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1 Introduction and preliminary
In this paper, we consider the system of higher-order neutral differential equations with

distributed coefficients and delays

b (n)
[r(t)x(t) +/ p(t,@)x(t—e)d9:|

d f
+ (=1 [/ Qi(t, t)x(t—1)dt - / Qx(t,0)x(t—0)do — h(t)j| =0, 1)

(1) where n is a positive integer, n>1,0<a<b,0<c<d,0<e<f;

(2) re C([ty, 00),R*), r(t) > 0,p € C([ty,00) x [a,b],R),h € C([ty,c0),R),

(3) x e R, Q; is continuous # X n matrix on [y, 00),i =1,2.

Recently there have been a lot of activities concerning the existence of nonoscillatory
solutions for neutral differential equations with positive and negative coefficients. In 2005,
the existence of nonoscillatory solutions of the first-order linear neutral delay differential

equations

%[x(t) + P()x(t - 7)] + Qut)x(t — 01) — Qa(B)x(t — 02) =0
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was investigated by Zhang et al. [1]. In 2012, Candan [2] studied the higher-order nonlinear
differential equation

[H(&)[x(6) + Pyt — )] "] + (<1 [Qu(O)ga (x(£ — 01)) — Qa(E)ga ({2t — 1)) —£ ()] = 0.

In 2013, Candan [3] has investigated the existence of nonoscillatory solutions for the sys-
tem of higher-order nonlinear neutral differential equations

[x@) + PO)x(t - 0)]" + (1" [Qi(e)x(¢ - 01) - Qa(D)x(£ — 65)] = 0.

In the same year, Liu et al. [4] has obtained the existence of nonoscillatory solutions for
the system of higher-order neutral differential equations

[r(6)[x(2) + Pe)x(& - 0)] "]

d f
+(=1)" (/ Qi o)x(t-1)dT —/ Qx(t,0)x(t - o)do) =0.

As can be seen from the development process of the above equations, the delay of neutral
part in the discussed differential equations were all constant delays. However, the case for
distributed deviating arguments is rather rare; see [5, 6]. In 2015, Candan and Gecgel [6]
studied the systems of higher-order neutral differential equations with distributed delay

b3 - /
[[x(t)+ f p(t,s)x(t—é)déﬂ

b by
. <—1>”+1[ Qtext-£)ds - [ QEx(E-8) ds] _o, @)

ai az

the discussion only covered the condition for the coefficient being 0 < f:; D¢, &)x(t —

£)dé < 1 and -3 < f:; D(t, &)x(t — £)dE < 0. However, in this paper, the difficulty in
establishing a feasible operator was settled by skillful use of r(¢), and the coefficients
f:pz(t, &) dg in the neutral part were all discussed in four cases, that is, (-0, -1), (-1,0),
(0,1), (1, +00). Thus, in view of the above, this paper may have theoretical value as well as
practical application value. For related work, we refer the reader to [7-10].

A solution of the system of equations (1) is a continuous vector function x(¢) defined
on ([t — u,00),R"), for some #; > o, such that r(£)x(¢) — f:p(t,e)x(t —0)do is n times
continuously differentiable and the system of equations (1) holds for all » > 1. Here, p =
max{b,t,0}.

2 The main results
Theorem 1 Assume that 0 < f:p(t,G)dG <pi<land

o0 o0
/ e ds < 00, / §"1
to to

[o¢]
/ st ||h(s)|| ds < oo.

to

d f
/Ql(t:f)df /Qz(t,a)da ds < 00,

Then equation (1) has a bounded nonoscillatory solution.
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Proof Let A be the set of all continuous and bounded vector functions on [£y, 00) with the
sup norm. Set A = {x € A, M; < ||x(¢)|| < My, t > to} where My, M, are two positive con-
stants and c is a constant vector, such that p; M, + M el < Mo, 1 <1(2) < < . From (3),
one can choose a t; > ty, i > to + U, sufficiently large, t > f1, such that

00 _An-1r d

/ % M, / Qilt, 1) dr +||h(s>||]dsst—||cn, @
[e%) _An-1r f M

/t %_Mz / Qu(5,0)do +||h(s)||]dS§||C||-P1M2+p—11' ©)
o) _f-1r d f

f —(zn—t)l)! le(t,r)dr + /Qz(S,U)dU ]dsfl—pb (©)

and one defines an operator T on A as follows:

%{c—f:p(t,e) (t-0)do + ft e 1 [f Qi(s, T)x(s —1)dt
(T =1 -/ Qs,0)x(s—0)do —h(s)ds} t>n,
(Tx)(t1) to<t=t.

