Sign-changing solutions to Schrödinger-Kirchhoff-type equations with critical exponent

Liping $X u^{1 *}$ and Haibo Chen ${ }^{2}$
"Correspondence: x.liping@126.com
Department of Mathematics and Statistics, Henan University of Science and Technology, Luoyang, 471003, P.R. China
Full list of author information is available at the end of the article

Abstract

In this paper, we study the following Schrödinger-Kirchhnff-l, equation:

$$
\left\{\begin{array}{l}
-\left(a+b \int_{\mathrm{R}^{3}}|\nabla u|^{2} d x\right) \Delta u+u=k(x)|u|^{2^{*}-2} u+\mu \cdot h(x) u \text { in } \mathrm{R}^{3}, \\
u \in H^{1}\left(\mathrm{R}^{3}\right),
\end{array}\right.
$$

where $a, b, \mu>0$ are constants, $2^{*}=6$ is the critic Sobolev exponent in three spatial dimensions. Under appropriate assump n nonnegative functions $k(x)$ and $h(x)$, we establish the existence of positive and sign changing solutions by variational methods.

MSC: 35J20; 35J65; 35J6f
Keywords: Schrödin,ger-Kirc off-type equations; critical nonlinearity; positive solutions; sign-chz inc solutions; variational methods

1 Intro duction

In this per, we investigate the following Schrödinger-Kirchhoff-type problem:

$$
\begin{equation*}
\left.b \int_{\mathrm{R}^{3}}|\nabla u|^{2} d x\right) \Delta u+u=k(x)|u|^{2^{*}-2} u+\mu h(x) u \quad \text { in } \mathrm{R}^{3} \tag{1.1}
\end{equation*}
$$ $u \in H^{1}\left(\mathrm{R}^{3}\right)$,

where $a, b>0$ are constants, and $2^{*}=6$ is the critical Sobolev exponent in dimension three. We assume that μ and the functions $k(x)$ and $h(x)$ satisfy the following hypotheses:
$\left(\mu_{1}\right) 0<\mu<\tilde{\mu}$, where $\tilde{\mu}$ is defined by

$$
\tilde{\mu}:=\inf _{u \in H^{1}\left(\mathrm{R}^{3}\right) \backslash\{0\}}\left\{\int_{\mathrm{R}^{3}}\left(a|\nabla u|^{2}+|u|^{2}\right) d x: \int_{\mathrm{R}^{3}} h(x)|u|^{2} d x=1\right\} ;
$$

$\left(\mathrm{k}_{1}\right) k(x) \geq 0, \forall x \in \mathrm{R}^{3}$;
$\left(\mathrm{k}_{2}\right)$ there exist $x_{0} \in \mathrm{R}^{3}, \sigma_{1}>0, \rho_{1}>0$, and $1 \leq \alpha<3$ such that $k\left(x_{0}\right)=\max _{x \in \mathrm{R}^{3}} k(x)$ and

$$
\left|k(x)-k\left(x_{0}\right)\right| \leq \sigma_{1}\left|x-x_{0}\right|^{\alpha} \quad \text { for }\left|x-x_{0}\right|<\rho_{1} ;
$$

$\left(\mathrm{h}_{1}\right) h(x) \geq 0$ for any $x \in \mathrm{R}^{3}$ and $h(x) \in L^{\frac{3}{2}}\left(\mathrm{R}^{3}\right)$;
$\left(h_{2}\right)$ there exist $\sigma_{2}>0$ and $\rho_{2}>0$ such that $h(x) \geq \sigma_{2}\left|x-x_{0}\right|^{-\beta}$ for $\left|x-x_{0}\right|<\rho_{2}$.
The Kirchhof-type problem is related to the stationary analogue of the equation

$$
u_{t t}-\left(a+b \int_{\Omega}|\nabla u|^{2} d x\right) \Delta u=f(x, u) \quad \text { in } \Omega
$$

where Ω is a bounded domain in R^{N}, u denotes the displacement, $f(x, u)$ is the extern force, and b is the initial tension, whereas a is related to the intrinsic properties of the st ing (such as Young's modulus). Equations of this type arise in the study of string or mf nbrane vibration and were proposed by Kirchhoff in 1883 (see [1]) to describe the trensv al oscillations of a stretched string, particularly, taking into account the subsequt. harıorn string length caused by oscillations.

Kirchhoff-type problems are often referred to as being nonlocal be caus fthe presence of the integral over the entire domain Ω, which provokes some n. 'ematic μ difficulties. Similar nonlocal problems also model several physical and. lo ystems where u describes a process that depends on the average of itself for exam m_{i} the population density; see [2, 3]. Kirchhoff-type problems have received itu t+ention. Some important and interesting results can be found in, for example, [4-6] and the references therein.

