Advances in Difference Equations a SpringerOpen Journal

RESEARCH

Open Access

Sign-changing solutions to Schrödinger-Kirchhoff-type equations with critical exponent

Liping Xu^{1*} and Haibo Chen²

*Correspondence: x.liping@126.com ¹Department of Mathematics and Statistics, Henan University of Science and Technology, Luoyang, 471003, P.R. China Full list of author information is available at the end of the article

Abstract

In this paper, we study the following Schrödinger-Kirchhoff-t, pequation:

 $\begin{cases} -(a+b\int_{\mathbf{R}^{3}}|\nabla u|^{2} dx)\Delta u + u = k(x)|u|^{2^{*}-2}u + \mu h(x)u, & \text{in } \mathbf{R}^{\frac{1}{2}}\\ u \in H^{1}(\mathbf{R}^{3}), \end{cases}$

where $a, b, \mu > 0$ are constants, $2^* = 6$ is the critic. Sobolev exponent in three spatial dimensions. Under appropriate assump the nonnegative functions k(x) and h(x), we establish the existence of positive and sign changing solutions by variational methods.

MSC: 35J20; 35J65; 35J60

Keywords: Schrödinger-Kirc, off-type equations; critical nonlinearity; positive solutions; sign-chapting solutions; variational methods

1 Intro Juction

In this per, we investigate the following Schrödinger-Kirchhoff-type problem:

$$u \in H^{1}(\mathbb{R}^{3}),$$
(1.1)

where a, b > 0 are constants, and $2^* = 6$ is the critical Sobolev exponent in dimension three. We assume that μ and the functions k(x) and h(x) satisfy the following hypotheses:

 $(\mu_1) \quad 0 < \mu < \tilde{\mu}$, where $\tilde{\mu}$ is defined by

$$\tilde{\mu} := \inf_{u \in H^1(\mathbb{R}^3) \setminus \{0\}} \left\{ \int_{\mathbb{R}^3} (a |\nabla u|^2 + |u|^2) \, dx : \int_{\mathbb{R}^3} h(x) |u|^2 \, dx = 1 \right\};$$

- (k₁) $k(x) \ge 0, \forall x \in \mathbb{R}^3$;
- (k₂) there exist $x_0 \in \mathbb{R}^3$, $\sigma_1 > 0$, $\rho_1 > 0$, and $1 \le \alpha < 3$ such that $k(x_0) = \max_{x \in \mathbb{R}^3} k(x)$ and

$$|k(x) - k(x_0)| \le \sigma_1 |x - x_0|^{\alpha}$$
 for $|x - x_0| < \rho_1$;

© 2016 Xu and Chen. This article is distributed under the terms of the Creative Commons Attribution 4.0 International License (http://creativecommons.org/licenses/by/4.0/), which permits unrestricted use, distribution, and reproduction in any medium, provided you give appropriate credit to the original author(s) and the source, provide a link to the Creative Commons license, and indicate if changes were made.

(h₁) $h(x) \ge 0$ for any $x \in \mathbb{R}^3$ and $h(x) \in L^{\frac{3}{2}}(\mathbb{R}^3)$; (h₂) there exist $\sigma_2 > 0$ and $\rho_2 > 0$ such that $h(x) \ge \sigma_2 |x - x_0|^{-\beta}$ for $|x - x_0| < \rho_2$.

The Kirchhof-type problem is related to the stationary analogue of the equation

$$u_{tt} - \left(a + b \int_{\Omega} |\nabla u|^2 dx\right) \Delta u = f(x, u) \quad \text{in } \Omega,$$

where Ω is a bounded domain in \mathbb{R}^N , *u* denotes the displacement, f(x, u) is the extern force, and *b* is the initial tension, whereas *a* is related to the intrinsic properties of the string (such as Young's modulus). Equations of this type arise in the study of string or membrane vibration and were proposed by Kirchhoff in 1883 (see [1]) to describe the transversal oscillations of a stretched string, particularly, taking into account the subsequence hange in string length caused by oscillations.

Kirchhoff-type problems are often referred to as being nonlocal because of the presence of the integral over the entire domain Ω , which provokes some momentum because of difficulties. Similar nonlocal problems also model several physical and conclusion dystems where *u* describes a process that depends on the average of itself, for example, the population density; see [2, 3]. Kirchhoff-type problems have received non-other trention. Some important and interesting results can be found in, for example, [4–6] and the references therein.

The solvability of the following Schrödinger . hoff-type equation (1.2) has also been well studied in general dimension by variou without

$$-\left(a+b\int_{\mathbb{R}^N}|\nabla u|^2\,dx\right)\Delta u+V(x,\quad f(x,i)\quad\text{in }\mathbb{R}^N.$$
(1.2)

For example, Wu [7] and p ony oth \sim [8–13], using variational methods, proved the existence of nontrivial solutions to (1.2) with subcritical nonlinearities. Li and Ye [14] obtained the existence of a positive solution for (1.2) with critical exponents. More recently, Wang *et al.* [15] and Lippe and Zmang [16] proved the existence and multiplicity of positive solutions of (1.2) with c. all growth and a small positive parameters.

The procenn of Finding sign-changing solutions is a very classical problem. In general, this preview each more difficult than finding a mere solution. There were several abstract theory or methods to study sign-changing solutions; see, for example, [17, 18] and the references therein. In recent years, Zhang and Perera [19] obtained sign-changing solutions of (1.2) with superlinear or asymptotically linear terms. More recently, Mao and Zl ang [20] use minimax methods and invariant sets of descent flow to prove the existence of nontrivial solutions and sign-changing solutions for (1.2) without the P.S. condition. Motivated by the works described, in this paper, our aim is to study the existence of positive and sign-changing solutions for problem (1.1). The method is inspired by Hirano and Shioji [21] and Huang *et al.* [22]; however, their arguments cannot be directly applied here. To our best knowledge, there are very few works up to now studying sign-changing solutions for Schrödinger-Kirchhoff-type problem with critical exponent, that is, problem (1.1). Our main results are as follows.

Theorem 1.1 Assume that (μ_1) , (k_1) , (k_2) , and (h_1) - (h_2) hold. Then, for $1 < \beta < 3$, problem (1.1) possesses at least one positive solution.

Theorem 1.2 Assume that (μ_1) , (k_1) , (k_2) , and (h_1) - (h_2) hold. Then, for $\frac{3}{2} < \beta < 3$, problem (1.1) possesses at least one sign-changing solution.

Notation

- $H^1(\mathbb{R}^3)$ is the Sobolev space equipped with the norm $||u||_{H^1(\mathbb{R}^3)}^2 = \int_{\mathbb{R}^3} (|\nabla u|^2 + |u|^2) dx$.
- We define $||u||^2 := \int_{\mathbb{R}^3} (a|\nabla u|^2 + |u|^2) dx$ for $u \in H^1(\mathbb{R}^3)$. Note that $||\cdot||$ is an equivalent norm on $H^1(\mathbb{R}^3)$.
- For any $1 \le s \le \infty$, $||u||_{L^s} := (\int_{\mathbb{R}^3} |u|^s dx)^{\frac{1}{s}}$ denotes the usual norm of the Lebesgue space $L^s(\mathbb{R}^3)$.
- By $D^{1,2}(\mathbb{R}^3)$ we denote the completion of $C_0^{\infty}(\mathbb{R}^3)$ with respect to the norm $\|u\|_{D^{1,2}(\mathbb{R}^3)}^2 := \int_{\mathbb{R}^3} |\nabla u|^2 dx.$
- *S* denotes the best Sobolev constant defined by $S = \inf_{u \in D^{1,2}(\mathbb{R}^3) \setminus \{0\}} \frac{\int_{\mathbb{R}^3} |\nabla y_{v_n}|}{||v_n||}$
- *C* > 0 denotes various positive constants.

