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Abstract
In this paper, relying on Nevanlinna theory of the value distribution of meromorphic
functions, we mainly study meromorphic solutions of certain types of q-difference
differential equations, obtain estimates of the growth order of their meromorphic
solutions, and give a number of examples to show what our results are the best
possible in certain senses. Improvements and extensions of some results in the
literature are presented.
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1 Introduction and main results
In this paper, we assume that the reader is familiar with the standard symbols and fun-
damental results of Nevanlinna theory []. In addition, we use notations λ( 

f ) and ρ(f )
to denote the exponent of convergence of the pole-sequence and the order of growth
of meromorphic function f (z), respectively. We denote by S(r, f ) any quantify satisfying
S(r, f ) = o(T(r, f )) as r → ∞ outside of a possible exceptional set of finite logarithmic mea-
sure. We define the logarithmic measure of E to be

lm(E) =
∫

E∩(,∞)

dr
r

.

A set E ⊂ (,∞) is said to have finite logarithmic measure if lm(E) < ∞. Further, we recall
the definitions of the truncated exponent of convergence of the pole-sequence and the
lower order in complex plane:

λ

(

f

)
= lim sup

r→∞
log+ N(r, f )

log r
, μ(f ) = lim inf

r→∞
log+ T(r, f )

log r
.

There has been a lot of work on the growth order of meromorphic solution to certain
types of complex differential equations and complex difference equations (or complex
functional equations); see [–]. Malmquist [] investigated the existence of transcen-
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dental meromorphic solutions of a complex differential equation and obtained the fol-
lowing result.

Theorem A ([]) Let

df (z)
dz

= R
(
z, f (z)

)
=

P(z, f (z))
Q(z, f (z))

=
∑p

i= ai(z)f i(z)∑q
j= bj(z)f j(z)

, (.)

where P(z, f (z)) and Q(z, f (z)) are relatively prime polynomials in f (z), the coefficients ai(z)
(i = , . . . , p) and bj(z) (j = , . . . , q) are rational functions. If equation (.) admits a tran-
scendental meromorphic solution, then q =  and p ≤ .

Recently, Gundersen et al. [] considered meromorphic solutions of a functional equa-
tion of the form

f (qz) = R
(
z, f (z)

)
=

∑k
i= ai(z)f i(z)∑l
j= bj(z)f j(z)

, (.)

where the coefficients ai(z) (i = , . . . , k) and bj(z) (j = , . . . , l) are of growth S(r, f ), and q
(|q| > ) is a constant. In fact, they obtained the following theorem.

Theorem B ([]) Suppose that f (z) is a transcendental meromophic of equation (.) with
|q| > . Assuming that d := degf R(z, f (z)) = max{k, l} ≥ , ak(z) �≡ , bl(z) �≡ , and that
R(z, f (z)) is irreducible in f (z). Then

ρ(f ) =
log d
log q

.

In this paper, we continue to investigate the growth order of meromorphic solutions to
certain types of complex q-difference differential equations and generalize Theorems A
and B. Now, we state our results as follows.

Theorem . Suppose that f (z) is a solution of the equation

(
f ′(qz)

)n = R
(
z, f (z)

)
=

∑k
i= ai(z)f i(z)∑l
j= bj(z)f j(z)

(.)

with meromorphic coefficients ai(z) (i = , . . . , k) and bj(z) (j = , . . . , l) of growth S(r, f ) and
a constant q ∈C\{}, assuming that d := degf R(z, f (z)) = max{k, l} ≥ , ak(z) �≡ , bl(z) �≡ ,
and that R(z, f (z)) is irreducible in f (z). Then one of the following cases holds.

(i) For |q| > , if f (z) is a transcendental meromorphic solution of equation (.) and
d > n, then

log d – log n
log |q| ≤ μ(f ) ≤ ρ(f ).

If f (z) is a transcendental entire solution of equation (.) and d > n, then

log d – log n
log |q| ≤ μ(f ) ≤ ρ(f ).
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(ii) For |q| < , if f (z) is a transcendental meromorphic solution of equation (.), then
d ≤ n, and

ρ(f ) ≤ log n – log d
– log |q| .

If f (z) is a transcendental entire solution of equation (.), then d ≤ n, and

ρ(f ) ≤ log n – log d
– log |q| .