The solvability of the following Schrödinge hoff-type equation (1.2) has also been well studied in general dimension by variou uthou

$$
\begin{equation*}
-\left(a+b \int_{\mathrm{R}^{N}}|\nabla u|^{2} d x\right) \Delta u+\left((x) \quad t(x, 1) \text { in } \mathrm{R}^{N} .\right. \tag{1.2}
\end{equation*}
$$

For example, Wu [7] and p any oth [8-13], using variational methods, proved the existence of nontrivial solu ions to (1.2) with subcritical nonlinearities. Li and Ye [14] obtained the existence of a posi solution for (1.2) with critical exponents. More recently, Wang et al. [15] and Li $n \sigma$ and zrang [16] proved the existence and multiplicity of positive solutions of (1.2) with al growth and a small positive parameters.
The p -or n of inding sign-changing solutions is a very classical problem. In general, this pre or ach more difficult than finding a mere solution. There were several abs^{+}act theo cor methods to study sign-changing solutions; see, for example, [17, 18] and the ferences therein. In recent years, Zhang and Perera [19] obtained sign-changing solution. of (1.2) with superlinear or asymptotically linear terms. More recently, Mao and Zl ang [20] use minimax methods and invariant sets of descent flow to prove the existence of nontrivial solutions and sign-changing solutions for (1.2) without the P.S. condition. Motivated by the works described, in this paper, our aim is to study the existence of positive and sign-changing solutions for problem (1.1). The method is inspired by Hirano and Shioji [21] and Huang et al. [22]; however, their arguments cannot be directly applied here. To our best knowledge, there are very few works up to now studying sign-changing solutions for Schrödinger-Kirchhoff-type problem with critical exponent, that is, problem (1.1). Our main results are as follows.

Theorem 1.1 Assume that $\left(\mu_{1}\right),\left(\mathrm{k}_{1}\right),\left(\mathrm{k}_{2}\right)$, and $\left(\mathrm{h}_{1}\right)-\left(\mathrm{h}_{2}\right)$ hold. Then, for $1<\beta<3$, problem (1.1) possesses at least one positive solution.

Theorem 1.2 Assume that $\left(\mu_{1}\right),\left(\mathrm{k}_{1}\right),\left(\mathrm{k}_{2}\right)$, and $\left(\mathrm{h}_{1}\right)-\left(\mathrm{h}_{2}\right)$ hold. Then, for $\frac{3}{2}<\beta<3$, problem (1.1) possesses at least one sign-changing solution.

Notation

- $H^{1}\left(\mathrm{R}^{3}\right)$ is the Sobolev space equipped with the norm $\|u\|_{H^{1}\left(\mathrm{R}^{3}\right)}^{2}=\int_{\mathrm{R}^{3}}\left(|\nabla u|^{2}+|u|^{2}\right) d x$.
- We define $\|u\|^{2}:=\int_{\mathrm{R}^{3}}\left(a|\nabla u|^{2}+|u|^{2}\right) d x$ for $u \in H^{1}\left(\mathrm{R}^{3}\right)$. Note that $\|\cdot\|$ is an equivalent norm on $H^{1}\left(\mathrm{R}^{3}\right)$.
- For any $1 \leq s \leq \infty,\|u\|_{L^{s}}:=\left(\int_{\mathrm{R}^{3}}|u|^{s} d x\right)^{\frac{1}{s}}$ denotes the usual norm of the Lebesgue space $L^{s}\left(\mathrm{R}^{3}\right)$.
- By $D^{1,2}\left(\mathrm{R}^{3}\right)$ we denote the completion of $C_{0}^{\infty}\left(\mathrm{R}^{3}\right)$ with respect to the norm $\|u\|_{D^{1,2}\left(\mathrm{R}^{3}\right)}^{2}:=\int_{\mathrm{R}^{3}}|\nabla u|^{2} d x$.
- S denotes the best Sobolev constant defined by $S=\inf _{u \in D^{1,2}\left(\mathrm{R}^{3}\right) \backslash\{0\}} \frac{\left.\int_{\mathrm{R}^{3}} \mid \nabla\right)^{4}}{\left(\int_{3} u^{\bullet} d x\right)^{3}}$
- $C>0$ denotes various positive constants.

The outline of the paper is given as follows. In Section 2, we pre nt some preliminary results. In Sections 3 and 4, we give proofs of Theorems 1.1 ar $4, \ldots$ éctively.

