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Abstract
In this paper we consider the existence of nonoscillatory solutions for a system of
higher-order neutral differential equations with distributed coefficients and delays.
We use the Banach contraction principle to obtain new sufficient conditions for the
existence of nonoscillatory solutions.
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1 Introduction and preliminary
In this paper, we consider the system of higher-order neutral differential equations with
distributed coefficients and delays

[
r(t)x(t) +

∫ b

a
p(t, θ )x(t – θ ) dθ

](n)

+ (–)n+
[∫ d

c
Q(t, τ )x(t – τ ) dτ –

∫ f

e
Q(t,σ )x(t – σ ) dσ – h(t)

]
= , ()

() where n is a positive integer, n ≥ ,  < a < b,  < c < d,  < e < f ;
() r ∈ C([t,∞), R+), r(t) > , p ∈ C([t,∞) × [a, b], R), h ∈ C([t,∞), R),
() x ∈ Rn, Qi is continuous n × n matrix on [t,∞), i = , .
Recently there have been a lot of activities concerning the existence of nonoscillatory

solutions for neutral differential equations with positive and negative coefficients. In ,
the existence of nonoscillatory solutions of the first-order linear neutral delay differential
equations

d
dt

[
x(t) + P(t)x(t – τ )

]
+ Q(t)x(t – σ) – Q(t)x(t – σ) = 
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was investigated by Zhang et al. []. In , Candan [] studied the higher-order nonlinear
differential equation

[
r(t)

[
x(t) + P(t)x(t –τ )

](n–)]′ + (–)n+[Q(t)g
(
x(t –σ)

)
– Q(t)g

(
x(t –μ)

)
– f (t)

]
= .

In , Candan [] has investigated the existence of nonoscillatory solutions for the sys-
tem of higher-order nonlinear neutral differential equations

[
x(t) + P(t)x(t – θ )

](n) + (–)n+[Q(t)x(t – σ) – Q(t)x(t – σ)
]

= .

In the same year, Liu et al. [] has obtained the existence of nonoscillatory solutions for
the system of higher-order neutral differential equations

[
r(t)

[
x(t) + P(t)x(t – θ )

](n–)]′

+ (–)n
(∫ d

c
Q(t, τ )x(t – τ ) dτ –

∫ f

e
Q(t,σ )x(t – σ ) dσ

)
= .

As can be seen from the development process of the above equations, the delay of neutral
part in the discussed differential equations were all constant delays. However, the case for
distributed deviating arguments is rather rare; see [, ]. In , Candan and Gecgel []
studied the systems of higher-order neutral differential equations with distributed delay

[[
x(t) +

∫ b

a

P̃(t, ξ )x(t – ξ ) dξ

]]′

+ (–)n+
[∫ b

a

Q(t, ξ )x(t – ξ ) dξ –
∫ b

a

Q(t, ξ )x(t – ξ ) dξ

]
= , ()

the discussion only covered the condition for the coefficient being  <
∫ b

a
P̃(t, ξ )x(t –

ξ ) dξ < 
 and – 

 <
∫ b

a
P̃(t, ξ )x(t – ξ ) dξ < . However, in this paper, the difficulty in

establishing a feasible operator was settled by skillful use of r(t), and the coefficients∫ b
a p(t, ξ ) dξ in the neutral part were all discussed in four cases, that is, (–∞, –), (–, ),

(, ), (, +∞). Thus, in view of the above, this paper may have theoretical value as well as
practical application value. For related work, we refer the reader to [–].

A solution of the system of equations () is a continuous vector function x(t) defined
on ([t – μ,∞), Rn), for some t > t, such that r(t)x(t) –

∫ b
a p(t, θ )x(t – θ ) dθ is n times

continuously differentiable and the system of equations () holds for all n ≥ . Here, μ =
max{b, τ ,σ }.

2 The main results
Theorem  Assume that  ≤ ∫ b

a p(t, θ ) dθ ≤ p <  and

∫ ∞

t

sn–
∥∥∥∥
∫ d

c
Q(t, τ ) dτ

∥∥∥∥ds < ∞,
∫ ∞

t

sn–
∥∥∥∥
∫ f

e
Q(t,σ ) dσ

∥∥∥∥ds < ∞,

∫ ∞

t

sn–∥∥h(s)
∥∥ds < ∞.

