘33.4_93.4 ) +“9(63.4’ (634 €34 ))
= _“F(”h _”341h 2(334 _egnle))

/”Pg(¢34 _¢§n41h) (e5y _egnle) - ny. (5.20)

For the first term in the right-hand side of (5.20), we can treat it as in (5.3). For the second

term, we have

2ﬁ”ﬂ§(¢?éh - ¢§’.1A:1'h) (e, —ef') -my

=2AF /n,ogdt¢>34 dey, -ns

<2C}Atnpg| d,ey. h”;/zzgp s hHm @) Hd!em”igznf ”dtesAL”Zrf @)

1
< L AP |Vaell [, + 5 At

+ L 0C g 8Pt gy S A 621)

Combining (5.3), (5.19), (5.20) with (5.21), using the induction method we complete the
proof. d
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Finally, combining Theorem 3.2 with Lemmas 5.1-5.3, we have the following conclusion
for the decoupled Algorithms 3.2-3.4.

Corollary Under the condition (3.4), for the decoupled algorithms DEBS1, DEBS2, and
DEBS3 withm =1,...,], we have

|tn) — |, S AL+ 12, i=2,3,4,

|V () - i5) |, S AL+, i=2,3,4.

6 Numerical experiments

In order to gain insights on the established theoretical results in the previous section, we
present some numerical tests in this section. Our main interest is to verify the perfor-
mances of the decoupled Algorithms 3.3 and 3.4. In our experiments, let the domain 2 be
composed of Qr = [0,1] x (1,2] and 2, = [0,1] x (0,1] with the interface I' = [0,1] x {1}.
The model parameters p,g,n, and « are simply set to 1. The boundary conditions and

right-hand side functions in the model are selected such that the exact solution is given
by

u=(x*(y-1)2+y)cost,

v=(-2x(y - 1)® + 2 — 7 sin(x)) cos £,

pr = (2 - sin(w)) - sin(37y) cost,

¢ = (2 —msin(mx)) - (1 -y — cos(wy))cost,

where the components of uy are denoted by (x, v) for convenience.

In order to show the prominent features of the decoupled Algorithms 3.3 and 3.4, we
compare the numerical results of algorithms (3.9) and (3.10) with the coupled method
(3.2) and DBESI (3.6). The finite element spaces are constructed using the well-known
MINI elements for the Stokes problem and linear Lagrangian elements for the Darcy flow.
For the coupled scheme, the GMRES routine is used to solve the coupled system. For the

Table 1 The convergence performance and CPU time of the coupled Algorithm 3.1 at time
T = 1.0, with varying mesh h but fixed time step At =0.01
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' lug-u 1 lag-u1 leg-p T o 19-654" o -5 I CPULS)
] Tuglio Tugli Tptlio Tolio T9l1
2 0.256573 0402367 328684 0449315 0534235 8793
4 00723105 0.273089 238616 0.169561 0.337904 8793
8 00177107 0.107495 0580117 00310711 0.154481 30856
16 000418793 00497246 0.208445 000809378 00772969 108.743
32 0.00102092 00254185 0.0967607 000219088 00391418 451241

Table 2 The convergence performance and CPU time of the decoupled Algorithm 3.2 at time
T = 1.0, with varying mesh h but fixed time step At =0.01

1 lag-uP 1o hup-uTP ) g4 lo 19-85" o -5l CPULS)
h Tutlio Tugi1 Tt lio Tolio Tol1
2 0.256573 0402367 329034 0449351 0534233 2.802
4 00723139 0.273084 238421 0.170073 0337872 6.779
8 00176805 0.107496 0.580263 00317752 0.154487 15.092
16 0.0041693 0.0497261 0.208663 0.00894104 00772974 50.722
32 0.00100931 00254203 00969369 000323085 00391582 217405
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Table 3 The convergence performance and CPU time of the decoupled Algorithm 3.3 at time
T = 1.0, with varying mesh h but fixed time step At=0.01