The outline of the paper is given as follows. In Section 2, we prease int some preliminary results. In Sections 3 and 4, we give proofs of Theorems 1.1 and 2, respectively.

2 The variational framework and preliminary

In this section, we give some preliminary lemmas and the variational setting for (1.1). It is clear that system (1.1) is the Euler-Lagrance eq. ions of the functional $I: H^1(\mathbb{R}^3) \to \mathbb{R}$ defined by

$$I(u) = \frac{1}{2} ||u||^2 + \frac{b}{4} \left(\int_{\mathbb{R}^3} |\nabla u|^2 dx \right) = \int_{\mathbb{R}^3} k(x) |u|^6 dx - \frac{\mu}{2} \int_{\mathbb{R}^3} h(x) |u|^2 dx.$$
(2.1)

Obviously, I is a well-defined C^1 functional and satisfies

$$\langle I'(u), v \rangle = \int (a \nabla u + v) dx + b \int_{\mathbb{R}^3} |\nabla u|^2 dx \int_{\mathbb{R}^3} \nabla u \nabla v dx$$
$$- \int_{\mathbb{R}^3} (k(x)|u|^4 uv + \mu h(x)uv) dx$$
(2.2)

fr $v \in H^1(\mathbb{R}^3)$. It is well known that $u \in H^1(\mathbb{R}^3)$ is a critical point of the functional *I* if and on. If *u* is a weak solution of (1.1).

Lemma 2.1 Assume that (h_1) holds. Then the function $\psi_h : u \in H^1(\mathbb{R}^3) \mapsto \int_{\mathbb{R}^3} h(x)u^2 dx$ is *v* eakly continuous, and for each $v \in H^1(\mathbb{R}^3)$, $\varphi_h : u \in H^1(\mathbb{R}^3) \mapsto \int_{\mathbb{R}^3} h(x)uv dx$ is also weakly continuous.

The proof of Lemma 2.1 is a direct conclusion of [23], Lemma 2.13.

Lemma 2.2 Assume that (h_1) holds. Then the infimum

$$\tilde{\mu} := \inf_{u \in H^1(\mathbb{R}^3) \setminus \{0\}} \left\{ \int_{\mathbb{R}^3} \left(a |\nabla u|^2 + |u|^2 \right) dx : \int_{\mathbb{R}^3} h(x) |u|^2 \, dx = 1 \right\}$$

is achieved.

Proof The proof of Lemma 2.2 is the same as that of [24], Lemma 2.5. Here we omit it for simplicity. \Box

Lemma 2.3 Assume that (k_1) , (h_1) , and (μ_1) hold. Then the functional I possesses the following properties.

- (1) There exist $\rho, \gamma > 0$ such that $I(u) \ge \gamma$ for $||u|| = \rho$.
- (2) There exists $e \in H^1(\mathbb{R}^3)$ with $||e|| > \rho$ such that I(e) < 0.

Proof By Lemma 2.2 and the Sobolev inequality we obtain

$$I(u) \geq \frac{1}{2} \|u\|^2 - C\|u\|^6 - \frac{\mu}{2\tilde{\mu}} \|u\|^2 = \|u\|^2 \left(\frac{1}{2} - \frac{\mu}{2\tilde{\mu}} - C\|u\|^4\right)$$

Set $||u|| = \rho$ small enough such that $C\rho^4 \leq \frac{1}{4}(1 - \frac{\mu}{\tilde{u}})$. Then we have

$$I(u) \geq \frac{1}{4} \left(1 - \frac{\mu}{\tilde{\mu}} \right) \rho^2.$$

Choosing $\gamma = \frac{1}{4}(1 - \frac{\mu}{\tilde{\mu}})\rho^2$, we complete the proof of (1).

For t > 0 and some $u_0 \in H^1(\mathbb{R}^3)$ with $||u_0|| = 1$, it follow, (h_1) and (μ_1) that

$$I(tu_0) \leq \frac{1}{2}t^2 ||u_0||^2 + \frac{b}{4}t^4 \left(\int_{\mathbb{R}^3} |\nabla u_0|^2 \, dx\right)^2 - \frac{t^6}{c} \int_{\mathbb{R}^3} k(x) |u_0|^6 \, dx,$$

which implies that $I(tu_0) < 0$ for t > 0 large en. In. Hence, we can take an $e = t_1u_0$ for some $t_1 > 0$ large enough, and (2) follow.

Next, we define the Nehar ma fold *N* associated with *I* by

$$N := \left\{ u \in H^1(\mathbb{R}^3) \mid \{0\} : G(u) = 0 \right\}, \text{ where } G(u) = \langle I'(u), u \rangle.$$

Now we state so \sim properties of N.

Lemma 2. Assume that (μ_1) is satisfied. Then the following conclusions hold.

- (1) $al = u^1(\mathbb{R}^3) \setminus \{0\}$, there exists a unique t(u) > 0 such that $t(u)u \in N$. Moreover, $I(t_1, \dots, u = \max_{t>0} I(tu))$.
- 0 < t(u) < 1 in the case $\langle I'(u), u \rangle < 0$; t(u) > 1 in the case $\langle I'(u), u \rangle > 0$.
- (3) *is a continuous functional with respect to u in* $H^1(\mathbb{R}^3)$.

(4) $t(u) \rightarrow +\infty as ||u|| \rightarrow 0.$

Proof The proof is similar to that of [22], Lemma 2.4, and is omitted here.

3 Positive solution

In order to deduce Theorem 1.1, the following lemmas are important. Borrowing an idea from Lemma 3.6 in [14], we obtain the first result.

Lemma 3.1 For s, t > 0, the system

$$\begin{cases} f(t,s) = t - aS(\frac{s+t}{\lambda})^{\frac{1}{3}} = 0, \\ g(t,s) = s - bS^{2}(\frac{s+t}{\lambda})^{\frac{2}{3}} = 0, \end{cases}$$

(2.3)

has a unique solution (t_0, s_0) , where $\lambda > 0$ is a constant. Moreover, if

$$\begin{cases} f(t,s) \ge 0, \\ g(t,s) \ge 0, \end{cases}$$

then $t \ge t_0$ and $s \ge s_0$, where $t_0 = \frac{abS^3 + a\sqrt{b^2S^6 + 4\lambda aS^3}}{2\lambda}$ and $s_0 = \frac{bS^6 + 2\lambda abS^3 + b^2S^3\sqrt{b^3S^6 + 4\lambda aS^3}}{2\lambda^2}$.