()

Then equation () has a bounded nonoscillatory solution.
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Proof Let � be the set of all continuous and bounded vector functions on [t,∞) with the
sup norm. Set A = {x ∈ �, M ≤ ‖x(t)‖ ≤ M, t ≥ t}, where M, M are two positive con-
stants and c is a constant vector, such that pM + M

p
< ‖c‖ < M,  ≤ r(t) ≤ 

p
. From (),

one can choose a t ≥ t, t ≥ t + μ, sufficiently large, t ≥ t, such that

∫ ∞

t

(s – t)n–

(n – )!

[
M

∥∥∥∥
∫ d

c
Q(t, τ ) dτ

∥∥∥∥ +
∥∥h(s)

∥∥]
ds ≤ M – ‖c‖, ()

∫ ∞

t

(s – t)n–

(n – )!

[
M

∥∥∥∥
∫ f

e
Q(s,σ ) dσ

∥∥∥∥ +
∥∥h(s)

∥∥]
ds ≤ ‖c‖ – pM +

M

p
, ()

∫ ∞

t

(s – t)n–

(n – )!

[∥∥∥∥
∫ d

c
Q(t, τ ) dτ

∥∥∥∥ +
∥∥∥∥
∫ f

e
Q(s,σ ) dσ

∥∥∥∥
]

ds ≤  – p, ()

and one defines an operator T on A as follows:

(Tx)(t) =

⎧⎪⎪⎨
⎪⎪⎩


r(t) {c –

∫ b
a p(t, θ )x(t – θ ) dθ +

∫ ∞
t

(s–t)n–

(n–)! [
∫ d

c Q(s, τ )x(s – τ ) dτ

–
∫ f

e Q(s,σ )x(s – σ ) dσ – h(s)] ds} t ≥ t,

(Tx)(t) t ≤ t ≤ t.

It is easy to see that Tx is continuous, for t ≥ t, x ∈ A, by using (), we have

∥∥(Tx)(t)
∥∥ ≤ 

r(t)

{
‖c‖ +

∥∥∥∥
∫ ∞

t

(s – t)n–

(n – )!

[∫ d

c
Q(s, τ )x(s – τ ) dτ – h(s)

]
ds

∥∥∥∥
}

≤ ‖c‖ +
∫ ∞

t

(s – t)n–

(n – )!

[
M

∥∥∥∥
∫ d

c
Q(t, τ ) dτ

∥∥∥∥ +
∥∥h(s)

∥∥]
ds

≤ M,

and taking () into account, we have

∥∥(Tx)(t)
∥∥ ≥ 

r(t)

{
‖c‖ –

∫ b

a
p(t, θ )

∥∥x(t – θ )
∥∥dθ

–
∥∥∥∥
∫ ∞

t

(s – t)n–

(n – )!

[∫ f

e
Q(s,σ )x(s – σ ) dσ – h(s)

]
ds

∥∥∥∥
}

≥ p

{
‖c‖ – pM –

∫ ∞

t

(s – t)n–

(n – )!

(
M

∥∥∥∥
∫ f

e
Q(s,σ ) dσ

∥∥∥∥ +
∥∥h(s)

∥∥)
ds

}

≥ M.

These show that TA ⊂ A, since A is a bounded, closed, and convex subset of �, in order
to apply the contraction principle we have to show that T is a contraction mapping on A.
For ∀x, x ∈ A, and t ≥ t,

∥∥(Tx)(t) – (Tx)(t)
∥∥

≤ 
r(t)

{∫ b

a
p(t, θ )

∥∥x(t – θ ) – x(t – θ )
∥∥dθ

+
∥∥∥∥
∫ ∞

t

(s – t)n–

(n – )!

[∫ d

c
Q(s, τ )x(s – τ ) dτ –

∫ f

e
Q(s,σ )x(s – σ ) dσ – h(s)

]
ds

∥∥∥∥
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–
∥∥∥∥
∫ ∞

t

(s – t)n–

(n – )!

[∫ d

c
Q(s, τ )x(s – τ ) dτ –

∫ f

e
Q(s,σ )x(s – σ ) dσ – h(s)

]
ds

∥∥∥∥
}

≤ 
r(t)

{
p‖x – x‖ +

∫ ∞

t

(s – t)n–

(n – )!