Page 19 of 23

1 lug-aT 2 g vl Ipe-p T2 o 19-8T o -5 CPULS)
h llugllo lugllq lipsllo lI¢llo [F2E
2 0.256573 0402367 329042 0449315 0534235 2814
4 00723142 0.273084 238369 0.169569 0.337904 6.782
8 00176767 0.107497 0580288 00310971 0.154481 13.987
16 0.00416661 0.0497265 0.208831 000812777 00772966 46337
32 0.00100802 00254209 0097102 000223235 0039142 219175

Table 4 The convergence performance and CPU time of the decoupled Algorithm 3.4 at time
T = 1.0, with varying mesh h but fixed time step At=0.01

1 lag-uTP 1o lug-uTP 14 P2 T llo I-¢TM g -85 CPUCS)
h llugllo lluglly lipsllo lI¢llo lIllq
2 0256573 0402367 328676 0449351 0534233 2867
4 00723103 0273089 23867 0170064 0337873 6.766
8 00177147 0.107495 0580137 00317483 0.154487 13.208
16 000419167 00497249 0208433 000890173 00772969 49513
32 00010238 00254187 00968278 000317698 00391566 224978

Table 5 The convergence performance and CPU time of the coupled Algorithm 3.1 at time
T = 1.0, with varying time step At but fixed mesh h= 31—2

At lug-ul" o lag-u 4 Ipg-pT o -T2 10 =47 14 CPU(S)
T luglo Tugliy TP¢lio $llo 3l

0.1 000109903 00254407 0.106519 000368303 0039155 115.325

0.05 0.000917046 0.0254249 0.0999589 000287082 00391452 162.599

0.025 0000951743 0025419 00973778 000244063 00391425 239.99

00125 000101967 00254187 0.09692 000222325 00391419 352926

Table 6 The convergence performance and CPU time of the decoupled Algorithm 3.2 at time
T = 1.0, with varying time step At but fixed mesh h = 35

At lag-uM lug-uT 4 Ioe-2T llo I-674 g =47 14 CPULS)
"o Tuglia Tiog lio Mol i

0.1 000157101 00256652 0.110761 00160073 0.0407084 20607

005 000109152 00254802 0.100058 0.00890671 00395539 42095

0.025 0.000949681 00254322 00977095 0.00534402 00392473 88.186

00125 0000992267 00254214 00969716 000355753 00391676 184475

decoupled schemes, a Gauss Lower and Upper triangular matrix factorization is imple-
mented to solve the positive definite matrix subsystems. In the following tables, we will
use || - ||o to denote the L?-norm and || - ||; to denote the H'-norm.

First, we compare the errors, convergence rates and CPU times for both the coupled
scheme and the decoupled algorithms. In Tables 1-4, we consider these schemes at time
T = 1.0, with varying mesh % but fixed time step At. These numerical algorithms achieve
similar precision, although the coupled scheme is slightly more accurate than the decou-
pled schemes. However, the coupled scheme takes much more CPU time than the de-
coupled algorithms. On the other hand, we consider both the coupled and the decoupled
algorithms with varying time step At but fixed mesh /2 = % In Tables 5-8, four schemes
almost get the same accuracy, but the decoupled schemes need much less CPU time than
the coupled scheme. Stated succinctly, the decoupled schemes are comparable with the
coupled scheme but cheaper and more efficient.
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Table 7 The convergence performance and CPU time of the decoupled Algorithm 3.3 at time

T = 1.0, with varying time step At but fixed mesh h = 31—2

At lag-uT llug-uT 4 Ioe-2T llo I-6T g =47 14 CPULS)
“Tulo Tuglis ot lio Mol Tl

0.1 000171481 0025736 0.122266 000421803 00391679 22188

005 000114236 00255008 0.103001 00030826 00391483 43696

0,025 0000973109 00254374 0.0987402 000255426 00391433 87.973

00125 0000991764 00254223 00971713 000227914 00391421 177.212

Table 8 The convergence performance and CPU time of the decoupled Algorithm 3.4 at time