(iii) For |q| = , if f (z) is a transcendental meromorphic solution of equation (.), then
d ≤ n. Furthermore, if n < d ≤ n, then λ( 

f ) = λ( 
f ) = ρ(f ). If f (z) is a

transcendental entire solution of equation (.), then d ≤ n.

Example . The function f (z) = ez+
ez– is a solution to the q-difference differential equation

f ′(z) = –
(f (z) – )

(f (z) + ) ,

where d = , n = , q = , so that d > n, |q| > . Then log d–log n
log |q| =  = μ(f ) = ρ(f ).

Example . The function f (z) = cos z is a solution to the q-difference differential equa-
tion

(
f ′(z)

) = –f (z) + f (z),

where d = , n = , q = , so that d > n, |q| > . Then log d–log n
log |q| =  = μ(f ) = ρ(f ).

Example . The function f (z) = ez

z+ is a solution to the q-difference differential equation

(
f ′(z/)

) =
(z + )z

(z + ) f (z),

where d = , n = , q = 
 , so that d < n, |q| < . Then  = ρ(f ) < log n–log d

– log |q| =  + log 
log  .

Example . The function f (z) = ez +  is a solution to the q-difference differential equa-
tion

(
f ′(z/)

) = zf (z) – z,

where d = , n = , q = 
 , so that d < n, |q| < . Then ρ(f ) =  = log n–log d

– log |q| .

Example . The function f (z) = ez+
z is a solution to the q-difference differential equation

f ′(–z) = –
f (z) + 

zf (z) – z
,

where d = , n = , q = –, so that n = d < n, |q| = .
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Example . The function f (z) = ez +  is a solution to the q-difference differential equa-
tion

f ′(z) = f (z) – ,

where d = , n = , q = , so that d = n, |q| = .

Theorem . Suppose that f (z) is a solution of the equation

(
f ′(qz)

)n = R
(
z, f

(
p(z)

))
=

∑k
i= ai(z)f i(p(z))∑l
j= bj(z)f j(p(z))

(.)

with meromorphic coefficients ai(z) (i = , . . . , k) and bj(z) (j = , . . . , l) of growth S(r, f ), a
constant q ∈ C\{}, and p(z) = cmzm + cm–zm– + · · · + c, where cm ( �= ), cm–, . . . , c are
complex constants, and m (≥ ) is an integer. Assume that d := degf R(z, f (z)) = max{k, l} ≥
, ak(z) �≡ , bl(z) �≡ , and that R(z, f (z)) is irreducible in f (z). Then, if f (z) is a transcen-
dental meromorphic solution of equation (.) and d ≤ n, then

T
(
r, f (z)

)
= O

(
(log r)α

)
,

where

α =
log n – log d

log m
.

If f (z) is a transcendental entire solution of equation (.) and d ≤ n, then

T
(
r, f (z)

)
= O

(
(log r)α

)
,

where

α =
log n – log d

log m
.

Theorem . Suppose that f (z) is a solution of equation

n∑
s=

αs(z)f (λs)(qsz) = R
(
z, f (z)

)
=

∑k
i= ai(z)f i(z)∑l
j= bj(z)f j(z)

(.)

with meromorphic coefficients αs(z) (s = , . . . , n), ai(z) (i = , . . . , k), and bj(z) (j = , . . . , l) of
growth S(r, f ), distinct constants qs with |qs| ≥ , and finite nonnegative integers λs. Suppose
that ak(z) �≡ , bl(z) �≡ , and R(z, f (z)) is irreducible in f (z). Denote

d := degf R
(
z, f (z)

)
= max{k, l} ≥ ; λ =

n∑
s=

λs; |q| = max
≤s≤n

{|qs|
}

> .

Then if f (z) is a transcendental meromorphic solution of equation (.) and d > λ + n, then

log d – log(λ + n)
log |q| ≤ μ(f ) ≤ ρ(f ).
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If f (z) is a transcendental entire solution of equation (.) and d > n, then

log d – log n
log |q| ≤ μ(f ) ≤ ρ(f ).

Example . The function f (z) = 
ez+ is a solution to the q-difference differential equation

f ′′(z) =
–f (z)(f (z) – )(f (z) – )

(f (z) – f (z) + ) ,

where d = , n = , λ = , so that d > λ+n = , |q| =  > . Then  = log d–log(λ+n)
log |q| = μ(f ) = ρ(f ).