It is easy to see that T'x is continuous, for ¢ > #,x € A, by using (4), we have

00 (¢ _ )11 d
@] = — {ncn [ (sn_t)ll[/ Qﬂ&r)x(s—r)dr—h(s)}ds

_ An-1
< e + / (zn 2 [Mz

=< M27

|

/ Qi 1)dr

. Hhs)”]ds

and taking (5) into account, we have
1 b
o] = s fict - [ peorlxe-o) as

~ ()
R | f
/ (zn_t)l)! [ / Qz(s,o)x(s—o)do—h(s)]ds

[ed] _ #\n-1
zm{ﬂcﬂ —Ple—/ %(Ml

> M.

}
+ Iho)] ) s

These show that TA C A, since A is a bounded, closed, and convex subset of A, in order

f
/ Qq(s,0)do

to apply the contraction principle we have to show that T is a contraction mapping on A.
For Vxi,x, € A, and £ > 13,

|(Tx1)(8) = (Tx2) (D)

<
~r(®)

n-1
+ /t = t)l)‘ [/ Q1(s,r))q(s—r)dr—/ Qx(s,0)xi(s — o) do - h(s):|

b
i{/ pt,0)|x1(t —0) —xa2(t - 0)| db
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0 (¢ _ )11 d f
/ (zn_t)l)l [/ QI(S’T)XZ(S_T)dT—/ QZ(SrU)Xz(S—G)dG—h(s)] ds

(lt){pluxl i+ [0 1),[

||x1(s—o) —xz(s—o)||i| ds}.

[x1(s = 7) = xa(s = 7) |

/ Qi(t, 7)dr

f
Qa(s,0)do

Using (6),

|(Tx1)(®) = (Tx2) (1)

= ||X1—X2||<P1+l = 1)' |:

<X = xa.

(t,T)dt| +

(s,0)do

J)

which shows that T is a contraction mapping on A and therefore there exists a unique
solution, obviously a bounded positive solution of (1) x € A, such that T'x = x. The proof
is complete. 0

Theorem 2 Assume that 1 < p3 < fabp(t, 0)dO < p, < 2p3 < +00, and that (3) holds.
Then equation (1) has a bounded nonoscillatory solution.

Proof Let A be the set of all continuous and bounded vector functions on [£y, 00) with
the sup norm. Set A = {x € A, M3 < ||x(¢)|| < My, t > ty}, where M3, M, are two positive
constants such that poMy + 2p. M3 < ||c|| < 2p3My,2ps < r(t) < 2p,. From (3), one can
choose a t; > ty + b, sufficiently large ¢ > #;, such that

e} _An-1r d

/ (in_t)l), My / Qs 7)dr +||h<s>||}ds52p3M4—||c||, (7)
o0 _An-1r f

[ (En_t)ﬂ' M| [ Quls,)do +||h(s)||]ds§||c||—p2M4_2p2M3, ®
X (o _F\-1T d f

/ (z‘n_t)l)' le(S,T)dT + /Qz(s,o)do :|ds§2p3_p2, 9)

and one defines an operator T on A as follows:

{c f pt,0)x(t-0)do + [~ (snt f Qi(s, T)x(s — 1) dt
(To)(0) = —fesz (s,0)x(s —0)do —h(s)]ds} t> 1,
(Tx)(t1)) to<t=t.

It is easy to see that T is continuous, for ¢ > f;,x € A. By using (7), we have
1
[(Tx)@)] < ——lell +

[ed] _ #n-1
D /. (s t)l)' |:/ Qi(s, T)x(s—1)dT — (S):|dS

1 (s—p)™
s@{ncw/t T [

}

(s,7)dr | + |h( s)||] ds} < M,,
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and taking (8) into account, we have

Jerwol = g5 e [ oeolxe-ofas
+ /;00 (s— ):)‘1[/ Qx(s,0)x(s—o0)do - h(S):|
1 ® (s

02 {||C||—192M4 /t W(

2_
> Ms.

!