[∥∥∥∥
∫ d

c
Q(t, τ ) dτ

∥∥∥∥
∥∥x(s – τ ) – x(s – τ )

∥∥

+
∥∥∥∥
∫ f

e
Q(s,σ ) dσ

∥∥∥∥
∥∥x(s – σ ) – x(s – σ )

∥∥]
ds

}
.

Using (),

∥∥(Tx)(t) – (Tx)(t)
∥∥

≤ ‖x – x‖
(

p +
∫ ∞

t

(s – t)n–

(n – )!

[∥∥∥∥
∫ d

c
Q(t, τ ) dτ

∥∥∥∥ +
∥∥∥∥
∫ f

e
Q(s,σ ) dσ

∥∥∥∥
]

ds
)

< ‖x – x‖.

which shows that T is a contraction mapping on A and therefore there exists a unique
solution, obviously a bounded positive solution of () x ∈ A, such that Tx = x. The proof
is complete. �

Theorem  Assume that  < p ≤ ∫ b
a p(t, θ ) dθ ≤ p < p < +∞, and that () holds.

Then equation () has a bounded nonoscillatory solution.

Proof Let � be the set of all continuous and bounded vector functions on [t,∞) with
the sup norm. Set A = {x ∈ �, M ≤ ‖x(t)‖ ≤ M, t ≥ t}, where M, M are two positive
constants such that pM + pM < ‖c‖ < pM, p ≤ r(t) ≤ p. From (), one can
choose a t ≥ t + b, sufficiently large t ≥ t, such that

∫ ∞

t

(s – t)n–

(n – )!

[
M

∥∥∥∥
∫ d

c
Q(s, τ ) dτ

∥∥∥∥ +
∥∥h(s)

∥∥]
ds ≤ pM – ‖c‖, ()

∫ ∞

t

(s – t)n–

(n – )!

[
M

∥∥∥∥
∫ f

e
Q(s,σ ) dσ

∥∥∥∥ +
∥∥h(s)

∥∥]
ds ≤ ‖c‖ – pM – pM, ()

∫ ∞

t

(s – t)n–

(n – )!

[∥∥∥∥
∫ d

c
Q(s, τ ) dτ

∥∥∥∥ +
∥∥∥∥
∫ f

e
Q(s,σ ) dσ

∥∥∥∥
]

ds ≤ p – p, ()

and one defines an operator T on A as follows:

(Tx)(t) =

⎧⎪⎪⎨
⎪⎪⎩


r(t) {c –

∫ b
a p(t, θ )x(t – θ ) dθ +

∫ ∞
t

(s–t)n–

(n–)! [
∫ d

c Q(s, τ )x(s – τ ) dτ

–
∫ f

e Q(s,σ )x(s – σ ) dσ – h(s)] ds} t ≥ t,

(Tx)(t) t ≤ t ≤ t.

It is easy to see that T is continuous, for t ≥ t, x ∈ A. By using (), we have

∥∥(Tx)(t)
∥∥ ≤ 

r(t)

{
‖c‖ +

∥∥∥∥
∫ ∞

t

(s – t)n–

(n – )!

[∫ d

c
Q(s, τ )x(s – τ ) dτ – h(s)

]
ds

∥∥∥∥
}

≤ 
p

{
‖c‖ +

∫ ∞

t

(s – t)n–

(n – )!

[
M

∥∥∥∥
∫ d

c
Q(s, τ ) dτ

∥∥∥∥ +
∥∥h(s)

∥∥]
ds

}
≤ M,
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and taking () into account, we have

∥∥(Tx)(t)
∥∥ ≥ 

r(t)

{
‖c‖ –

∫ b

a
p(t, θ )

∥∥x(t – θ )
∥∥dθ

+
∥∥∥∥
∫ ∞

t

(s – t)n–

(n – )!

[∫ f

e
Q(s,σ )x(s – σ ) dσ – h(s)

]
ds

∥∥∥∥
}

≥ 
p

{
‖c‖ – pM –

∫ ∞

t

(s – t)n–

(n – )!

(
M

∥∥∥∥
∫ f

e
Q(s,σ ) dσ

∥∥∥∥ +
∥∥h(s)

∥∥)
ds

}

≥ M.