Lemma 3.2 Assume that (μ_1) , (k_1) , and (h_1) hold. Let a sequence $\{u_n\} \subset N$ be such the $u_n \rightarrow u$ in $H^1(\mathbb{R}^3)$ and $I(u_n) \rightarrow c$, but any subsequence of $\{u_n\}$ does not converge strengly to u. Then one of the following results holds:

- (1) c > I(t(u)u) in the case $u \neq 0$ and $\langle I'(u), u \rangle < 0$;
- (2) $c \ge c^*$ in the case u = 0;
- (3) $c > c^*$ in the case $u \neq 0$ and $\langle I'(u), u \rangle \ge 0$;

where $c^* = \frac{abS^3}{4\|k\|_{\infty}} + \frac{b^3S^6}{24\|k\|_{\infty}^2} + \frac{(b^2S^4 + 4a\|k\|_{\infty}S)^{\frac{3}{2}}}{24\|k\|_{\infty}^2}$, and t(u) is defined as in Lemm. 2.4

Proof Part of the proof is similar to that of [22], Lemma 5. or Proposition 3.3. For the reader's convenience, we only sketch the proof. Since $u_n = u$ in $H^1(\mathbb{R}^3)$, we have $u_n = u \rightarrow 0$. Then by Lemma 2.1 we obtain that

$$\int_{\mathbb{R}^3} h(x) |u_n - u|^2 \, dx \to 0. \tag{3.1}$$

We obtain from the Brézis-Lieb lemma [26], (3. and $u_n \in N$ that

$$c + o(1) = I(u_n)$$

= $I(u) + \frac{1}{2} ||u_n - u||^2 + \frac{1}{4} \left(\int_{\mathbb{R}^3} |\nabla(u_n - u)|^2 dx \right)^2$
 $- \frac{1}{6} \int_{\mathbb{R}^3} |u_n - u|^6 dx + o(1)$ (3.2)

and

$$= \langle u_{n} \rangle, u_{n} \rangle$$

= $\langle I'(u), u \rangle + ||u_{n} - u||^{2} + b \left(\int_{\mathbb{R}^{3}} |\nabla(u_{n} - u)|^{2} dx \right)^{2}$
- $\int_{\mathbb{R}^{3}} k(x) |u_{n} - u|^{6} dx + o(1).$ (3.3)

Up to a subsequence, we may assume that there exist $l_i \ge 0$, i = 1, 2, 3, such that

$$\|u_n - u\|^2 \to l_1, \qquad b \left(\int_{\mathbb{R}^3} \left| \nabla (u_n - u) \right|^2 dx \right)^2 \to l_2,$$

$$\int_{\mathbb{R}^3} k(x) |u_n - u|^6 dx \to l_3.$$
(3.4)

Since any subsequence of $\{u_n\}$ does not converge strongly to u, we have $l_1 > 0$. Set $\gamma(t) = \frac{l_1}{2}t^2 + \frac{l_2}{4}t^4 - \frac{l_3}{6}t^6$ and $\eta(t) = g(t) + \gamma(t)$. By (3.3) and (3.4) we have $\eta'(1) = g'(1) + \gamma'(1) = 0$,

(3

(3.8)

and *t* = 1 is the only critical point of $\eta(t)$ in (0, + ∞), which implies that

$$\eta(1) = \max_{t>0} \eta(t).$$
(3.5)

We consider three situations:

(1) $u \neq 0$ and $\langle I'(u), u \rangle < 0$. Then by (3.3) and (3.4) we have

$$l_1 + l_2 - l_3 > 0.$$

Then,

$$\gamma'(t) = l_1 t + l_2 t^3 - l_3 t^5 > l_1 t + l_2 t^3 - (l_1 + l_2) t^5 = (1 - t^2) \left[l_1 t + (l_1 + l_2) t^3 \right] \ge 0$$
(3.7)

for any 0 < t < 1, which implies that

$$\gamma(t) > \gamma(0) = 0$$
 for any $t \in (0, 1)$.

Since $\langle I'(u), u \rangle < 0$, by Lemma 2.4 there exists t(u) > 0 such α , 0 < t(u) < 1. Then it follows from (3.8) that $\gamma(t(u)) > 0$. Therefore, we obtain from (3.2) and (3.5) that $c = \eta(1) > \eta(t(u)) = g(t(u)) + \gamma(t(u)) > I(t(u)u)$, which is applied at (1) holds.

(2) u = 0. Then by (3.2), (3.3), and (3.4) we

$$\begin{cases} l_1 + l_2 - l_3 = 0, \\ \frac{1}{2}l_1 + \frac{1}{4}l_2 - \frac{1}{6}l_3 = c. \end{cases}$$

By the definition of S y e see that

$$\int_{\mathbb{R}^{3}} |\nabla u_{n}|^{2} dx \leq \frac{S}{\|k_{n}\|_{\infty}^{1/3}} \left(\int_{\mathbb{R}^{3}} k(x) |u_{n}|^{6} dx \right)^{\frac{1}{3}},$$

$$b \left(\int_{\mathbb{R}^{3}} |\nabla u_{n}|^{2} dx \right)^{2} \geq b \frac{S^{2}}{\|k\|_{\infty}^{2/3}} \left(\int_{\mathbb{R}^{3}} k(x) |u_{n}|^{6} dx \right)^{\frac{2}{3}}.$$

Theı.

$$l_1 \ge aS \left(\frac{l_1 + l_2}{\|k\|_{\infty}}\right)^{\frac{1}{3}}$$
 and $l_2 \ge bS^2 \left(\frac{l_1 + l_2}{\|k\|_{\infty}}\right)^{\frac{2}{3}}$.

Obviously, if $l_1 > 0$, then l_2 , $l_3 > 0$. It follows from Lemma 3.1 that

$$c = \frac{1}{3}l_{1} + \frac{1}{12}l_{2}$$

$$\geq \frac{1}{3}\frac{abS^{3} + a\sqrt{b^{2}S^{6} + 4\|k\|_{\infty}aS^{3}}}{2\|k\|_{\infty}} + \frac{1}{12}\frac{bS^{6} + 2\|k\|_{\infty}abS^{3} + b^{2}S^{3}\sqrt{b^{3}S^{6} + 4\|k\|_{\infty}aS^{3}}}{2\|k\|_{\infty}^{2}}$$

$$= \frac{abS^{3}}{4\|k\|_{\infty}} + \frac{b^{3}S^{6}}{24\|k\|_{\infty}^{2}} + \frac{(b^{2}S^{4} + 4a\|k\|_{\infty}S)^{\frac{3}{2}}}{24\|k\|_{\infty}^{2}} := c^{*}.$$
(3.9)

(3) $u \neq 0$ and $\langle I'(u), u \rangle \ge 0$. We prove this case in two steps. Firstly, we consider $u \neq 0$ and $\langle I'(u), u \rangle = 0$. Then from Lemma 2.3 and Lemma 2.4 we get

$$I(u) = \max_{t>0} I(tu) > 0.$$
(3.10)