2 The variational framework and preliminary

In this section, we give some preliminary lemmas and the variational setting for (1.1). It is clear that system (1.1) is the Euler-Lagranse eq ions of the functional $I: H^{1}\left(\mathrm{R}^{3}\right) \rightarrow \mathrm{R}$ defined by

$$
\begin{equation*}
I(u)=\frac{1}{2}\|u\|^{2}+\frac{b}{4}\left(\int_{\mathrm{R}^{3}}|\nabla u|^{2} u \times \int_{\mathrm{R}^{3}} k(x)|u|^{6} d x-\frac{\mu}{2} \int_{\mathrm{R}^{3}} h(x)|u|^{2} d x\right. \tag{2.1}
\end{equation*}
$$

Obviously, I is a well-defined C^{1} fur. conal and satisfies

$$
\begin{align*}
\left\langle I^{\prime}(u), v\right\rangle= & \int_{J}(a \nabla u, v) d x+b \int_{\mathrm{R}^{3}}|\nabla u|^{2} d x \int_{\mathrm{R}^{3}} \nabla u \nabla v d x \\
& -\int_{3^{3}}\left(k(x)|u|^{4} u v+\mu h(x) u v\right) d x \tag{2.2}
\end{align*}
$$

fr $v \in H^{+},{ }^{3}$ It is well known that $u \in H^{1}\left(\mathrm{R}^{3}\right)$ is a critical point of the functional I if and on. $f u$ is a weak solution of (1.1).

Lemma 2.1 Assume that $\left(\mathrm{h}_{1}\right)$ holds. Then the function $\psi_{h}: u \in H^{1}\left(\mathrm{R}^{3}\right) \mapsto \int_{\mathrm{R}^{3}} h(x) u^{2} d x$ is y eakly continuous, and for each $v \in H^{1}\left(\mathrm{R}^{3}\right), \varphi_{h}: u \in H^{1}\left(\mathrm{R}^{3}\right) \mapsto \int_{\mathrm{R}^{3}} h(x) u v d x$ is also weakly continuous.

The proof of Lemma 2.1 is a direct conclusion of [23], Lemma 2.13.

Lemma 2.2 Assume that $\left(\mathrm{h}_{1}\right)$ holds. Then the infimum

$$
\tilde{\mu}:=\inf _{u \in H^{1}\left(\mathrm{R}^{3}\right) \backslash\{0\}}\left\{\int_{\mathrm{R}^{3}}\left(a|\nabla u|^{2}+|u|^{2}\right) d x: \int_{\mathrm{R}^{3}} h(x)|u|^{2} d x=1\right\}
$$

is achieved.

Proof The proof of Lemma 2.2 is the same as that of [24], Lemma 2.5. Here we omit it for simplicity.

Lemma 2.3 Assume that $\left(\mathrm{k}_{1}\right),\left(\mathrm{h}_{1}\right)$, and $\left(\mu_{1}\right)$ hold. Then the functional I possesses the following properties.
(1) There exist $\rho, \gamma>0$ such that $I(u) \geq \gamma$ for $\|u\|=\rho$.
(2) There exists $e \in H^{1}\left(\mathrm{R}^{3}\right)$ with $\|e\|>\rho$ such that $I(e)<0$.

Proof By Lemma 2.2 and the Sobolev inequality we obtain

$$
I(u) \geq \frac{1}{2}\|u\|^{2}-C\|u\|^{6}-\frac{\mu}{2 \tilde{\mu}}\|u\|^{2}=\|u\|^{2}\left(\frac{1}{2}-\frac{\mu}{2 \tilde{\mu}}-C\|u\|^{4}\right) .
$$

Set $\|u\|=\rho$ small enough such that $C \rho^{4} \leq \frac{1}{4}\left(1-\frac{\mu}{\tilde{\mu}}\right)$. Then we have

$$
\begin{equation*}
I(u) \geq \frac{1}{4}\left(1-\frac{\mu}{\tilde{\mu}}\right) \rho^{2} \tag{2.3}
\end{equation*}
$$

Choosing $\gamma=\frac{1}{4}\left(1-\frac{\mu}{\tilde{\mu}}\right) \rho^{2}$, we complete the proof of (1).
For $t>0$ and some $u_{0} \in H^{1}\left(\mathrm{R}^{3}\right)$ with $\left\|u_{0}\right\|=1$, it follow, $\quad\left(\mathrm{h}_{1}\right)$ and $\left(\mu_{1}\right)$ that

$$
I\left(t u_{0}\right) \leq \frac{1}{2} t^{2}\left\|u_{0}\right\|^{2}+\frac{b}{4} t^{4}\left(\int_{\mathrm{R}^{3}}\left|\nabla u_{0}\right|^{2} d x\right)^{2} \int_{\mathrm{R}^{3}} k(x)\left|u_{0}\right|^{6} d x,
$$

which implies that $I\left(t u_{0}\right)<0$ for $t>\rho$ large en $\quad \circ$. Hence, we can take an $e=t_{1} u_{0}$ for some $t_{1}>0$ large enough, and (2) foll

Next, we define the Nehar ma fold N associated with I by

$$
N:=\left\{u \in H^{1}\left(\mathrm{R}^{3}\right) \quad\{0\}: G(u)=0\right\}, \quad \text { where } G(u)=\left\langle I^{\prime}(u), u\right\rangle .
$$

Now we state so properties of N.