Example . The function f (z) = ez +  is a solution to the q-difference differential equa-
tion

f ′(z) + f ′′(z) = f (z) – f (z) + f (z) – ,

where d = , n = , so that d > n, |q| = max{|q|, |q|} =  > . Then  – log 
log  = log d–log n

log |q| <
μ(f ) = ρ(f ) = .

Theorem . Suppose that f (z) is a solution of the equation

n∑
s=

αs(z)f (λs)(qsz) = R
(
z, f

(
p(z)

))
=

∑k
i= ai(z)f i(p(z))∑l
j= bj(z)f j(p(z))

(.)

with meromorphic coefficients αs(z) (s = , . . . , n), ai(z) (i = , . . . , k), and bj(z) (j = , . . . , l)
of growth S(r, f ), distinct nonzero constants qs, finite nonnegative integers λs, and p(z) =
cmzm + cm–zm– + · · · + c, where cm ( �= ), cm–, . . . , c are complex constants, and m (≥ )
is an integer. Suppose that ak(z) �≡ , bl(z) �≡ , and R(z, f (z)) is irreducible in f (z). Denote

d := degf R
(
z, f (z)

)
= max{k, l} ≥ ; λ =

n∑
s=

λs; |q| = max
≤s≤n

{|qs|
}

> .

Then if f (z) is a transcendental meromorphic solution of equation (.) and d ≤ λ + n, then

T
(
r, f (z)

)
= O

(
(log r)α

)
,

where

α =
log(λ + n) – log d

log m
.

If f (z) is a transcendental entire solution of equation (.) and d ≤ n, then

T
(
r, f (z)

)
= O

(
(log r)α

)
,

where

α =
log n – log d

log m
.
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Beardon [] studied entire solutions of the generalized function equation

f (qz) = qf (z)f ′(z), f () = , (.)

where q is a nonzero complex number. First, we give some notations. The formal series
O and I are defined by O :=  + z + z + · · · and I :=  + z + z + z + · · · . We
also introduce the sets Kp = {z : zp = p + } (p = , , . . .) and K = K ∪ K ∪ · · · . Clearly,
Kp contains exactly p points, which are equally spaced around the circle |z| = rp, where
rp = (p + )


p >  and rp ∈Kp. Also, since x– log(x + ) is decreasing when x > . we see that

r =  > r =  > · · · >  and rp →  as p → ∞. Based on these notations, Beardon obtained
the following two main theorems.

Theorem C ([]) Any transcendental solution of (.) is of the form

f (z) = z + z
(
bzp + · · · ),

where p is a positive integer, b �= , and q ∈Kp. In particular, if q /∈K, then the only formal
solutions of (.) are O and I .

Theorem D ([]) For each positive integer p, there is a unique real entire function

Fp = z
(
 + zp + bzp + bzp + · · · )

that is a solution of (.) for each q in Kp. Further, if q ∈ Kp, then the only transcendental
solutions of (.) are the linear conjugates of Fp.

More recently, Zhang [] investigated the growth of solutions of (.) and obtained the
following theorem.

Theorem E ([]) Suppose that f (z) is a transcendental solution of (.) for k ∈ K. Then
the order of growth ρ(f ) ≤ log 

log |q| .

In this paper, we generalize equation (.) and investigate the growth of solution of cer-
tain types of q-difference differential equations and obtain the following results.

Theorem . Let q be a complex constant satisfying |q| > . Suppose that f (z) is a solution
to the equation

n∑
s=

αs(z)f (λs)(z) =
A(qz, f (qz))

B(z, f (z))
, (.)

where A(z, y) and B(z, y) are rational functions with meromorphic coefficients of growth
S(r, f ) such that A(z, y) and B(z, y) are irreducible in y. Denote

λ =
n∑

s=

λs;  ≤ a := degf A ≤ degf B =: b.

Then,
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(i) if f (z) is a transcendental meromorphic solution of equation (.), then

ρ(f ) ≤ log(b + λ + n) – log a
log |q| .

Furthermore, if b > a + λ + n, then

log(b – λ – n) – log a
log |q| ≤ μ(f ) ≤ ρ(f ) ≤ log(b + λ + n) – log a

log |q| .