Since $u \neq 0$ and $\langle I'(u), u \rangle = 0$, as in (3.9), we obtain that

$$c = \eta(1) = I(u) + \frac{l_1}{3} + \frac{l_2}{12} > c^*.$$

Secondly, we prove the case $u \neq 0$ and $\langle I'(u), u \rangle > 0$. Set $t^{**} = (\frac{l_2 + \sqrt{l_2^2 + 4l_1 l_3}}{2l_3})^{\frac{1}{2}}$. Thus, $\gamma(t)$ attains its maximum at t^{**} , that is,

$$\begin{aligned} \gamma(t^{**}) &= \max_{t>0} \gamma(t) \\ &= \frac{l_1 l_2}{4 l_3} + \frac{l_2^2}{24 l_3^2} + \frac{(l_2^2 + 4 l_1 l_3)^{\frac{3}{2}}}{24 l_3^2} \\ &\geq \frac{a b S^3}{4 \|k\|_{\infty}} + \frac{b^3 S^6}{24 \|k\|_{\infty}^2} + \frac{(b^2 S^4 + 4a \|k\|_{\infty} S)^{\frac{3}{2}}}{24 \|k\|_{\infty}^2} = c^* \end{aligned}$$
(3.12)

It follows from Lemma 2.4 that $0 < t^{**} < 1$.7 on $I(\iota - \iota) \ge 0$. Therefore, by (3.2), (3.5), and (3.12) we obtain

$$c = \eta(1) > \eta(t^{**}) = I(t^{**}u) + \gamma(t^{**})$$

The proof of Lemma 3.2 is complete

Lemma 3.3 If the hypervises of Theorem 1.1 hold with $1 < \beta < 3$, then

$$c_{1} < \frac{abS^{3}}{4_{\parallel}} + \frac{b^{2}}{24} \|k\|_{\infty}^{2} + \frac{(b^{2}S^{4} + 4a\|k\|_{\infty}S)^{\frac{3}{2}}}{24} = c^{*}$$

rere c_1 *is coned by* $\inf_{u \in N} I(u)$.

Proof o prove this lemma, we borrow an idea employed in [22]. For ε , r > 0, define $w_{\varepsilon}(x) = -\frac{\varphi(x)\varepsilon^{\frac{1}{4}}}{(r+|x-x_0|^2)^{\frac{1}{2}}}$, where *C* is a normalizing constant, x_0 is given in (k_2) , and $\varphi \in C_0^{\infty}(\mathbb{R}^3)$, $0 \le \varphi \le 1$, $\varphi|_{B_r(0)} \equiv 1$, and supp $\varphi \subset B_{2r}(0)$. Using the method of [25], we obtain

$$\int_{\mathbb{R}^3} |\nabla w_{\varepsilon}|^2 \, dx = K_1 + O\left(\varepsilon^{\frac{1}{2}}\right), \qquad \int_{\mathbb{R}^3} |w_{\varepsilon}|^6 \, dx = K_2 + O\left(\varepsilon^{\frac{3}{2}}\right), \tag{3.13}$$

and

$$\int_{\mathbb{R}^{3}} |w_{\varepsilon}|^{s} dx = \begin{cases} K\varepsilon^{\frac{3}{4}}, & s \in [2,3), \\ K\varepsilon^{\frac{3}{4}} |\ln\varepsilon|, & s = 3, \\ K\varepsilon^{\frac{6-s}{4}}, & s \in (3,6), \end{cases}$$
(3.14)

(3.1)

where K_1 , K_2 , K are positive constants. Moreover, the best Sobolev constant is $S = K_1 K_2^{-\frac{1}{3}}$. By (3.13) we have

$$\frac{\int_{\mathbb{R}^3} |\nabla w_{\varepsilon}|^2 \, dx}{(\int_{\mathbb{R}^3} w_{\varepsilon}^6 \, dx)^{\frac{1}{3}}} = S + O\left(\varepsilon^{\frac{1}{2}}\right). \tag{3.15}$$

By Lemma 2.4, for this w_{ε} , there exists a unique $t(w_{\varepsilon}) > 0$ such that $t(w_{\varepsilon})w_{\varepsilon} \in N$. Thus, $c_1 < I(t(w_{\varepsilon})w_{\varepsilon})$. Using (2.1), for t > 0, since $I(tw_{\varepsilon}) \to -\infty$ as $t \to \infty$, we easily see that $I(tw_{\varepsilon})$ has a unique critical $t(w_{\varepsilon}) > 0$ that corresponds to its maximum, that is, $I(t_{\varepsilon}w_{\varepsilon}) = \max_{t>0} I(tw_{\varepsilon})$. It follows from (1) of Lemma 2.3, $I(tw_{\varepsilon}) \to -\infty$ as $t \to \infty$, and the continuity of I that care exist two positive constants t_0 and T_0 such that $t_0 < t_{\varepsilon} < T_0$. Let $I(t_{\varepsilon}w_{\varepsilon}) = F(\varepsilon) + G(\varepsilon + H(\varepsilon))$, where

$$F(\varepsilon) = \frac{at_{\varepsilon}^2}{2} \int_{\mathbb{R}^3} |\nabla w_{\varepsilon}|^2 dx + \frac{bt_{\varepsilon}^4}{4} \left(\int_{\mathbb{R}^3} |\nabla w_{\varepsilon}|^2 dx \right)^2 - \frac{t_{\varepsilon}^6}{6} \int_{\mathbb{R}^3} k(x_0) |w_{\varepsilon}|^2 dx dx = \frac{t_{\varepsilon}^6}{6} \int_{\mathbb{R}^3} k(x_0) |w_{\varepsilon}|^6 dx - \frac{t_{\varepsilon}^6}{6} \int_{\mathbb{R}^3} k(x) |w_{\varepsilon}|^6 dx,$$

and

$$H(\varepsilon) = \frac{t_{\varepsilon}^2}{2} \int_{\mathbb{R}^3} |w_{\varepsilon}|^2 dx - \frac{\mu t_{\varepsilon}^2}{2} \int_{\mathbb{R}^3} h(x) |w_{\varepsilon}|^2 dx.$$

Set

$$\Phi(t) = \frac{at^2}{2} \int_{\mathbb{R}^3} |\nabla w_\varepsilon|^2 \, dx + \frac{bt^4}{4} \left(\int_{\mathbb{R}^3} |\nabla w_\varepsilon|^2 \, dx \right)^2 - \frac{t^6}{6} \int_{\mathbb{R}^3} k(x_0) |w_\varepsilon|^6 \, dx$$

Note that $\Phi(t)$ attains its *p* aximul

$$t_{0}^{*} = \left(\frac{b(\int_{\mathbb{R}^{3}} |\nabla w_{\varepsilon}|^{-1} x)^{2} + \sqrt{b^{2}(\int_{\mathbb{R}^{3}} |\nabla w_{\varepsilon}|^{2} dx)^{4} + 4a(\int_{\mathbb{R}^{3}} |\nabla w_{\varepsilon}|^{2} dx)^{2} \int_{\mathbb{R}^{3}} k(x_{0})|w_{\varepsilon}|^{6} dx}{2\int_{\mathbb{R}^{3}} k(x_{0})|w_{\varepsilon}|^{6} dx}\right)^{\frac{1}{2}}.$$