These show that TA ⊂ A, since A is a bounded, closed, and convex subset of �, in order
to apply the contraction principle, we have to show that T is a contraction mapping on A.
For ∀x, x ∈ A, and t ≥ t,

∥∥(Tx)(t) – (Tx)(t)
∥∥

≤ 
r(t)

{∫ b

a
p(t, θ )

∥∥x(t – θ ) – x(t – θ )
∥∥dθ

+
∥∥∥∥
∫ ∞

t

(s – t)n–

(n – )!

[∫ d

c
Q(s, τ )x(s – τ ) dτ –

∫ f

e
Q(s,σ )x(s – σ ) dσ – h(s)

]
ds

∥∥∥∥
–

∥∥∥∥
∫ ∞

t

(s – t)n–

(n – )!

[∫ d

c
Q(s, τ )x(s – τ ) dτ –

∫ f

e
Q(s,σ )x(s – σ ) dσ – h(s)

]
ds

∥∥∥∥
}

≤ 
r(t)

{
p‖x – x‖ +

∫ ∞

t

(s – t)n–

(n – )!

[∥∥∥∥
∫ d

c
Q(s, τ ) dτ

∥∥∥∥
∥∥x(s – τ ) – x(s – τ )

∥∥

+
∥∥∥∥
∫ f

e
Q(s,σ ) dσ

∥∥∥∥
∥∥x(s – σ ) – x(s – σ )

∥∥]
ds

}
,

using (),

∥∥(Tx)(t) – (Tx)(t)
∥∥

≤ 
p

‖x – x‖
{

p +
∫ ∞

t

(s – t)n–

(n – )!

[∥∥∥∥
∫ d

c
Q(s, τ ) dτ

∥∥∥∥ +
∥∥∥∥
∫ f

e
Q(s,σ ) dσ

∥∥∥∥
]

ds
}

< ‖x – x‖,

which shows that T is a contraction mapping on A and therefore there exists a unique
solution, obviously a bounded positive solution of () x ∈ A, such that Tx = x. The proof
is complete. �

Theorem  Assume that – < p ≤ ∫ b
a p(t, θ ) dθ ≤  and that () holds.

Then equation () has a bounded nonoscillatory solution.

Proof Let � be the set of all continuous and bounded functions on [t,∞) with the sup
norm. Set A = {x ∈ �, M ≤ ‖x(t)‖ ≤ M, t ≥ t}, where M, M are two positive constants
such that M

–p
< ‖c‖ < ( + p)M,  ≤ r(t) ≤ 

–p
. From (), one can choose a t ≥ t + b,
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sufficiently large t ≥ t such that

∫ ∞

t

(s – t)n–

(n – )!

[
M

∥∥∥∥
∫ d

c
Q(s, τ ) dτ

∥∥∥∥ +
∥∥h(s)

∥∥]
ds ≤ ( + p)M – ‖c‖, ()

∫ ∞

t

(s – t)n–

(n – )!

[
M

∥∥∥∥
∫ f

e
Q(s,σ ) dσ

∥∥∥∥ +
∥∥h(s)

∥∥]
ds ≤ ‖c‖ +

M

p
, ()

∫ ∞

t

(s – t)n–

(n – )!

[∥∥∥∥
∫ d

c
Q(s, τ ) dτ

∥∥∥∥ +
∥∥∥∥
∫ f

e
Q(s,σ ) dσ

∥∥∥∥
]

ds ≤  + p, ()

and one defines an operator T on A as follows:

(Tx)(t) =

⎧⎪⎪⎨
⎪⎪⎩


r(t) {c –

∫ b
a p(t, θ )x(t – θ ) dθ +

∫ ∞
t

(s–t)n–

(n–)! [
∫ d

c Q(s, τ )x(s – τ ) dτ

–
∫ f

e Q(s,σ )x(s – σ ) dσ – h(s)] ds} t ≥ t,

(Tx)(t) t ≤ t ≤ t.

It is easy to see that T is continuous, for t ≥ t, x ∈ A. By using (), we have

∥∥(Tx)(t)
∥∥ ≤ 

r(t)

{
‖c‖ –

∫ b

a
p(t, θ )

∥∥x(t – θ )
∥∥dθ

+
∥∥∥∥
∫ ∞

t

(s – t)n–

(n – )!