(ii) If f (z) is a transcendental entire solution of equation (.), then

ρ(f ) ≤ log(b + n) – log a
log |q| .

Furthermore, if b > a + n, then

log(b – n) – log a
log |q| ≤ μ(f ) ≤ ρ(f ) ≤ log(b + n) – log a

log |q| .

Example . The function f (z) = tan z is a solution to the q-difference differential equa-
tion

f ′′(z) =
f (z)

f (z)
f (z)–f (z)–f (z)+

,

where a = , b = , n = , q = , λ = , so that b > a+λ+n = . Then log 
log  – = log(b–λ–n)–log a

log |q| <
μ(f ) = ρ(f ) =  < log(b+λ+n)–log a

log |q| =  log 
log  – .

Example . The function f (z) = zez is a solution to the q-difference differential equation

f ′(z) + f ′′(z) =
f (z) + f (z)
f (z)

(z+)z + f (z)
(z+)z

,

where a = , b = , n = , q = , so that b > a + n = . Then  – log 
log  = log(b–n)–log a

log |q| < μ(f ) =
ρ(f ) =  < log(b+n)–log a

log |q| = log –log 
log  .

Theorem . Let q be a complex constant satisfying |q| > . Suppose that f (z) is a solution
to the equation

(
f ′(z)

)n =
A(qz, f (qz))

B(z, f (z))
, (.)

where A(z, y) and B(z, y) are rational functions with meromorphic coefficients of growth
S(r, f ) such that A(z, y) and B(z, y) are irreducible in y. Denote  ≤ a := degf A ≤ degf B =: b.
Then,

(i) if f (z) is a transcendental meromorphic solution of equation (.), then

ρ(f ) ≤ log(b + n) – log a
log |q| .
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Furthermore, if b > a + n, then

log(b – n) – log a
log |q| ≤ μ(f ) ≤ ρ(f ) ≤ log(b + n) – log a

log |q| .

(ii) If f (z) is a transcendental entire solution of equation (.), then

ρ(f ) ≤ log(b + n) – log a
log |q| .

Furthermore, if b > a + n, then

log(b – n) – log a
log |q| ≤ μ(f ) ≤ ρ(f ) ≤ log(b + n) – log a

log |q| .

Example . The function f (z) = tan z is a solution to the q-difference differential equa-
tion

(
f ′(z)

) =
f (z) + 

f (z)–f (z)–
f (z)+f (z)–f (z)–

,

where a = , b = , n = , q = , so that b > a + n = . Then  = log(b–n)–log a
log |q| = μ(f ) = ρ(f ) <

log(b+n)–log a
log |q| =  + log 

log  .

Example . The function f (z) = zez is a solution to the q-difference differential equation

(
f ′(z)

) =
f (z) + f (z)
f (z)

(z+)z + f (z)
z(z+)

,

where a = , b = , n = , q = , so that b > a + n = . Then 
 = log(b–n)–log a

log |q| < μ(f ) = ρ(f ) =
log(b+n)–log a

log |q| = .

2 Some lemmas
Lemma . (See [], Lemma ) Let f (z) be a transcendental meromorphic function, and
p(z) = akzk + ak–zk– + · · · + az + a (ak �= ) be a nonconstant polynomial of degree k.
Given  < δ < |ak|, let λ = |ak| + δ and μ = |ak| – δ, then, for any given ε > ,

( – ε)T
(
μrk , f (z)

) ≤ T
(
r, f

(
p(z)

)) ≤ ( + ε)T
(
λrk , f (z)

)

for sufficiently large r.

Lemma . (See [], Lemma .) Let � : (,∞) → (,∞) be an increasing function, and
let f (z) be a nonconstant meromorphic function. If for some real constant α ∈ (, ), there
exist real constants K >  and K ≥  such that

T
(
r, f (z)

) ≤ K�(r) + KT
(
αr, f (z)

)
+ S(αr, f ),

then

ρ(f ) ≤ log K

– logα
+ lim sup

r→∞
log�(r)

log r
.
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Lemma . (See [], Lemma .) Let � : (r,∞) → (,∞), where r ≥ , be an increasing
function. If for some real constant α > , there exists a real number K >  such that �(αr) >
K�(r), then

lim inf
r→∞

log�(r)
log r

≥ log K
logα

.