T = 1.0, with varying time step At but fixed mesh h = 31—2

At lug-u4" o lug-uTa lq Ips-pTa lo 16-632llo 19-932 Il CPUS)
Tl Tt et Télio 191

0.1 000117118 0.0254554 0.117434 00154497 0.0405695 20842

0.05 0.000953404 0.0254305 0.104073 0.00862193 00395156 42126

0.025 0.000958537 00254216 0.0984034 0.00519615 00392372 83936

00125 000102454 00254198 00973373 0.00349038 0039165 17219

Table 9 Convergence orders of O(h*) of the decoupled Algorithm 3.2 at time T = 1.0, with
varying mesh h but fixed time step At =0.01

m,h '""71 m,h "'"2_, m,h ”"g
1/h Il uzs Uz, llo Pug,h,0 Il Uzh — Uz, Il Pug,h, "p3_'2 ~P33 llo Pps,h,0
2 0.2151001 3.80355 1.65021 1.91075 0.940921 1.50545
4 0.0565524 3.86866 0.863644 1.93151 0.625008 243456
8 0.0146181 40458 0447135 2.13698 0.256723 2.85632
16 0.00361315 0.209237 0.089879
mh m,h
Vh 11955 -d322 o ppho I3y =932 1 poha
2 0.135254 3.31099 1.30796 1.68767
4 0.04085 4.07816 0.775011 1.90658
8 0.0100168 418833 0.406494 1.98302
16 0.00239159 0.204987

Next, we focus on the decoupled schemes and examine the orders of convergence with

respect to the mesh size / or the time step At. Following [1], we introduce the following

approach to examine the orders of convergence with respect to the time step At or the

mesh size /& due to the approximation errors O(At") + O(h*). For example, assuming

Vil 2 (%, 1) + Cr(, b) ALY + Co(x, )™,

thus we have

”Vﬁt(‘x’ tm) - Vit(xr tm)”} 4 — QK
2 ~

Pv,hj =

'Ov,At,j =

||V2t(xr tm) - Vﬁt(xr tm) ”1 28 -1
2 4

>

t
”Vﬁt(xx tm)_vh (x: tm)”j ~

’

4y — 9V

_AZ_L t
||Vh (x:tm)_vh (‘xltm)”/

-l>||>

2r—1"

Here, v can take uz, pr,¢ and j can be 0 or 1. While p, j, py,as; approach 4.0 or 2.0, the

convergence order will be 2.0 or 1.0, respectively.
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Table 10 Convergence orders of O(h*) of the decoupled Algorithm 3.3 at time T = 1.0, with
varying mesh h but fixed time step At=0.01

h
m,h m,3
lluzs -us 5" llo

h
m,h m,3
lugs -us5° I

h
m,h m,3
||P3,3 'P3_3 "0

1/h Pug,h,0 Pug.h Ppg.h,0
2 0.215099 3.80338 1.6502 1.91072 0.940517 1.50494
4 0.0565547 3.86854 0.863652 1.93151 0.624954 243437
8 0.0146192 404581 0447138 2.13698 0.256721 2.85629

16 0.00361342 0.209238 0.0898792

h h
,h m.3 h m3

1/h "¢:’;"3 '¢3,32 llo Pp,h,0 Il ¢'3"3 '¢3,32 (K} Pg,h,1
2 0.135335 3.3074 1.30801 1.68713
4 0.0409188 407757 0.775285 1.90679
8 0.0100351 4.18889 0.406592 1.98307

16 0.00239564 0.205032

Table 11 Convergence orders of O(h*) of the decoupled Algorithm 3.4 at time T = 1.0, with
varying mesh h but fixed time step At =0.01

h
mh M3
lluzy - “3.42 llo

h
m,h m,3
llusy —u3_42 Il

m,h '"'g
||P3,'4 ~ P34 "0

1/h Pug,h,0 Pug,h,1 Pps.h0
2 0.215106 3.80487 1.65033 191101 0.941814 1.50623
4 0.0565345 3.86891 0.86359 1.93145 0.625278 243518
8 0.0146125 404563 0447119 2.13703 0.256769 285676

16 0.00361192 0.209225 0.0898811

1/h ||¢: - s, 42 llo Pp,h,0 I ¢'£ - ¢s, 42 [l P¢.h1
2 0.135175 33141 1.30791 1.68817
4 0.0407879 4.07829 0.774753 1.90637
8 0.0100012 418768 0.406401 1.98302