Then

$$\max_{t \ge 0} (t) = \Phi(t_0^*) = \frac{abS^3}{4\|k\|_{\infty}} + \frac{b^3S^6}{24\|k\|_{\infty}^2} + \frac{(b^2S^4 + 4a\|k\|_{\infty}S)^{\frac{3}{2}}}{24\|k\|_{\infty}^2} + O(\varepsilon^{\frac{1}{2}})$$
(3.16)

for ε > small enough. Then we have

$$F(\varepsilon) \le c^* + O\left(\varepsilon^{\frac{1}{2}}\right). \tag{3.17}$$

By (3.36) of [22] we have

$$G(\varepsilon) \le C\varepsilon^{\frac{1}{2}}.\tag{3.18}$$

From (3.38) of [22], (3.14), and the boundedness of t_{ε} we obtain

$$H(\varepsilon) = \frac{t_{\varepsilon}^{2}}{2} \int_{\mathbb{R}^{3}} |w_{\varepsilon}|^{2} dx - \frac{\mu t_{\varepsilon}^{2}}{2} \int_{\mathbb{R}^{3}} h(x) |w_{\varepsilon}|^{2} dx$$

$$\leq C \varepsilon^{\frac{1}{2}} - \mu C \varepsilon^{1 - \frac{\beta}{2}}.$$
(3.19)

(3.21)

Since $1 < \beta < 3$, for fixed $\mu > 0$, we obtain

$$\frac{H(\varepsilon)}{\varepsilon^{\frac{1}{2}}} \to -\infty \quad \text{as } \varepsilon \to 0.$$
(3.20)

It follows from (3.17), (3.18), and (3.20) that the proof of Lemma 3.3 is complete.

Proof of Theorem 1.1 By the definition of c_1 there exists a sequence $\{u_n\} \subset N$ such that $I(u_n) \to c_1$ as $n \to \infty$. Then we obtain that

$$||u_n||^2 + b \left(\int_{\mathbb{R}^3} |\nabla u_n|^2 \, dx \right)^2 - \int_{\mathbb{R}^3} \mu h(x) |u_n|^2 \, dx = \int_{\mathbb{R}^3} k(x) |u_n|^6 \, dx.$$

It follows from (3.21) and Lemma 2.2 that

$$c_{1} + o(1) = \frac{1}{3} \left(\|u_{n}\|^{2} - \mu \int_{\mathbb{R}^{3}} h(x) |u_{n}|^{2} dx \right) + \left(\frac{b}{4} - \frac{b}{6} \right) \left(\int |v_{n}|^{2} dx \right)$$

$$\geq \frac{1}{3} \left(1 - \frac{\mu}{\tilde{\mu}} \right) \|u_{n}\|^{2}, \qquad (3.22)$$

which implies the boundedness of $\{u_n\}$ in $H^1(\mathbb{R}^3)$ since $0 < \mu < \tilde{\mu}$. Then there exists a subsequence of $\{u_n\}$, still denoted by $\{u_n\}$, such that $\dots \rightarrow u$ in $H^1(\mathbb{R}^3)$. By (2) of Lemma 3.2 and Lemma 3.3 we have $u \neq 0$. By the definition of t(u) we get $t(u)u \in N$. So $I(t(u)u) \ge c_1$. We claim that $u_n \rightarrow u$ in $H^1(\mathbb{R}^3)$. Off privise, by (1) and (3) of Lemma 3.2, we would get that $c_1 > I(t(u)u)$ or $c_1 > c^*$. In any case, get i contradiction since $c_1 < c^*$. Therefore, $\{u_n\}$ converges strongly to u. Thus, $\dots \in N$ and $i(u) = c_1$. By the Lagrange multiplier rule there exists $\theta \in \mathbb{R}$ such that $I'(u) = \theta G'(u)$ and thus

$$0 = \langle I'(u), u \rangle = \theta \left(2 \int_{\mathbb{R}^3} |\nabla u|^2 \, dx \right)^2 - 6 \int_{\mathbb{R}^3} k(x) |u|^6 \, dx - 2\mu \int_{\mathbb{R}^3} h(x) |u|^2 \, dx \right).$$

Since $u \in \mathcal{M}$ we get.

$$0 = \theta \sqrt{4} \left(\|u\|^2 - \mu \int_{\mathbb{R}^3} h(x) |u|^2 \, dx \right) - 2b \left(\int_{\mathbb{R}^3} |\nabla u|^2 \, dx \right)^2 \right),$$

which implies that $\theta = 0$ and u is a nontrivial critical point of the functional I in $H^1(\mathbb{R}^3)$. TI erefore, the nonzero function u can solve Eq. (1.1), that is,

$$-\left(a+b\int_{\mathbb{R}^{3}}|\nabla u|^{2}\,dx\right)\Delta u+u=k(x)|u|^{2^{*}-2}u+\mu h(x)u.$$
(3.23)

In (3.23), using $u^- = \max\{-u, 0\}$ as a test function and integrating by parts, by (k₁), (h₂), and (μ_1) we obtain

$$0 = \int_{\mathbb{R}^{3}} a |\nabla u^{-}|^{2} dx + \int_{\mathbb{R}^{3}} |u^{-}|^{2} dx + b \int_{\mathbb{R}^{3}} |\nabla u|^{2} dx \int_{\mathbb{R}^{3}} |\nabla u^{-}|^{2} dx$$
$$+ \int_{\mathbb{R}^{3}} k(x) |u^{-}|^{2^{*}-2} |u^{-}|^{2} dx + \int_{\mathbb{R}^{3}} \mu h(x) |u^{-}|^{2} dx \ge 0.$$

Then $u^- = 0$ and $u \ge 0$. From Harnack's inequality [27] we can infer that u > 0 for all $x \in \mathbb{R}^3$. Therefore, u is a positive solution of (1.1). The proof is complete by choosing $\omega_0 = u$.

4 Sign-changing solution

This subsection is devoted to proving the existence of sign-changing solution of Eq. (1.1). Let $\overline{N} = \{u = u^+ - u^- \in H^1(\mathbb{R}^3) : u^+ \in N, u^- \in N\}$, where $u^{\pm} = \max\{\pm u, 0\}$. If $u^+ \neq 0$ and $u^- \neq 0$, then u is called a sign-changing function. We define $c_2 = \inf_{u \in \overline{N}} I(u)$.