Lemma . (See [], Lemma ) Let �(r) be a function of r (r ≥ r), positive and bounded
in every finite interval. Suppose that �(μrm) ≤ A�(r) + B(r ≥ r), where μ (> ), m (> ), A
(≥ ), and B are constants. Then �(r) = O((log r)α) with α = log A

log m , unless A =  and B > ;
and if A =  and B > , then, for any ε > , �(r) = O((log r)ε).

The following lemma is proved by Bergweiler et al. [], p. .

Lemma .

T
(
r, f (qz)

)
= T

(|q|r, f (z)
)

+ O(), N
(
r, f (qz)

)
= N

(|q|r, f (z)
)

+ O()

for any meromorphic function f (z) and any nonzero constant q.

3 Proof of Theorems 1.1-1.2

Proof of Theorem . If |q| >  and f (z) is a transcendental meromorphic solution of (.),
then by applying the Valiron-Mohon’ko identity (see [], Theorem ..), Lemma ., and
[], Theorem ., it follows from (.) that

T
(
r, R

(
z, f (z)

))
= T

(
r,

∑k
i= ai(z)f i(z)∑l
j= bj(z)f j(z)

)

= dT
(
r, f (z)

)
+ S(r, f )

= T
(
r,

(
f ′(qz)

)n)

≤ n
[
T

(
r, f (qz)

)
+ N

(
r, f (qz)

)
+ S

(
r, f (qz)

)]

= n
[
T

(|q|r, f (z)
)

+ N
(|q|r, f (z)

)
+ S

(|q|r, f (z)
)]

≤ nT
(|q|r, f (z)

)
+ S

(|q|r, f (z)
)
,

that is,

dT
(
r, f (z)

)
+ S(r, f ) ≤ nT

(|q|r, f (z)
)

+ S
(|q|r, f (z)

)
. (.)

By (.), for any small ε > ,

d( – ε)T
(
r, f (z)

) ≤ n( + ε)T
(|q|r, f (z)

)
(.)

for sufficiently large r /∈ E, where lm(E) < ∞. By an application of [], Lemma , with β > 
and (.) we see that

d( – ε)T
(
r, f (z)

) ≤ n( + ε)T
(
β|q|r, f (z)

)
(.)
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for all r ≥ r. If d ≤ n, then since β|q| > , estimate (.) is trivial. So we only have to
consider the case where d > n. Then d(–ε)

n(+ε) > . It follows from Lemmas . and (.) that

μ(f ) = lim inf
r→∞

log+ T(r, f )
log r

≥ log(d( – ε)) – log(n( + ε))
logβ|q| .

As ε → + and β → +, we have

ρ(f ) ≥ μ(f ) ≥ log d – log n
log |q| .

If |q| >  and f (z) is a transcendental entire solution of (.), then similarly to (.), for any
small ε > , we have

d( – ε)T
(
r, f (z)

) ≤ n( + ε)T
(|q|r, f (z)

)
(.)

for sufficiently large r /∈ E, where lm(E) < ∞. If d > n, similarly to the previous argument,
we conclude that

ρ(f ) ≥ μ(f ) ≥ log d – log n
log |q| .

If |q| <  and f (z) is a transcendental meromorphic solution of (.), then applying [],
Lemma , and (.), we obtain that there exists α >  such that

α|q| <  and d( – ε)T
(
r, f (z)

) ≤ n( + ε)T
(
α|q|r, f (z)

)
(.)

for all r ≥ r. Since α|q| < , if d > n, then n(+ε)
d(–ε) < , a contradiction to (.). Thus, we

have d ≤ n. Then n(+ε)
d(–ε) > , and from Lemma . we have that

ρ(f ) ≤ log(n( + ε)) – log(d( – ε))
– logα|q| .

As ε → + and α → +, we have

ρ(f ) ≤ log n – log d
– log |q| .

If |q| <  and f (z) is a transcendental entire solution of (.), then similarly to the previous
argument, we have

d ≤ n and ρ(f ) ≤ log n – log d
– log |q| .