Lemma 2. Assume that $\left(\mu_{1}\right)$ is satisfied. Then the following conclusions hold.
(1) al $-\omega\left(\mathrm{R}^{3}\right) \backslash\{0\}$, there exists a unique $t(u)>0$ such that $t(u) u \in N$. Moreover, $I\left(t\left(\imath \quad u=\max _{t \geq 0} I(t u)\right.\right.$.
$0<t(u)<1$ in the case $\left\langle I^{\prime}(u), u\right\rangle<0 ; t(u)>1$ in the case $\left\langle I^{\prime}(u), u\right\rangle>0$.
(3) i) is a continuous functional with respect to u in $H^{1}\left(\mathrm{R}^{3}\right)$.
(4) $t(u) \rightarrow+\infty$ as $\|u\| \rightarrow 0$.

Proof The proof is similar to that of [22], Lemma 2.4, and is omitted here.

3 Positive solution

In order to deduce Theorem 1.1, the following lemmas are important. Borrowing an idea from Lemma 3.6 in [14], we obtain the first result.

Lemma 3.1 For $s, t>0$, the system

$$
\left\{\begin{array}{l}
f(t, s)=t-a S\left(\frac{s+t}{\lambda}\right)^{\frac{1}{3}}=0 \\
g(t, s)=s-b S^{2}\left(\frac{s+t}{\lambda}\right)^{\frac{2}{3}}=0
\end{array}\right.
$$

has a unique solution $\left(t_{0}, s_{0}\right)$, where $\lambda>0$ is a constant. Moreover, if

$$
\left\{\begin{array}{l}
f(t, s) \geq 0 \\
g(t, s) \geq 0
\end{array}\right.
$$

then $t \geq t_{0}$ and $s \geq s_{0}$, where $t_{0}=\frac{a b S^{3}+a \sqrt{b^{2} S^{6}+4 \lambda a S^{3}}}{2 \lambda}$ and $s_{0}=\frac{b s^{6}+2 \lambda a b S^{3}+b^{2} S^{3} \sqrt{b^{3} S^{6}+4 \lambda a S^{3}}}{2 \lambda^{2}}$.
Lemma 3.2 Assume that $\left(\mu_{1}\right),\left(\mathrm{k}_{1}\right)$, and $\left(\mathrm{h}_{1}\right)$ hold. Let a sequence $\left\{u_{n}\right\} \subset N$ be such th $u_{n} \rightharpoonup u$ in $H^{1}\left(\mathrm{R}^{3}\right)$ and $I\left(u_{n}\right) \rightarrow c$, but any subsequence of $\left\{u_{n}\right\}$ does not converge strr g gly to u. Then one of the following results holds:
(1) $c>I(t(u) u)$ in the case $u \neq 0$ and $\left\langle I^{\prime}(u), u\right\rangle<0$;
(2) $c \geq c^{*}$ in the case $u=0$;
(3) $c>c^{*}$ in the case $u \neq 0$ and $\left\langle I^{\prime}(u), u\right\rangle \geq 0$;
where $c^{*}=\frac{a b S^{3}}{4\|k\|_{\infty}}+\frac{b^{3} s^{6}}{24\|k\|_{\infty}^{2}}+\frac{\left(b^{2} S^{4}+4 a\|k\|_{\infty} S\right)^{\frac{3}{2}}}{24\|k\|_{\infty}^{\infty}}$, and $t(u)$ is defined as in $\Delta e m r$, .4 .
Proof Part of the proof is similar to that of [22], Lemma 3. or Proposition 3.3. For the reader's convenience, we only sketch the proof. Since $u_{n} \quad y$ in $H^{1}\left(\mathrm{R}^{3}\right)$, we have $u_{n}-u \rightharpoonup 0$. Then by Lemma 2.1 we obtain that

$$
\begin{equation*}
\int_{\mathrm{R}^{3}} h(x)\left|u_{n}-u\right|^{2} d x \rightarrow 0 . \tag{3.1}
\end{equation*}
$$

We obtain from the Brézis-Lieb lemma [26], (3. and $u_{n} \in N$ that

$$
\begin{align*}
c+o(1)= & I\left(u_{n}\right) \\
= & \left.I(u)+\frac{1}{2}\left\|2_{n}-u\right\|^{2}+\left.\frac{-}{4}\left\langle\int_{\mathrm{R}^{3}}\right| \nabla\left(u_{n}-u\right)\right|^{2} d x\right)^{2} \\
& -\frac{1}{6} \int_{\mathrm{R}^{3}} v_{u}-\left.u\right|^{6} d x+o(1) \tag{3.2}
\end{align*}
$$

and

$$
\begin{align*}
& =\left\langle I^{\prime}(u), u\right\rangle+\left\|u_{n}-u\right\|^{2}+b\left(\int_{\mathrm{R}^{3}}\left|\nabla\left(u_{n}-u\right)\right|^{2} d x\right)^{2} \\
& -\int_{\mathrm{R}^{3}} k(x)\left|u_{n}-u\right|^{6} d x+o(1) \tag{3.3}
\end{align*}
$$