[∫ d

c
Q(s, τ )x(s – τ ) dτ – h(s)

]
ds

∥∥∥∥
}

≤ ‖c‖ – pM +
∫ ∞

t

(s – t)n–

(n – )!

[
M

∥∥∥∥
∫ d

c
Q(s, τ ) dτ

∥∥∥∥ +
∥∥h(s)

∥∥]
ds

≤ M,

and taking () into account, we have

∥∥(Tx)(t)
∥∥ ≥ 

r(t)

{
‖c‖ –

∥∥∥∥
∫ ∞

t

(s – t)n–

(n – )!

[∫ f

e
Q(s,σ )x(s – σ ) dσ – h(s)

]
ds

∥∥∥∥
}

≥ –p

{
‖c‖ –

∫ ∞

t

(s – t)n–

(n – )!

[
M

∥∥∥∥
∫ f

e
Q(s,σ ) dσ

∥∥∥∥ +
∥∥h(s)

∥∥]
ds

}

≥ M.

These show that TA ⊂ A, since A is a bounded, closed, and convex subset of �, in order
to apply the contraction principle, we have to show that T is a contraction mapping on A.
For ∀x, x ∈ A, and t ≥ t,

∥∥(Tx)(t) – (Tx)(t)
∥∥

≤ 
r(t)

{∫ b

a
p(t, θ )

∥∥x(t – θ ) – x(t – θ )
∥∥dθ

+
∥∥∥∥
∫ ∞

t

(s – t)n–

(n – )!

[∫ d

c
Q(s, τ )x(s – τ ) dτ –

∫ f

e
Q(s,σ )x(s – σ ) dσ – h(s)

]
ds

∥∥∥∥
–

∥∥∥∥
∫ ∞

t

(s – t)n–

(n – )!

[∫ d

c
Q(s, τ )x(s – τ ) dτ –

∫ f

e
Q(s,σ )x(s – σ ) dσ – h(s)

]
ds

∥∥∥∥
}
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≤ 
r(t)

{
–p‖x – x‖ +

∫ ∞

t

(s – t)n–

(n – )!

[∥∥∥∥
∫ d

c
Q(s, τ ) dτ

∥∥∥∥
∥∥x(s – τ ) – x(s – τ )

∥∥

+
∥∥∥∥
∫ f

e
Q(s,σ ) dσ

∥∥∥∥
∥∥x(s – σ ) – x(s – σ )

∥∥]
ds

}
.

Or using (),

∥∥(Tx)(t) – (Tx)(t)
∥∥

≤ ‖x – x‖
(

–p + KL
∫ ∞

t

(s – t)n–

(n – )!

[∥∥∥∥
∫ d

c
Q(s, τ ) dτ

∥∥∥∥ +
∥∥∥∥
∫ f

e
Q(s,σ ) dσ

∥∥∥∥
]

ds
)

< ‖x – x‖,

which shows that T is a contraction mapping on A and therefore there exists a unique
solution, obviously a bounded positive solution of () x ∈ A, such that Tx = x. The proof
is complete. �

Theorem  Assume that –∞ < p < p ≤ ∫ b
a p(t, θ ) dθ ≤ p < – and that () holds.

Then equation () has a bounded nonoscillatory solution.

Proof Let � be the set of all continuous and bounded functions on [t,∞) with the sup
norm. Set A = {x ∈ �, M ≤ ‖x(t)‖ ≤ M, t ≥ t}, where M, M are two positive constants
such that –pM < ‖c‖ < (–p + p)M, –p < r(t) < –p. From (), one can choose a
t ≥ t + b, sufficiently large t ≥ t, such that

∫ ∞

t

(s – t)n–

(n – )!

[
M

∥∥∥∥
∫ d

c
Q(s, τ ) dτ

∥∥∥∥ +
∥∥h(s)

∥∥]
ds ≤ –pM + pM – ‖c‖, ()

∫ ∞

t

(s – t)n–

(n – )!

[
M

∥∥∥∥
∫ f

e
Q(s,σ ) dσ

∥∥∥∥ +
∥∥h(s)

∥∥]
ds ≤ ‖c‖ + pM, ()

∫ ∞

t

(s – t)n–

(n – )!