If |q| =  and f (z) is a transcendental meromorphic solution of (.), then by the proof of
(.) we conclude that

dT
(
r, f (z)

)
+ S(r, f ) ≤ n

[
T

(
r, f (z)

)
+ N

(
r, f (z)

)
+ S(r, f )

]

≤ nT
(
r, f (z)

)
+ S(r, f ).
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From this inequality we have d ≤ n. If n < d ≤ n, then

d – n
n

T
(
r, f (z)

)
+ S(r, f ) ≤ N

(
r, f (z)

)
+ S(r, f )

≤ N
(
r, f (z)

)
+ S(r, f )

≤ T
(
r, f (z)

)
+ S(r, f ),

that is, λ( 
f ) = λ( 

f ) = ρ(f ). If |q| =  and f (z) is a transcendental entire solution of (.), then
we similarly obtain that d ≤ n. This completes the proof of Theorem .. �

Proof of Theorem . If f (z) is a transcendental meromorphic solution of (.), then by
the Valiron-Mohon’ko identity ([], Theorem ..), Lemma ., and [], Theorem ., it
follows from (.) that

T
(
r, R

(
z, f

(
p(z)

)))
= T

(
r,

∑k
i= ai(z)f i(p(z))∑l
j= bj(z)f j(p(z))

)

= dT
(
r, f

(
p(z)

))
+ S

(
r, f

(
p(z)

))

= T
(
r,

(
f ′(qz)

)n)

≤ n
[
T

(
r, f (qz)

)
+ N

(
r, f (qz)

)
+ S

(
r, f (qz)

)]

= n
[
T

(|q|r, f (z)
)

+ N
(|q|r, f (z)

)
+ S

(|q|r, f (z)
)]

≤ nT
(|q|r, f (z)

)
+ S

(|q|r, f (z)
)
,

that is,

dT
(
r, f

(
p(z)

))
+ S

(
r, f

(
p(z)

)) ≤ nT
(|q|r, f (z)

)
+ S

(|q|r, f (z)
)
. (.)

By Lemma ., for given  < δ < |cm| and μ = |cm| – δ and for any small ε > ,

d( – ε)T
(
μrm, f (z)

) ≤ n( + ε)T
(|q|r, f (z)

)
(.)

for sufficiently large r /∈ E, where lm(E) < ∞. An application of [], Lemma , with β > 
and (.) yields

d( – ε)T
(
μrm, f (z)

) ≤ n( + ε)T
(
β|q|r, f (z)

)

for r ≥ r. Put R = β|q|r. Then the last inequality can be rewritten as

T
(

μRm

βm|q|m , f (z)
)

≤ n( + ε)
d( – ε)

T
(
R, f (z)

)
. (.)

If d ≤ n, then n(+ε)
d(–ε) ≥ . Since μ

βm|q|m > , m ≥ , by Lemma . we get that

T
(
r, f (z)

)
= O

(
(log r)α

)
,



Chen et al. Advances in Difference Equations  (2017) 2017:37 Page 12 of 16

where

α =
log(n( + ε)) – log(d( – ε))

log m

=
log n – log d

log m
+

log( + ε) – log( – ε)
log m

→ log n – log d
log m

(ε → ).

If f (z) is a transcendental entire solution of (.) and d ≤ n, then we similarly have

T
(
r, f (z)

)
= O

(
(log r)α

)
,

where

α =
log n – log d

log m
.

This completes the proof of Theorem .. �

4 Proof of Theorems 1.3-1.4

Proof of Theorem . If f (z) is a transcendental meromorphic solution of (.), then by
applying the Valiron-Mohon’ko identity ([], Theorem ..), Lemma ., and [], Theo-
rem ., it follows from (.), |qs| > , and |q| = max≤s≤n{|qs|} >  that

T
(
r, R

(
z, f (z)

))
= T

(
r,

∑k
i= ai(z)f i(z)∑l
j= bj(z)f j(z)

)

= dT
(
r, f (z)

)
+ S(r, f )

= T

(
r,

n∑
s=

αs(z)f (λs)(qsz)

)

≤
n∑

s=

T
(
r, f (λs)(qsz)

)
+ S(r, f )

≤
n∑

s=

[
T

(
r, f (qsz)

)
+ λsN

(
r, f (qsz)

)
+ S

(
r, f (qsz)

)]
+ S(r, f )

=
n∑

s=

[
T

(|qs|r, f (z)
)

+ λsN
(|qs|r, f (z)

)
+ S

(|qs|r, f (z)
)]

+ S(r, f )