Up to a subsequence, we may assume that there exist $l_{i} \geq 0, i=1,2,3$, such that

$$
\begin{align*}
& \left\|u_{n}-u\right\|^{2} \rightarrow l_{1}, \quad b\left(\int_{\mathrm{R}^{3}}\left|\nabla\left(u_{n}-u\right)\right|^{2} d x\right)^{2} \rightarrow l_{2} \tag{3.4}\\
& \int_{\mathrm{R}^{3}} k(x)\left|u_{n}-u\right|^{6} d x \rightarrow l_{3} .
\end{align*}
$$

Since any subsequence of $\left\{u_{n}\right\}$ does not converge strongly to u, we have $l_{1}>0$. Set $\gamma(t)=$ $\frac{l_{1}}{2} t^{2}+\frac{l_{2}}{4} t^{4}-\frac{l_{3}}{6} t^{6}$ and $\eta(t)=g(t)+\gamma(t)$. By (3.3) and (3.4) we have $\eta^{\prime}(1)=g^{\prime}(1)+\gamma^{\prime}(1)=0$,
and $t=1$ is the only critical point of $\eta(t)$ in $(0,+\infty)$, which implies that

$$
\begin{equation*}
\eta(1)=\max _{t>0} \eta(t) \tag{3.5}
\end{equation*}
$$

We consider three situations:
(1) $u \neq 0$ and $\left\langle I^{\prime}(u), u\right\rangle<0$. Then by (3.3) and (3.4) we have

$$
l_{1}+l_{2}-l_{3}>0 .
$$

Then,

$$
\begin{equation*}
\gamma^{\prime}(t)=l_{1} t+l_{2} t^{3}-l_{3} t^{5}>l_{1} t+l_{2} t^{3}-\left(l_{1}+l_{2}\right) t^{5}=\left(1-t^{2}\right)\left[l_{1} t+\left(l_{1}+l_{2}\right) t^{3}\right] \geq u \tag{3.7}
\end{equation*}
$$

for any $0<t<1$, which implies that

$$
\begin{equation*}
\gamma(t)>\gamma(0)=0 \quad \text { for any } t \in(0,1) \tag{3.8}
\end{equation*}
$$

Since $\left\langle I^{\prime}(u), u\right\rangle<0$, by Lemma 2.4 there exists $t(u)>0$ such un. $0<t(u)<1$. Then it follows from (3.8) that $\gamma(t(u))>0$. Therefore, we obtain fror (3.2) and (3.5) that $c=\eta(1)>$ $\eta(t(u))=g(t(u))+\gamma(t(u))>I(t(u) u)$, which i oplie at (1) holds.
(2) $u=0$. Then by (3.2), (3.3), and (3.4) we

$$
\left\{\begin{array}{l}
l_{1}+l_{2}-l_{3}=0 \\
\frac{1}{2} l_{1}+\frac{1}{4} l_{2}-\frac{1}{6} l_{3}=c
\end{array}\right.
$$

By the definition of S, e see that

$$
\begin{aligned}
& \int_{\mathrm{R}^{3}}\left|\nabla u_{n}\right|^{2} d v=\left|\left|\mathrm{K}_{1}\right|_{\infty}^{1 / 3 /}\left(\int_{\mathrm{R}^{3}} k(x)\left|u_{n}\right|^{6} d x\right)^{\frac{1}{3}},\right. \\
& b\left(\int_{\mathrm{k}} \operatorname{rvonh} d x\right)^{2} \geq b \frac{S^{2}}{\|k\|_{\infty}^{2 / 3}}\left(\int_{\mathrm{R}^{3}} k(x)\left|u_{n}\right|^{6} d x\right)^{\frac{2}{3}} \text {. }
\end{aligned}
$$

Then.

$$
l_{1} \geq a S\left(\frac{l_{1}+l_{2}}{\|k\|_{\infty}}\right)^{\frac{1}{3}} \quad \text { and } \quad l_{2} \geq b S^{2}\left(\frac{l_{1}+l_{2}}{\|k\|_{\infty}}\right)^{\frac{2}{3}}
$$