[∥∥∥∥
∫ d

c
Q(s, τ ) dτ

∥∥∥∥ +
∥∥∥∥
∫ f

e
Q(s,σ ) dσ

∥∥∥∥
]

ds ≤ p – p, ()

and one defines an operator T on A as follows:

(Tx)(t) =

⎧⎪⎪⎨
⎪⎪⎩


r(t) {c –

∫ b
a p(t, θ )x(t – θ ) dθ +

∫ ∞
t

(s–t)n–

(n–)! [
∫ d

c Q(s, τ )x(s – τ ) dτ

–
∫ f

e Q(s,σ )x(s – σ ) dσ – h(s)] ds]} t ≥ t,

(Tx)(t) t ≤ t ≤ t.

It is easy to see that T is continuous, for t ≥ t, x ∈ A. By using (), we have

∥∥(Tx)(t)
∥∥ ≤ 

r(t)

{
‖c‖ –

∫ b

a
p(t, θ )

∥∥x(t – θ )
∥∥dθ

+
∥∥∥∥
∫ ∞

t

(s – t)n–

(n – )!

[∫ d

c
Q(s, τ )x(s – τ ) dτ – h(s)

]
ds

∥∥∥∥
}
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≤ 
–p

{
‖c‖ – pM +

∫ ∞

t

(s – t)n–

(n – )!

[
M

∥∥∥∥
∫ d

c
Q(s, τ ) dτ

∥∥∥∥ +
∥∥h(s)

∥∥]
ds

}

≤ M,

and taking () into account, we have

∥∥(Tx)(t)
∥∥ ≥ 

r(t)

{
‖c‖ –

∥∥∥∥
∫ ∞

t

(s – t)n–

(n – )!

[∫ f

e
Q(s,σ )x(s – σ ) dσ – h(s)

]
ds

∥∥∥∥
}

≥ 
–p

{
‖c‖ –

∫ ∞

t

(s – t)n–

(n – )!

[
M

∥∥∥∥
∫ f

e
Q(s,σ ) dσ

∥∥∥∥ +
∥∥h(s)

∥∥]
ds

}

≥ M.

These show that TA ⊂ A, since A is a bounded, closed, and convex subset of �, in order
to apply the contraction principle, we have to show that T is a contraction mapping on A.
For ∀x, x ∈ A, and t ≥ t,

∥∥(Tx)(t) – (Tx)(t)
∥∥

≤ 
r(t)

{∫ b

a
p(t, θ )

∥∥x(t – θ ) – x(t – θ )
∥∥dθ

+
∥∥∥∥
∫ ∞

t

(s – t)n–

(n – )!

[∫ d

c
Q(s, τ )x(s – τ ) dτ –

∫ f

e
Q(s,σ )x(s – σ ) dσ – h(s)

]∥∥∥∥ds

–
∥∥∥∥
∫ ∞

t

(s – t)n–

(n – )!

[∫ d

c
Q(s, τ )x(s – τ ) dτ –

∫ f

e
Q(s,σ )x(s – σ ) dσ – h(s)

]
ds

∥∥∥∥
}

≤ 
r(t)

{
–p‖x – x‖ +

∫ ∞

t

(s – t)n–

(n – )!

[∥∥∥∥
∫ d

c
Q(s, τ ) dτ

∥∥∥∥
∥∥∥∥x(s – τ ) – x(s – τ )

∥∥∥∥
+

∥∥∥∥
∫ f

e
Q(s,σ ) dσ

∥∥∥∥
∥∥x(s – σ ) – x(s – σ )

∥∥]
ds

}
.

Or using (),

∥∥(Tx)(t) – (Tx)(t)
∥∥

≤ 
–p

‖x – x‖
{

–p +


(n – )!

∫ ∞

t

(s – t)n–

r(s)

[∥∥∥∥
∫ d

c
Q(s, τ ) dτ

∥∥∥∥
+

∥∥∥∥
∫ f

e
Q(s,σ ) dσ

∥∥∥∥
]

ds
}

< ‖x – x‖,

which shows that T is a contraction mapping on A and therefore there exists a unique
solution, obviously a bounded positive solution of () x ∈ A, such that Tx = x. The proof
is complete. �
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3 Example
Consider the higher-order neutral differential equation with distributed coefficients and
delays

(


 + sin t
x(t) +

∫ π

π


e–tx(t – θ ) dθ

)()

+
∫ π



π


τe–t

(






 

)
x(t – τ ) dτ

–
∫ π

π

e–t

(
 






)
x(t – σ ) dσ

= e–t(– cos t – π sin t – π + π)
(




)
. ()

Here, n = ,

r(t) =


 + sin t
, a = c =

π


, b = e = π , d =

π


,

f = π , h(t) = e–t(– cos t – π sin t – π + π)
(




)
,

Q(t) =
∫ π



π


τe–t

(






 

)
dτ , Q(t) =

∫ π

π

e–t

(
 






)
dσ .