/ Qx(s,0)do

o] ) |

These show that TA C A, since A is a bounded, closed, and convex subset of A, in order
to apply the contraction principle, we have to show that T is a contraction mapping on A.
For Vxi,x, € A, and £ > 11,

|(Tx1)(8) = (Tx2) (D)

1 b
< @{/ P(t,9)||x1(t—9)_x2(t_9)” do
n-1
+ _/t (n t)l)' [/ Q1(s,r))q(s—r)dr—/ Qx(s,0)x1(s — ) do — h(s):|

/t‘ (n 1), |:/ Ql(S,‘L')X2(S—1’)d‘L'—/ Qa(s,0)xa(s—0)do — h(s)]

1 0 n-1

0 {Pz”xl X2l +/t‘ (s~ )1)‘ [
f

+ f QZ(Sro—)dO'

1(s,7)dt ||x1(s—t) xz(s—t)”

Hxl(s —-0)—Xp(s — U)||:| ds},
using (9),

|[(Tx1)(8) = (Tx2) (D)

< ! I Il /00 i
—Ix; = x +
~ 2ps ' 2P ¢ -1)!

< Ix1 = %2,

(s,0)do

Jo}

1(s,T)dt

which shows that 7 is a contraction mapping on A and therefore there exists a unique
solution, obviously a bounded positive solution of (1) x € A, such that T'x = x. The proof

is complete. d

Theorem 3 Assume that -1 < py < f:p(t, 0)d6 < 0 and that (2) holds.

Then equation (1) has a bounded nonoscillatory solution.

Proof Let A be the set of all continuous and bounded functions on [ty, 00) with the sup
norm. Set A = {x € A, Ms < ||x(£)|| < Ms, t > to}, where Ms, Mg are two positive constants
such that <llc|l <« @ + pa)Me,1 < r(t) < 14. From (3), one can choose a t; > £ty + b,
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sufficiently large ¢ > #; such that
©(s—t)y 1T d
/ TR / Qs D) dr | + [hs)| | ds < (1 +pa)Ms ~ |l (10)
¢ - L c
® (- 1T f M
/ e / Qls,0)do| + [h(s) ||] ds < llc + —, (11)
t (}’1 — 1)! L e Pa
o0 (S _ t)n—l r d f
/ n-1) / Qus, T)dr| + / Qa(s,0)do|| |ds <1+ pa, 12)
¢ -D! LilJe .

and one defines an operator T on A as follows:

{c f pt,0)x(t—6)do + ft e 1 [f Qi(s, T)x(s — 1) dt
(Tx)(®) = —f{Q2 (s,0)X(s— o) do —h(s)]ds} t>1,
(Tx)(t1) to<t=<t.

It is easy to see that T is continuous, for ¢ > t;,x € A. By using (10), we have

1

b
o] = -5 { el - [ .0l as

+ /w (s- t)ln)‘l |;/ Qi(s, t)x(s—1)dt —h(s)] ds

00 n-1
<lel-pae+ [0 [M6 / Quls,7)de

!
+ Iho| | as

and taking (11) into account, we have

o] _ #\n-1
l(Tx)(t ||_ {ll II—/ (s=1) U Q(s,0)x(s — o) do — h(s)]

OO(_
z—m{ncn—[ ﬁ[ /st, ydo | + (s H}ds}

> Ms.
These show that TA C A, since A is a bounded, closed, and convex subset of A, in order

to apply the contraction principle, we have to show that T is a contraction mapping on A.
For Vxi,x, € A, and £ > 11,

|

|[(Tx)@®) - (Tx:) 0|

b
S%{/ P(t,G)Hxl(t_g)_XZ(t_e)H 40

o0 (S_t)n—l d f
’ /t (n-1)! [/ Ql(s’r)xl(s_f)‘h—/ Qz(SrG)X1(S—0)da—h(s)}ds

/t e _1), [/ QI(S,‘L')Xz(S—‘L')d‘L'—f Qax(s,0)x2(s —0)do — h(s)]
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[xi(s = 7) = xa(s = 7))

1 _ #y-1
s@{—mnxl—xm/t © t)l),[

f
+ / Qa(s,0)do

Or using (12),

/ Qi(s,t)dr

||x1(s—o) —xz(s—a)||:| ds}.

|(Tx1)(8) - (Tx2) (D)

[ee] (S )n 1
<lx1 —x2fl{ —p4 + KL
t

< |Ix —x2[l,

(s, T)dt| +

/ Qu(s,0)do

J)

which shows that T is a contraction mapping on A and therefore there exists a unique
solution, obviously a bounded positive solution of (1) x € A, such that Tx = x. The proof
is complete. O

Theorem 4 Assume that —00 < 2ps5 < pg < f:p(t,é)de < ps < =1 and that (3) holds.
Then equation (1) has a bounded nonoscillatory solution.