16 0.00238826 0.204943

Table 12 Convergence orders of O(AtY) of the decoupled Algorithm 3.2 at time T = 1.0, with
varying time step At but fixed mesh h = %

At

At ||u;"z“—u322 llo  Puparo ||u;"z“—u322 I pupaer BT -paa o pppaco
0.1 0.000809376 1.95487 0.0080253 1.86026 0.0173397 1.9429
0.05 0.000414031 1.97844 0.00431408 2.02706 0.00892463 197378
0.025 0.000209272 1.98947 0.00212825 1.62937 0.00452159 1.98749
0.0125 0.00010519 0.00130618 0.00227502

At At
At TN T2 o pace 1T -danl It ppat
0.1 0.00257197 1.92495 0.0140113 1.89193
0.05 0.00133612 1.96705 0.00740581 1.94972
0.025 0.000679251 1.98468 0.0037984 1.90576
0.0125 0.000342248 0.00199312

In Tables 9-11, we study the convergence order with a fixed time step At = 0.01 and vary-

ing spacing 4 =

2’ 4’ 8’ 16

Observe that Puy,h05 Pp,h0 close to 4.0 and pufhl,ppfho,p¢h1

approach to 2.0, which suggest that the error estimates O(h?) for the L2-norm of u3.i

and ¢>§"“L?h

(i = 2,3,4), and O(h) for the H'-norm of uZ"

and ¢§”_‘;h

(i = 2,3,4) in space for

three decoupled algorithms. However, in Tables 12-14, we study the convergence order

with a fixed spacing / =

32

L and varying time step At = 0.1,0.05,0.025,0.0125. The nu-

merical experiments strongly suggest that the orders of convergence in time are O(A¢),

which implies that the error estimates for both the L2-norm and H'-norm of u’?""

and ¢§'flfh
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Table 13 Convergence orders of O(At?) of the decoupled Algorithm 3.3 at time T = 1.0, with
varying time step At but fixed mesh h = 35

m,At m, 4t m,At m, 4 m,At m, 4t
At Il uzy -—Uzj 2 llo Pug,At,0 "u3,§ —uz3 2 [E} Pug,At,1 "p3‘§ ~P33 2 llo Pps,At,0
0.1 0.00090236 1.93382 0.00891485 1.85837 0.0215839 1.89965
0.05 0.00046662 1.96917 0.00479714 2.00887 0.011362 1.95491
0.025 0.000236963 1.98516 0.00238798 1.68501 0.00581205 1.97876
0.0125 0.000119368 0.00141719 0.00293722

m At m At

At I35 ~ 532 o poato 955 =532 I ppan
0.1 0.00433364 1.90828 0.0174115 1.88974
0.05 0.00227097 1.95936 0.00921372 1.94985
0.025 0.00115904 1.98099 0.00472534 1.92982
0.0125 0.00058508 0.00244859

Table 14 Convergence orders of O(At?) of the decoupled Algorithm 3.4 at time T = 1.0, with
varying time step At but fixed mesh h = lz

m,At '"'% m,At '"'% m,h '"1%
At "u3.'4 —Uz g llo puf,Af,O "u3.;| —U3, [} puf,At,1 ||P3:; —P34 llo pr,At,o
0.1 0.000373673 1.97879 0.00354043 147841 0.0150435 1.94262
0.05 0.000188839 1.99068 0.00239475 1.77955 0.00774392 197437
0.025 9.48618e-005 1.99568 0.0013457 0.80887 0.00392223 1.98791
0.0125 4.75336e-005 0.00166368 0.00197304

m, At m, At

At 1652 =302 o ppace 1T -d322 1 Ppata
0.1 0.00410297 1.87043 0.0244922 1.86572
0.05 0.0021936 1.94215 0.0131275 1.93868
0.025 0.00112947 1.9726 0.00677134 1.84128
0.0125 0.000572579 0.00367753

(i = 2,3,4) are optimal. Our numerical results confirm the established theoretical analy-
sis very well. Furthermore, we observe that Algorithm 3.3 may be the best one among
four algorithms to treat the non-stationary Stokes-Darcy model due to the fact that this
algorithm not only keeps good accuracy but also takes less computational time.
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