It is easy to see that  ≤ r(t) ≤ ,

∫ π

π


e–t dθ =
π


e–t > (t > ),

∫ ∞

t
s

∫ π


π


τe–s
∥∥∥∥
(







 

)∥∥∥∥dτ ds < ∞,

∫ ∞

t
s

∫ π

π

e–s
∥∥∥∥
(

 






)∥∥∥∥dσ ds < ∞,

∫ ∞

t
se–s(– cos s – π sin s – π + π)∥∥∥∥

(



)∥∥∥∥ds < ∞,

thus Theorem  holds.
In fact, x(t) =

(+sin t
+sin t

)
is a nonoscillatory solution of equation ().

4 Remark
When r(t) ≡ , h(t) = , equation () becomes equation (), thus this paper improves re-
sults of Candan and Gecgel [].

Competing interests
The authors declare that there is no conflict of interests regarding the publication of this article.

Authors’ contributions
All authors contributed equally to the writing of this paper. All authors read and approved the final manuscript.

Author details
1College of Mathematics and Computer Sciences, Shanxi Datong University, Datong, Shanxi 037009, P.R. China. 2School
of Mathematical Sciences, Shanxi University, Taiyuan, Shanxi 030006, P.R. China.



Liu et al. Advances in Difference Equations  (2017) 2017:41 Page 10 of 10

Acknowledgements
This research is supported by Scientific Research Project Shanxi Datong University (No. 2011K3).

Received: 12 July 2016 Accepted: 7 December 2016

References
1. Zhang, W, Feng, W, Yan, J, Song, J: Existence of nonoscillatory solutions of first-order linear neutral delay differential

equations. Comput. Math. Appl. 49, 1021-1027 (2005)
2. Candan, T: The existence of nonoscillatory solutions of higher order nonlinear neutral differential equations. Appl.

Math. Lett. 25, 412-416 (2012)
3. Candan, T: Existence of nonoscillatory solutions for system of higher order neutral differential equations. Math.

Comput. Model. 57, 375-381 (2013)
4. Liu, Y, Zhang, J, Yan, J: Existence of nonoscillatory solutions for system of higher-order neutral differential equations

with distributed deviating arguments. Discrete Dyn. Nat. Soc. 2013, 1-8 (2013)
5. Candan, T: Existence of nonoscillatory solutions of first-order nonlinear neutral differential equations. Appl. Math.

Lett. 26, 1182-1186 (2013)
6. Candan, T, Gecgel, AM: Existence of nonoscillatory solutions for system of higher order neutral differential equations

with distributed delay. J. Comput. Anal. Appl. 18, 266-276 (2015)
7. Candan, T, Dahiya, RS: Existence of nonoscillatory solutions of first and second order neutral differential equations

with distributed deviating arguments. J. Franklin Inst. 347, 1309-1316 (2010)
8. Liu, Y, Zhang, J, Yan, J: Existence of nonoscillatory solutions of higher order neutral differential equations with

distributed deviating arguments. Acta Math. Appl. Sin. 38(2), 235-243 (Chinese) (2015)
9. Zhou, Y, Zhang, BG: Existence of nonoscillatory solutions of higher-order neutral differential equations with positive

and negative coefficients. Appl. Math. Lett. 15, 867-874 (2002)
10. Györi, I, Ladas, G: Oscillation Theory of Delay Differential Equations with Applications. Clarendon Presss, Oxford (1991)


	Existence of nonoscillatory solutions for system of higher-order neutral differential equations with distributed coefﬁcients and delays
	Abstract
	Keywords

	Introduction and preliminary
	The main results
	Example
	Remark
	Competing interests
	Authors' contributions
	Author details
	Acknowledgements
	References