≤
n∑

s=

[
( + λs)T

(|qs|r, f (z)
)

+ S
(|qs|r, f (z)

)]
+ S(r, f )

≤
n∑

s=

( + λs)T
(|q|r, f (z)

)
+ S

(|q|r, f (z)
)

+ S(r, f )

= (λ + n)T
(|q|r, f (z)

)
+ S

(|q|r, f (z)
)

+ S(r, f ),
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that is,

dT
(
r, f (z)

)
+ S(r, f ) ≤ (λ + n)T

(|q|r, f (z)
)

+ S
(|q|r, f (z)

)
(.)

for sufficiently large r /∈ E, where lm(E) < ∞. By using (.) and [], Lemma , with β > ,
for any given ε > , we have

d( – ε)T
(
r, f (z)

) ≤ (λ + n)( + ε)T
(
β|q|r, f (z)

)
(.)

for all r ≥ r. Since β|q| > , if d ≤ λ + n, then estimate (.) is trivial. So we only have to
consider the case where d > λ + n. Then d(–ε)

(λ+n)(+ε) > . It follows from Lemma . and (.)
that

μ(f ) = lim inf
r→∞

log+ T(r, f )
log r

≥ log(d( – ε)) – log((λ + n)( + ε))
logβ|q| .

As ε → + and β → +, we have

ρ(f ) ≥ μ(f ) ≥ log d – log(λ + n)
log |q| .

Similarly, if f (z) is a transcendental entire solution of (.) and d > n, we have

ρ(f ) ≥ μ(f ) ≥ log d – log n
log |q| .

This completes the proof of Theorem .. �

Proof of Theorem . If f (z) is a transcendental meromorphic solution of (.), similarly
to (.), by applying the Valiron-Mohon’ko identity ([], Theorem ..), Lemma ., and
[], Theorem ., it follows from (.) and |q| = max≤s≤n{|qs|} >  that

dT
(
r, f

(
p(z)

))
+ S

(
r, f

(
p(z)

)) ≤ (λ + n)T
(|q|r, f (z)

)
+ S

(|q|r, f (z)
)
. (.)

By Lemma ., for given  < δ < |cm| and μ = |cm| – δ and for any small ε > ,

d( – ε)T
(
μrm, f (z)

) ≤ (λ + n)( + ε)T
(|q|r, f (z)

)
(.)

for sufficiently large r /∈ E, where lm(E) < ∞. An application of [], Lemma , with β > 
and (.) yields

d( – ε)T
(
μrm, f (z)

) ≤ (λ + n)( + ε)T
(
β|q|r, f (z)

)
(.)

for r ≥ r. Set R = β|q|r. Then (.) can be rewritten as

T
(

μRm

βm|q|m , f (z)
)

≤ (λ + n)( + ε)
d( – ε)

T
(
R, f (z)

)
. (.)
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If d ≤ λ + n, then (λ+n)(+ε)
d(–ε) ≥ . Since μ

βm|q|m > , m ≥ , from Lemma . we get that

T
(
r, f (z)

)
= O

(
(log r)α

)
,

where

α =
log((λ + n)( + ε)) – log(d( – ε))

log m

=
log(λ + n) – log d

log m
+

log( + ε) – log( – ε)
log m

→ log(λ + n) – log d
log m

(ε → ).

If f (z) is a transcendental entire solution of (.) and d ≤ n, we similarly have

T
(
r, f (z)

)
= O

(
(log r)α

)
,

where

α =
log n – log d

log m
.

This completes the proof of Theorem .. �

5 Proof of Theorems 1.5-1.6

Proof of Theorem . If f (z) is a transcendental meromorphic solution of (.), by applying
the Valiron-Mohon’ko identity ([], Theorem ..), Lemma ., and [], Theorem ., it
follows from (.) that

T
(
r, A

(
qz, f (qz)

))
= aT

(
r, f (qz)

)
+ S

(
r, f (qz)

)

= aT
(|q|r, f (z)

)
+ S

(|q|r, f (z)
)

= T

(
r, B

(
z, f (z)

) n∑
s=

αs(z)f (λs)(z)

)

≤ T(r, B
(
z, f (z)

)
+ T

(
r,

n∑
s=

f (λs)(z)

)
+ S(r, f )

≤ bT
(
r, f (z)