Lemma 4.1 Assume that (μ_1) , (k_1) - (k_2) , and (h_1) - (h_2) hold. Then for $\frac{3}{2} < \beta < 3$, $c_2 < c_1 + A$

Proof By Lemma 2.4, using first the same argument as in [22] or [28], we have that there are $s_1 > 0$ and $s_2 \in \mathbb{R}$ such that

$$s_1\omega_0 + s_2\omega_\varepsilon \in \overline{N}.$$

Next, we prove that there exists $\varepsilon > 0$ small enough such that

$$\sup_{s_1>0,s_2\in\mathbb{R}}I(s_1\omega_0+s_2\omega_\varepsilon)< c_1+c^*.$$

Obviously, it follows from (2) of Lemma 2.3 that, for any $s_1 > 0$ a.d $s_2 \in \mathbb{R}$ satisfying $||s_1\psi_1 + s_2\omega_{\varepsilon}|| > \rho$, $I(s_1\omega_0 + s_2\omega_{\varepsilon}) < 0$. We only estimate $I(c, \omega_0 + s_2\omega)$ for all $||s_1\omega_0 + s_2\omega_{\varepsilon}|| \le \rho$. By calculation we see that

$$I(s_1\omega_0 + s_2\omega_{\varepsilon}) = I(s_1\omega_0) + \Pi_1 + \Gamma_2 + \Pi_3 + \Pi_4 - \Pi_5 + \Pi_6,$$
(4.3)

where

$$\begin{split} \Pi_{1} &= \frac{as_{2}^{2}}{2} \int_{\mathbb{R}^{3}} |\nabla w_{\varepsilon}|^{2} dx + \frac{bs_{2}^{4}}{4} \left(\int_{\mathbb{R}^{3}} |\nabla w_{\varepsilon}|^{2} dx \right)^{2} - \frac{s_{2}^{6}}{6} \int_{\mathbb{R}^{3}} k(x_{0}) |w_{\varepsilon}|^{6} dx \\ \Pi_{2} &= \frac{s_{2}^{6}}{6} \int_{\mathbb{R}^{3}} k(x_{0}) |w_{\varepsilon_{1}} - \omega x - \frac{s_{2}^{6}}{6} \int_{\mathbb{R}^{3}} k(x) |w_{\varepsilon}|^{6} dx, \\ \Pi_{3} &= \frac{1}{6} \int_{\mathbb{R}^{3}} k(x) (|s_{1}\omega_{0}|^{6} + |s_{2}w_{\varepsilon}|^{6} - |s_{1}\omega_{0} + s_{2}w_{\varepsilon}|^{6}) dx, \\ \Pi_{4} &= \frac{2}{2} \int_{\mathbb{R}^{3}} |w_{\varepsilon}|^{2} dx - \frac{\mu s_{2}^{2}}{2} \int_{\mathbb{R}^{3}} h(x) |w_{\varepsilon}|^{2} dx, \\ \Pi_{5} &= \frac{b}{4} \bigg[\bigg(\int_{\mathbb{R}^{3}} |\nabla (s_{1}\omega_{0} + s_{2}\omega_{\varepsilon})|^{2} dx \bigg)^{2} - \bigg(\int_{\mathbb{R}^{3}} |\nabla (s_{1}\omega_{0})|^{2} dx \bigg)^{2} \\ &- \bigg(\int_{\mathbb{R}^{3}} |\nabla (s_{2}\omega_{\varepsilon})|^{2} dx \bigg)^{2} \bigg], \end{split}$$

and

$$\Pi_6 = \int_{\mathbb{R}^3} \left(a \nabla(s_1 \omega_0) \nabla(s_2 \omega_\varepsilon) + (s_1 \omega_0)(s_2 \omega_\varepsilon) - \mu h(x)(s_1 \omega_0)(s_2 \omega_\varepsilon) \right) dx.$$

By (3.16) we obtain that

$$\sup_{s_2 \in \mathbb{R}} \Pi_1 = \frac{abS^3}{4\|k\|_{\infty}} + \frac{b^3S^6}{24\|k\|_{\infty}^2} + \frac{(b^2S^4 + 4a\|k\|_{\infty}S)^{\frac{3}{2}}}{24\|k\|_{\infty}^2} + O(\varepsilon^{\frac{1}{2}}).$$
(4.4)

(4.2)

(4.1)

Page 11 of 14

(4.6)

It follows from (3.18) that

$$\Pi_2 \le C\varepsilon^{\frac{1}{2}}.\tag{4.5}$$

From the elementary inequality

$$|s+t|^q \ge |s|^q + |t|^q - C(|s|^{q-1}t + |t|^{q-1}s)$$
 for any $q \ge 1$,

the fact that $\omega_0 \in H^1(\mathbb{R}^3) \cap L^\infty(\mathbb{R}^3)$, and from (3.14) we have

$$\begin{split} \Pi_3 &\leq C \int_{\mathbb{R}^3} k(x) \big(|\omega_0|^5 \omega_\varepsilon + \omega_0 |w_\varepsilon|^5 \big) \, dx \\ &\leq \|k\|_\infty \|\omega_0\|_\infty \int_{\mathbb{R}^3} |w_\varepsilon|^5 \, dx + \|k\|_\infty \|\omega_0^5\|_\infty \int_{\mathbb{R}^3} w_\varepsilon \, dx \\ &\leq C\varepsilon^{\frac{1}{4}}. \end{split}$$

By (3.19) we have

$$\Pi_4 \le C\varepsilon^{\frac{1}{2}} - C\varepsilon^{1-\frac{\beta}{2}},\tag{4.7}$$

and using (3.13), we have

$$\Pi_{5} \leq \frac{b}{4} \left[4 \left(\int_{\mathbb{R}^{3}} |\nabla(s_{1}\omega_{0})|^{2} dx \right)^{2} \cdots \left(\int_{\mathbb{R}^{3}} |\nabla(s_{2}\omega_{\varepsilon})|^{2} dx \right)^{2} - \left(\int_{\mathbb{R}^{3}} |\nabla(s_{1}\omega_{0})|^{2} dx \right) \cdots \left(\int_{\mathbb{R}^{3}} |\nabla(s_{2}\omega_{\varepsilon})|^{2} dx \right)^{2} \right]$$
$$= \frac{3b}{4} \left(\int_{\mathbb{R}^{3}} |\nabla(s_{1}\omega_{0})|^{2} ds \right)^{2} + \frac{3b}{4} \left(\int_{\mathbb{R}^{3}} |\nabla(s_{2}\omega_{\varepsilon})|^{2} dx \right)^{2} \leq C + C\varepsilon^{\frac{3}{2}}.$$
(4.8)

Since a is the solution of (1.1), by the Sobolev inequality we obtain

$$\begin{split} \mathbf{L}_{5} &= s_{1}s_{2}\int_{\mathbb{R}^{3}}k(x)|\omega_{0}|^{5}\omega_{\varepsilon}\,dx - b\int_{\mathbb{R}^{3}}\left|\nabla(s_{1}\omega_{0})\right|^{2}dx\int_{\mathbb{R}^{3}}\nabla(s_{1}\omega_{0})\nabla(s_{2}\omega_{\varepsilon})\,dx\\ &\leq \|k\|_{\infty}\left\|\omega_{0}^{5}\right\|_{\infty}\int_{\mathbb{R}^{3}}w_{\varepsilon}\,dx + b\left(\int_{\mathbb{R}^{3}}\left|\nabla(s_{1}\omega_{0})\right|^{2}dx\right)^{\frac{3}{2}}\left(\int_{\mathbb{R}^{3}}\left|\nabla(s_{2}\omega_{\varepsilon})\right|^{2}dx\right)^{\frac{1}{2}}\\ &\leq C\varepsilon^{\frac{1}{4}}. \end{split}$$

$$(4.9)$$

It follows from (4.3)-(4.9) that, for $\frac{3}{2} < \beta < 3$,

$$I(s_1\omega_0 + s_2\omega_{\varepsilon}) \le I(s_1\omega_0) + c^* + C + C\varepsilon^{\frac{1}{4}} + C\varepsilon^{\frac{1}{2}} - C\varepsilon^{1-\frac{\beta}{2}}$$

< $I(s_1\omega_0) + c^* = c_1 + c^*$

as $\varepsilon \to 0$, which implies that (4.2) holds. This finishes the proof of Lemma 4.1.