Obviously, if $l_{1}>0$, then $l_{2}, l_{3}>0$. It follows from Lemma 3.1 that

$$
\begin{align*}
c & =\frac{1}{3} l_{1}+\frac{1}{12} l_{2} \\
& \geq \frac{1}{3} \frac{a b S^{3}+a \sqrt{b^{2} S^{6}+4\|k\|_{\infty} a S^{3}}}{2\|k\|_{\infty}}+\frac{1}{12} \frac{b S^{6}+2\|k\|_{\infty} a b S^{3}+b^{2} S^{3} \sqrt{b^{3} S^{6}+4\|k\|_{\infty} a S^{3}}}{2\|k\|_{\infty}^{2}} \\
& =\frac{a b S^{3}}{4\|k\|_{\infty}}+\frac{b^{3} S^{6}}{24\|k\|_{\infty}^{2}}+\frac{\left(b^{2} S^{4}+4 a\|k\|_{\infty} S\right)^{\frac{3}{2}}}{24\|k\|_{\infty}^{2}}:=c^{*} . \tag{3.9}
\end{align*}
$$

(3) $u \neq 0$ and $\left\langle I^{\prime}(u), u\right\rangle \geq 0$. We prove this case in two steps. Firstly, we consider $u \neq 0$ and $\left\langle I^{\prime}(u), u\right\rangle=0$. Then from Lemma 2.3 and Lemma 2.4 we get

$$
\begin{equation*}
I(u)=\max _{t>0} I(t u)>0 \tag{3.10}
\end{equation*}
$$

Since $u \neq 0$ and $\left\langle I^{\prime}(u), u\right\rangle=0$, as in (3.9), we obtain that

$$
c=\eta(1)=I(u)+\frac{l_{1}}{3}+\frac{l_{2}}{12}>c^{*} .
$$

Secondly, we prove the case $u \neq 0$ and $\left\langle I^{\prime}(u), u\right\rangle>0$. Set $\left.t^{* *}=\left(\frac{l_{2}+\sqrt{l_{2}^{2}+4 l_{1} l_{3}}}{2 l_{3}}\right)^{\frac{1}{2}}, \mathrm{Tl} \quad \eta, \gamma(t)\right)$ attains its maximum at $t^{* *}$, that is,

$$
\begin{align*}
\gamma\left(t^{* *}\right) & =\max _{t>0} \gamma(t) \\
& =\frac{l_{1} l_{2}}{4 l_{3}}+\frac{l_{2}^{2}}{24 l_{3}^{2}}+\frac{\left(l_{2}^{2}+4 l_{1} l_{3}\right)^{\frac{3}{2}}}{24 l_{3}^{2}} \\
& \geq \frac{a b S^{3}}{4\|k\|_{\infty}}+\frac{b^{3} S^{6}}{24\|k\|_{\infty}^{2}}+\frac{\left(b^{2} S^{4}+4 a\|k\|_{\infty} S\right)^{\frac{3}{2}}}{24\|k\|_{\infty}^{2}}=c^{*} \tag{3.12}
\end{align*}
$$

It follows from Lemma 2.4 that $0<t^{* *}<1.7$ on $I\left(\begin{array}{l}\text { i }\end{array}\right) \geq 0$. Therefore, by (3.2), (3.5), and (3.12) we obtain

$$
c=\eta(1)>\eta\left(t^{* *}\right)=I\left(t^{* *} u\right)+\gamma\left(i^{* *}\right)=
$$

The proof of Lemma 3.2 is complet
Lemma 3.3 If the hyp oses o Theorem 1.1 hold with $1<\beta<3$, then

$$
c_{1}<\frac{a b S^{3}}{4 \|_{\infty}}+\frac{b^{\prime}}{\left\|_{1}\right\| k \|_{\infty}^{2}}+\frac{\left(b^{2} S^{4}+4 a\|k\|_{\infty} S\right)^{\frac{3}{2}}}{24\|k\|_{\infty}^{2}}=c^{*}
$$

ere c_{1} is fined by $\inf _{u \in N} I(u)$.
Proof 0 prove this lemma, we borrow an idea employed in [22]. For $\varepsilon, r>0$, define $w_{\varepsilon}(x)=$ $\frac{-\varphi(x) \varepsilon^{\frac{1}{4}}}{\left(+\left|x-x_{0}\right|^{2}\right)^{\frac{1}{2}}}$, where C is a normalizing constant, x_{0} is given in $\left(\mathrm{k}_{2}\right)$, and $\varphi \in C_{0}^{\infty}\left(\mathrm{R}^{3}\right), 0 \leq \varphi \leq$ 1, $\left.\varphi\right|_{B_{r}(0)} \equiv 1$, and $\operatorname{supp} \varphi \subset B_{2 r}(0)$. Using the method of [25], we obtain

$$
\begin{equation*}
\int_{\mathrm{R}^{3}}\left|\nabla w_{\varepsilon}\right|^{2} d x=K_{1}+O\left(\varepsilon^{\frac{1}{2}}\right), \quad \int_{\mathrm{R}^{3}}\left|w_{\varepsilon}\right|^{6} d x=K_{2}+O\left(\varepsilon^{\frac{3}{2}}\right) \tag{3.13}
\end{equation*}
$$