)
+

n∑
s=

[
T

(
r, f (z)

)
+ λsN

(
r, f (z)

)
+ S(r, f )

]
+ S(r, f )

≤ bT
(
r, f (z)

)
+

n∑
s=

( + λs)T
(
r, f (z)

)
+ S(r, f )

= bT
(
r, f (z)

)
+ (λ + n)T

(
r, f (z)

)
+ S(r, f )

= (b + λ + n)T
(
r, f (z)

)
+ S(r, f ),

that is,

aT
(|q|r, f (z)

)
+ S

(|q|r, f (z)
) ≤ (b + λ + n)T

(
r, f (z)

)
+ S(r, f ),
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that is,

aT
(
r, f (z)

)
+ S(r, f ) ≤ (b + λ + n)T

(
r

|q| , f (z)
)

+ S
(

r
|q| , f

)
(.)

for sufficiently large r /∈ E, where lm(E) < ∞. By using [], Lemma , and 
|q| < , from (.)

we obtain that there exists β >  such that

β

|q| <  and a( – ε)T
(
r, f (z)

) ≤ (b + λ + n)( + ε)T
(

βr
|q| , f (z)

)

for all r ≥ r. Since  ≤ a ≤ b, then (b+λ+n)(+ε)
a(–ε) ≥ , and from Lemma . we get that

ρ(f ) ≤ log((b + λ + n)( + ε)) – log(a( – ε))
– log β

|q|
.

As ε → + and β → +, we have

ρ(f ) ≤ log(b + λ + n) – log a
log |q| .

On the other hand, by applying the Valiron-Mohon’ko identity ([], Theorem ..), Lem-
ma ., and [], Theorem ., it follows from (.) that

T
(
r, B

(
z, f (z)

))
= bT

(
r, f (z)

)
+ S(r, f )

= T
(

r,
A(qz, f (qz))∑n
s= αs(z)f (λs)(z)

)

≤ T
(
r, A

(
qz, f (qz)

))
+ T

(
r,

n∑
s=

αs(z)f (λs)(z)

)
+ O()

≤ aT
(
r, f (qz)

)
+ T

(
r,

n∑
s=

f (λs)(z)

)
+ S

(
r, f (qz)

)
+ S(r, f )

≤ aT
(|q|r, f (z)

)
+

n∑
s=

[
T

(
r, f (z)

)
+ λsN

(
r, f (z)

)
+ S(r, f )

]
+ S

(|q|r, f
)

≤ aT
(|q|r, f (z)

)
+

n∑
s=

( + λs)T
(
r, f (z)

)
+ S

(|q|r, f
)

+ S(r, f )

≤ aT
(|q|r, f (z)

)
+ (λ + n)T

(
r, f (z)

)
+ S

(|q|r, f
)

+ S(r, f ),

that is,

bT
(
r, f (z)

)
+ S(r, f ) ≤ aT

(|q|r, f (z)
)

+ (λ + n)T
(
r, f (z)

)
+ S

(|q|r, f
)
.

If b > a + λ + n, then for any given ε > , this inequality can be rewritten as

(b – λ – n)( – ε)T
(
r, f (z)

) ≤ a( + ε)T
(|q|r, f (z)

)
(.)
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for sufficiently large r /∈ E, where lm(E) < ∞. By using [], Lemma , with β >  from (.)
we have that

(b – λ – n)( – ε)T
(
r, f (z)

) ≤ a( + ε)T
(
β|q|r, f (z)

)
(.)

for all r ≥ r. Since β|q| > , (b–λ–n)(–ε)
a(+ε) > , and it follows from Lemma . and (.) that

μ(f ) = lim inf
r→∞

log+ T(r, f )
log r

≥ log((b – λ – n)( – ε)) – log(a( + ε))
logβ|q| .

As ε → + and β → +, we have

ρ(f ) ≥ μ(f ) ≥ log(b – λ – n) – log a
log |q| .

Similarly, if f (z) is a transcendental entire solution of (.) and b > a + n, we have

log(b – n) – log a
log |q| ≤ μ(f ) ≤ ρ(f ) ≤ log(b + n) – log a

log |q| .

This completes the proof of Theorem .. �

Proof of Theorem . Using the same method as in the proof of Theorem ., the conclu-
sion of Theorem . follows immediately. We omit the proof here. �
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