Lemma 4.2 Suppose that (μ_1) , (k_1) - (k_2) , and (h_1) - (h_2) hold. Then, for $\frac{3}{2} < \beta < 3$, there exists $\omega_1 \in \overline{N}$ such that $I(\omega_1) = c_2$.

Proof Let $\{u_n\} \subset \overline{N}$ be such that $I(u_n) \to c_2$. Since $u_n \in \overline{N}$, we may assume that there exist constants d_1 and d_2 such that $I(u_n^+) \to d_1$ and $I(u_n^-) \to d_2$ and $d_1 + d_2 = c_2$. Then

$$d_1 \ge c_1, \qquad d_2 \ge c_1.$$

(4.10)

Just as the proof of (3.22), we can prove the boundedness of $\{u_n^+\}$ and $\{u_n^-\}$. Going, if ne essary, to a subsequence, we may assume that $u_n^{\pm} \rightarrow u^{\pm}$ in $H^1(\mathbb{R}^3)$ as $n \rightarrow \infty$.

We claim $u^+ \neq 0$ and $u^- \neq 0$. Arguing by contradiction, if $u^+ = 0$ or $u^- = 0$, then v (4.10) and Lemma 3.2,

$$c_1 + c^* \le d_2 + d_1 = c_2$$
,

which contradicts Lemma 4.1. Hence, $u^+ \neq 0$ and $u^- \neq 0$. We claim hat $u_n^{\pm} \rightarrow u^{\pm}$ strongly in $H^1(\mathbb{R}^3)$. Indeed, according to Lemma 3.2, we get one of the Uc

- (i) $\{u_{\mu}^{+}\}$ converges strongly to u^{+} ;
- (ii) $d_1 > I(t(u^+)u^+);$
- (iii) $d_1 > c^*$;

and we also have one of the following:

- (iv) $\{u_n^-\}$ converges strongly to u^- ;
- (v) $d_2 > I(t(u^-)u^-);$
- (vi) $d_2 > c^*$.

We will prove that only cases (i) and (i bold. For example, in cases (i) and (v) or (ii) and (v), from $u^+ - t(u^-)u^- \in \overline{N}$ or $t(\iota, u^+ - t(u^-)u^- \in \overline{N}$ we have

$$c_2 \leq I(u^+ - t(u^-)u^-) = I(u^+) + I(-t(u^-)u^-) < d_1 + d_2 = c_2$$

or

$$c_2 \geq I_{(u^+)}u^+ - t(u^-)u^- = I(t(u^+)u^+) + I(-t(u^-)u^-) < d_1 + d_2 = c_2.$$

A 1y one of the two inequalities is impossible. In cases (i) and (vi) or (ii) and (vi) or (iii) and (vi, we have

$$c_{1} + c^{*} \leq I(u^{+}) + c^{*} < d_{1} + d_{2} = c_{2},$$

$$c_{1} + c^{*} \leq I(t(u^{+})u^{+}) + c^{*} < d_{1} + d_{2} = c_{2},$$

$$c_{1} + c^{*} \leq c^{*} + c^{*} < d_{1} + d_{2} = c_{2},$$

and any one of the three inequalities is a contradiction. Therefore, we prove that only (i) and (iv) hold. Hence, we obtain that $\{u_n^+\}$ and $\{u_n^-\}$ converge strongly to u^+ and u^- , respectively, and we obtain $u^+, u^- \in N$. Denote $\omega_1 = u^+ - u^-$. Then $\omega_1 \in \overline{N}$ and $I(\omega_1) = d_1 + d_2 = c_2$.

Proof of Theorem 1.2 Now we show that ω_1 is a critical point of I in $H^1(\mathbb{R}^3)$. Arguing by contradiction, assume that $I'(\omega_1) \neq 0$. For any $u \in N$, we claim that $||G'(u)||_{H^{-1}} =$

 $\sup_{\|\nu\|=1} |\langle G'(u), \nu \rangle| \neq 0$. In fact, by the definition of *N* and Lemma 2.2, for any $u \in N$, we have

$$\begin{split} \langle G'(u), u \rangle &= 2 \Big(\|u\|^2 - \mu \int_{\mathbb{R}^3} h(x) |u|^2 \, dx + b \Big(\int_{\mathbb{R}^3} |\nabla u|^2 \, dx \Big)^2 \Big) + 2b \Big(\int_{\mathbb{R}^3} |\nabla u|^2 \, dx \Big)^2 \\ &- 6 \int_{\mathbb{R}^3} k(x) |u|^6 \, dx \\ &= 2 \Big(\|u\|^2 - \mu \int_{\mathbb{R}^3} h(x) |u|^2 \, dx + b \Big(\int_{\mathbb{R}^3} |\nabla u|^2 \, dx \Big)^2 \Big) + 2b \Big(\int_{\mathbb{R}^3} |\nabla u|^2 \, dx \Big)^2 \\ &- 6 \Big(\|u\|^2 - \mu \int_{\mathbb{R}^3} h(x) |u|^2 \, dx + b \Big(\int_{\mathbb{R}^3} |\nabla u|^2 \, dx \Big)^2 \Big) \\ &= -4 \Big(\|u\|^2 - \mu \int_{\mathbb{R}^3} h(x) |u|^2 \, dx + b \Big(\int_{\mathbb{R}^3} |\nabla u|^2 \, dx \Big)^2 \Big) + 2^{j} \left(\int_{\mathbb{R}^3} |\nabla u|^2 \, dx \Big)^2 \right) \\ &\leq -4 \Big[\Big(1 - \frac{\mu}{\tilde{\mu}} \Big) \|u\|^2 + b \Big(\int_{\mathbb{R}^3} |\nabla u|^2 \, dx \Big)^2 \Big] + 2b \Big(\int_{\mathbb{R}^3} |u|^2 \, dx \Big) < 0. \end{split}$$

Then we define

$$\Phi(u) = I'(u) - \left\langle I'(u), \frac{G'(u)}{\|G'(u)\|} \right\rangle \frac{G'(u)}{\|G'(u)\|}, \quad u \in$$

Choose $\lambda \in (0, \min\{\|u^+\|, \|u^-\|\}/3)$ such that $\|\Psi^- - \Phi(u)\| \le \frac{1}{2} \|\Phi(\omega_1)\|$ for any $v \in N$ with $\|v - \omega_1\| \le 2\lambda$. Let $\chi : N \to [0, 1]$ be a first mapping such that

 $\chi(\nu) = \begin{cases} 0, & \nu \in N \text{ with } \|\nu - \| \ge 2\lambda, \\ 1, & \nu \in N \text{ with } \|\nu - \omega_{\mathcal{V}}\| \le \lambda, \end{cases}$

and for positive constant s_0 , let $\eta : [0, s_0] \times N \to N$ be the solution of the differential equation

$$\eta(v) \qquad \frac{d\eta(s,v)}{ds} = -\chi \left(\eta(s,v) \right) \Phi \left(\eta(s,v) \right) \quad \text{for } (s,v) \in [0,s_0] \times N.$$

$$\psi(\tau) = t \big((1-\tau)\omega_1^+ + \tau \omega_1^- \big) \big((1-\tau)\omega_1^+ + \tau \omega_1^-, \xi(\tau) = \eta \big(s_0, \psi(\tau) \big) \big) \quad \text{for } 0 \le \tau \le 1.$$

We now give the proof of the fact that $I(\xi(\tau)) < I(u)$ for some $\tau \in (0, 1)$. Obviously, if $\tau \in (0, \frac{1}{2}) \cup (\frac{1}{2}, 1)$, then we have $I(\xi(\frac{1}{2})) < I(\psi(\frac{1}{2})) < I(\omega_1)$ and $I(\xi(\tau)) \le I(\psi(\tau)) < I(\omega_1)$.