and

$$
\int_{\mathrm{R}^{3}}\left|w_{\varepsilon}\right|^{s} d x= \begin{cases}K \varepsilon^{\frac{s}{4}}, & s \in[2,3) \tag{3.14}\\ K \varepsilon^{\frac{3}{4}}|\ln \varepsilon|, & s=3 \\ K \varepsilon^{\frac{6-s}{4}}, & s \in(3,6)\end{cases}
$$

where K_{1}, K_{2}, K are positive constants. Moreover, the best Sobolev constant is $S=K_{1} K_{2}^{-\frac{1}{3}}$. By (3.13) we have

$$
\begin{equation*}
\frac{\int_{\mathrm{R}^{3}}\left|\nabla w_{\varepsilon}\right|^{2} d x}{\left(\int_{\mathrm{R}^{3}} w_{\varepsilon}^{6} d x\right)^{\frac{1}{3}}}=S+O\left(\varepsilon^{\frac{1}{2}}\right) \tag{3.15}
\end{equation*}
$$

By Lemma 2.4, for this w_{ε}, there exists a unique $t\left(w_{\varepsilon}\right)>0$ such that $t\left(w_{\varepsilon}\right) w_{\varepsilon} \in N$. Thus, $c_{1}<$ $I\left(t\left(w_{\varepsilon}\right) w_{\varepsilon}\right)$. Using (2.1), for $t>0$, since $I\left(t w_{\varepsilon}\right) \rightarrow-\infty$ as $t \rightarrow \infty$, we easily see that $I\left(t w_{\varepsilon}\right)$ has a unique critical $t\left(w_{\varepsilon}\right)>0$ that corresponds to its maximum, that is, $I\left(t_{\varepsilon} w_{\varepsilon}\right)=\max _{t>0} I(t w /$ It follows from (1) of Lemma 2.3, $I\left(t w_{\varepsilon}\right) \rightarrow-\infty$ as $t \rightarrow \infty$, and the continuity of I that itere exist two positive constants t_{0} and T_{0} such that $t_{0}<t_{\varepsilon}<T_{0}$. Let $I\left(t_{\varepsilon} w_{\varepsilon}\right)=F(\varepsilon)+G(\varepsilon+H(\varepsilon)$, where

$$
\begin{aligned}
& \left.F(\varepsilon)=\frac{a t_{\varepsilon}^{2}}{2} \int_{\mathrm{R}^{3}}\left|\nabla w_{\varepsilon}\right|^{2} d x+\frac{b t_{\varepsilon}^{4}}{4}\left(\int_{\mathrm{R}^{3}}\left|\nabla w_{\varepsilon}\right|^{2} d x\right)^{2}-\frac{t_{\varepsilon}^{6}}{6} \int_{\mathrm{R}^{3}} k\left(x_{0}\right) \right\rvert\, w d x, \\
& G(\varepsilon)=\frac{t_{\varepsilon}^{6}}{6} \int_{\mathrm{R}^{3}} k\left(x_{0}\right)\left|w_{\varepsilon}\right|^{6} d x-\frac{t_{\varepsilon}^{6}}{6} \int_{\mathrm{R}^{3}} k(x)\left|w_{\varepsilon}\right|^{6} d x,
\end{aligned}
$$

and

$$
H(\varepsilon)=\frac{t_{\varepsilon}^{2}}{2} \int_{\mathrm{R}^{3}}\left|w_{\varepsilon}\right|^{2} d x-\frac{\mu t_{\varepsilon}^{2}}{2} \int_{\mathrm{R}^{3}} h(x)\left|w_{\varepsilon}\right|^{2} d x
$$

Set

$$
\Phi(t)=\frac{a t^{2}}{2} \int_{\mathrm{R}^{3}}\left|\nabla w_{\varepsilon}\right|^{2} d x+\frac{b t^{4}}{4}\left(\int_{\mathrm{R}^{3}} \nabla w_{\varepsilon} d x\right)^{2}-\frac{t^{6}}{6} \int_{\mathrm{R}^{3}} k\left(x_{0}\right)\left|w_{\varepsilon}\right|^{6} d x
$$

Note that $\Phi(t)$ attains its n aximu

$$
t_{0}^{*}=\left(\frac{b\left(\int_{\mathrm{R}^{3}}\left|\nabla w_{\varepsilon}\right|\right.}{x)^{2}+\sqrt{\boldsymbol{p}^{2}\left(\int_{\mathrm{R}^{3}}\left|\nabla w_{\varepsilon}\right|^{2} d x\right)^{4}+4 a\left(\int_{\mathrm{R}^{3}}\left|\nabla w_{\varepsilon}\right|^{2} d x\right)^{2} \int_{\mathrm{R}^{3}} k\left(x_{0}\right)\left|w_{\varepsilon}\right|^{6} d x}} \underset{2 \int_{\mathrm{R}^{3}} k\left(x_{0}\right)\left|w_{\varepsilon}\right|^{6} d x}{ }\right)^{\frac{1}{2}} .
$$