Proof Let A be the set of all continuous and bounded functions on [ty, c0) with the sup
norm. Set A = {x € A, M; < ||x(¢)|| < Mg, t > to}, where M, Mg are two positive constants
such that —2psM; < ||c|| < (=2ps + pe)Ms, —2ps < r(t) < —2pg. From (3), one can choose a
L1 >ty + b, sufficiently large ¢ > #;, such that

o] _f-1r d

f (in _t)l)u Ms f Qs 7)dr| + [h(s) II} ds < -2psMs + peMs — | c]|, (13)
o] _an-1r f

/ (in _t)1)t Ms / Qa(s,0) dor|| + [h(s) H} ds < ||cll + 2peMy, (14)
0 (o _ F\-1T d f

/ (in _t)1)l / Qs T)dr)| + / Q(s,0)do ]ds <P —2ps, (15)

and one defines an operator T on A as follows:

t f p(t,0)x(t—6)do + ft = 1), [f Qi(s, T)x(s—1)dt
(Tx)(t) = - fe Qy(s,0)x(s—o0)do —h(s)]ds]} t>t,
(Tx)(t)) to<t=<t.

It is easy to see that T is continuous, for ¢ > ;,x € A. By using (13), we have

[T < {ncn ’ p(6,6)|x(c — 0)] do

|:/ Qi(s, T)x(s — T)d7 — h(s)]

|

(n 1)‘



Liu et al. Advances in Difference Equations (2017) 2017:41 Page 8 of 10

1 0o (S_t)n—l d
< Tm{”C” —psMs +/t‘ W[Mg /C‘ Ql(S,T)dT

SMSr

+ Iho| | as}

and taking (14) into account, we have

!/w(s )nl{/ Qy(s,0)x(s— o) do — h@qu

1 (s — 1!
_Tm{ncn—[ — [Ms

> M.

(Tx)®) | = (){n [

|
o s}

/ Qa(s,0)do

These show that TA C A, since A is a bounded, closed, and convex subset of A, in order
to apply the contraction principle, we have to show that T is a contraction mapping on A.

For Vx;,x; € A, and ¢t > 1,

[(Tx0)(®) = (Tx2)(0)|

1 (b
= @{/ pt,0)|x1(t - 0) —xa2(6 - 0)| do
+ /too (s— ):)'1[/ Q1(s,r)X1(s—r)dt—/ Qy(s,0)x1(s — o) do — h(s) ‘ds

o) _ £\n-1
_ / (in_t)l)! [,/ Ql(s,r)xz(s—r)dr‘/ Qz(S,U)Xz(S—G)dG‘h(S) ds

00 n-1
(lt){ —pslix1 - X2||+/ (i ) [/let)dr

f
+ /Qz(s,a)d(r ||x1(s—a)—xz(s—(r)||:|ds}.

Or using (15),

|

xi(s— 1) =Xp(s - 7)

1 1 ®(s—
ETPSHXI X2||{ P6+( —1)!/t r(s) [

-f
+ /Qz(s,a)da ]ds}

< lx1 —x2l,

f Qi(s,t)dr

which shows that 7T is a contraction mapping on A and therefore there exists a unique
solution, obviously a bounded positive solution of (1) x € A, such that T'x = x. The proof

is complete. g
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3 Example
Consider the higher-order neutral differential equation with distributed coefficients and

delays

37

2 T (3) ) 57
(%x(t)+‘/ e‘&(t—@)d@) +/ et 22 )x(t-1)dr
2 +sint T z 51

2 2

Bl

2
2 4
—/ e’ |xt-0)do
T 33
-t . 2 (1
=e(~4cost— 12w sint -7 +7°) NE (16)
Here, n =3,
2 T 3
r(t) = ———, a=c=—, b=e=m, d=—,
2 +sint 2 2

1
f=2m, h(t) = e (~4cost - 127 sint - 7 + %) NE

7 —t % % - (2%
Ql(t)=ﬁ L P Q2(t)=/ € \zufdo
o I 3 3

2

It is easy to see that 1 < r(f) <2,

B - oo Z 57
/ etdd=—el>1(t>0), / 52/ e[| 22 )| drds<oo,
z 2 ¢ z 51
2 2
[e'e) 2
2 4
/ 52/ 1l . Hdads<oo,
t T § E
* 1
/ sze’s(—4coss—12n sins — 7w +n2) ) ‘ ds < 00,
t
thus Theorem 2 holds.
In fact, x(¢) = (3::2 1) is a nonoscillatory solution of equation (16).
4 Remark

When r(t) = 1,h(¢) = 0, equation (1) becomes equation (2), thus this paper improves re-
sults of Candan and Gecgel [6].
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