Since $t(\xi^+(\tau)) - t(\xi^-(\tau)) \to -\infty$ as $\tau \to 0+0$ and $t(\xi^+(\tau)) - t(\xi^-(\tau)) \to +\infty$ as $\tau \to 1-0$, there exists $\tau_1 \in (0,1)$ such that $t(\xi^+(\tau)) = t(\xi^-(\tau))$. Thus, $\xi(\tau_1) \in \overline{N}$ and $I(\xi(\tau_1)) < I(\omega_1)$, which contradicts to the definition of c_2 . Hence, we get that $I'(\omega_1) = 0$ and ω_1 is a signchanging solution of problem (1.1). The proof of Theorem 1.2 is complete.

Competing interests

The authors declare that they have no competing interests.

Authors' contributions

Both authors contributed to each part of this work equally and read and approved the final version of the manuscript.

Author details

¹Department of Mathematics and Statistics, Henan University of Science and Technology, Luoyang, 471003, P.R. China. ²School of Mathematics and Statistics, Central South University, Changsha, 410075, P.R. China.

Acknowledgements

The authors would like to thank the referees for their valuable suggestions and comments, which led to improvement of the manuscript. Research was supported by Natural Science Foundation of China 11271372 and by Hunan Provincial Natural Science Foundation of China 12JJ2004.

Received: 28 March 2016 Accepted: 12 May 2016 Published online: 01 July 2016

References

- 1. Kirchhoff, G: Mechanik. Teubner, Leipzig (1883)
- 2. Chipot, M, Lovat, B: Some remarks on non local elliptic and parabolic problems. Nonlinear Anal. 30, 4619-47 (1997)
- Corrêa, FJSA: On positive solutions of nonlocal and nonvariational elliptic problems. Nonlinear Anz 114, 55 (2004)
- 4. He, X, Zou, W: Infinitely many positive solutions for Kirchhoff-type problems. Nonlinear Anal **10**(3), 1407- 4 (2009)
- Cheng, B, Wu, X: Existence results of positive solutions of Kirchhoff type problems. Nonlin Cal. 1. 71, 4883–4892 (2009)
- Alves, CO, Corrêa, FJSA, Ma, TF: Positive solutions for a quasilinear elliptic equation of shhoff type comput. Math. Appl. 49, 85-93 (2005)
- Wu, X: Existence of nontrivial solutions and high energy solutions for Schröding Virce equations in R^N. Nonlinear Anal., Real World Appl. 12, 1278-1287 (2011)
- He, X, Zou, W: Existence and concentration behavior of positive solution for a Kirchher equation in R³. J. Differ. Equ. 252, 1813-1834 (2012)
- Nie, J, Wu, X: Existence and multiplicity of non-trivial solutions for Schrödinger-Km, inoff-type equations with radial potential. Nonlinear Anal. 75, 3470-3479 (2012)
- Liu, Z, Guo, S: Positive solutions for asymptotically linear Schrödinger-Kirchhörf-type equations. Math. Methods Appl. Sci. (2013). doi:10.1002/mma.2815
- 11. Sun, J, Wu, TF: Ground state solutions for an indefinite hoff ty, problem with steep potential well. J. Differ. Equ. 256, 1771-1792 (2014)
- Liu, H, Chen, H, Yuan, Y: Multiplicity of nontrivin solutions for ass of nonlinear Kirchhoff-type equations. Bound. Value Probl. 2015, 187 (2015)
- 13. Xu, L, Chen, H: Nontrivial solutions for Kirc, hoff-, problems with a parameter. J. Math. Anal. Appl. **433**, 455-472 (2016)
- 14. Li, G, Ye, H: Existence of positive so ution for nonlinear Kirchhoff type problems in R³ with critical Sobolev exponent and sign-changing nonlinearitie (2013). a 1305.6777v1 [math.AP]
- Wang, J, Tian, L, Xu, J, Zhanc, F: Multiplicity at a concentration of positive solutions for a Kirchhoff type problem with critical growth. J. Differ. Ec 253, 2314-2351 (2012)
- Liang, S, Zhang, J: Existence of solution for Kirchhoff type problems with critical nonlinearity in R³. Nonlinear Anal., Real World Appl. 17, 126-13 141
- 17. Ambrosetti, A, Man biodi, A: Perturbation Methods and Semilinear Elliptic Problems on R^N. Birkhäuser, Basel (2005)
- 18. Bartsch, T: Critical common partially ordered Hilbert spaces. J. Funct. Anal. 186, 117-152 (2001)
- Zhang, Z, Perera, K: Lich changing solutions of Kirchhoff type problems via invariant sets of descent flow. J. Math. Anal. App. 7(2), 455-463 (2006)
- 20. Mar Zha 7: Sign-changing and multiple solutions of Kirchhoff type problems without the P.S. condition. Nonline (2009) 1275-1287 (2009)
- 21 Hirano, N. joji, N: A multiplicity result including a sign-changing solution for an inhomogeneous Neumann roblem with critical exponent. Proc. R. Soc. Edinb., Sect. A **137**, 333-347 (2007)
- ng, L, Rocha, EM, Chen, J: Positive and sign-changing solutions of a Schrödinger-Poisson system involving a criter nonlinearity. J. Math. Anal. Appl. 408, 55-69 (2013)
- 23. Willem, M: Minimax Theorems. Birkhäuser, Boston (1996)
- .24. Huang, L, Rocha, EM: A positive solution of a Schrödinger-Poisson system with critical exponent. Commun. Math. Anal. 15, 29-43 (2013)
- Chen, J, Rocha, EM: Four solutions of an inhomogeneous elliptic equation with critical exponent and singular term. Nonlinear Anal. 71, 4739-4750 (2009)
- Brézis, H, Lieb, EH: A relation between pointwise convergence of functions and convergence of functionals. Proc. Am. Math. Soc. 88, 486-490 (1983)
- 27. Gilbarg, D, Trudinger, N: Elliptic Partial Differential Equations of Second Order, 2nd edn. Grundlehren Math. Wiss., vol. 224. Springer, Berlin (1983)
- Tarantello, G: Multiplicity results for an inhomogeneous Neumann problem with critical exponent. Manuscr. Math. 81, 51-78 (1993)
- Brézis, H, Nirenberg, L: Positive solutions of nonlinear elliptic equations involving critical Sobolev exponents. Commun. Pure Appl. Math. 36, 437-477 (1983)