Then

$$
\begin{equation*}
\left.\max _{t \geq 0} \quad t\right)=\Phi\left(t_{0}^{*}\right)=\frac{a b S^{3}}{4\|k\|_{\infty}}+\frac{b^{3} S^{6}}{24\|k\|_{\infty}^{2}}+\frac{\left(b^{2} S^{4}+4 a\|k\|_{\infty} S\right)^{\frac{3}{2}}}{24\|k\|_{\infty}^{2}}+O\left(\varepsilon^{\frac{1}{2}}\right) \tag{3.16}
\end{equation*}
$$

for $\varepsilon>$ small enough. Then we have

$$
\begin{equation*}
F(\varepsilon) \leq c^{*}+O\left(\varepsilon^{\frac{1}{2}}\right) \tag{3.17}
\end{equation*}
$$

By (3.36) of [22] we have

$$
\begin{equation*}
G(\varepsilon) \leq C \varepsilon^{\frac{1}{2}} \tag{3.18}
\end{equation*}
$$

From (3.38) of [22], (3.14), and the boundedness of t_{ε} we obtain

$$
\begin{align*}
H(\varepsilon) & =\frac{t_{\varepsilon}^{2}}{2} \int_{\mathrm{R}^{3}}\left|w_{\varepsilon}\right|^{2} d x-\frac{\mu t_{\varepsilon}^{2}}{2} \int_{\mathrm{R}^{3}} h(x)\left|w_{\varepsilon}\right|^{2} d x \\
& \leq C \varepsilon^{\frac{1}{2}}-\mu C \varepsilon^{1-\frac{\beta}{2}} \tag{3.19}
\end{align*}
$$

Since $1<\beta<3$, for fixed $\mu>0$, we obtain

$$
\begin{equation*}
\frac{H(\varepsilon)}{\varepsilon^{\frac{1}{2}}} \rightarrow-\infty \quad \text { as } \varepsilon \rightarrow 0 \tag{3.20}
\end{equation*}
$$

It follows from (3.17), (3.18), and (3.20) that the proof of Lemma 3.3 is complete.

Proof of Theorem 1.1 By the definition of c_{1} there exists a sequence $\left\{u_{n}\right\} \subset N$ such that $I\left(u_{n}\right) \rightarrow c_{1}$ as $n \rightarrow \infty$. Then we obtain that

$$
\begin{equation*}
\left\|u_{n}\right\|^{2}+b\left(\int_{\mathrm{R}^{3}}\left|\nabla u_{n}\right|^{2} d x\right)^{2}-\int_{\mathrm{R}^{3}} \mu h(x)\left|u_{n}\right|^{2} d x=\int_{\mathrm{R}^{3}} k(x)\left|u_{n}\right|^{6} d x . \tag{3.21}
\end{equation*}
$$

It follows from (3.21) and Lemma 2.2 that

$$
\begin{align*}
c_{1}+o(1) & =\frac{1}{3}\left(\left\|u_{n}\right\|^{2}-\mu \int_{\mathrm{R}^{3}} h(x)\left|u_{n}\right|^{2} d x\right)+\left(\frac{b}{4}-\frac{b}{6}\right)\left(\left.\int\right|^{2} d x\right) \\
& \geq \frac{1}{3}\left(1-\frac{\mu}{\tilde{\mu}}\right)\left\|u_{n}\right\|^{2} \tag{3.22}
\end{align*}
$$

which implies the boundedness of $\left\{u_{n}\right\}$ in $H^{1}\left(\mathbb{R}^{3}\right)$ since $(<\mu<\tilde{\mu}$. Then there exists a subsequence of $\left\{u_{n}\right\}$, still denoted by $\left\{u_{n}\right\}$, sr hat $\rightharpoonup u$ in $H^{1}\left(\mathrm{R}^{3}\right)$. By (2) of Lemma 3.2 and Lemma 3.3 we have $u \neq 0$. By the definitı of $t u$) we get $t(u) u \in N$. So $I(t(u) u) \geq c_{1}$. We claim that $u_{n} \rightarrow u$ in $H^{1}\left(\mathrm{R}^{3}\right)$. O^{+}erivise, by, 1) and (3) of Lemma 3.2, we would get that $c_{1}>I(t(u) u)$ or $c_{1}>c^{*}$. In any vase, get contradiction since $c_{1}<c^{*}$. Therefore, $\left\{u_{n}\right\}$ converges strongly to u. Thus, $=N$ and,$(u)=c_{1}$. By the Lagrange multiplier rule there exists $\theta \in \mathrm{R}$ such that $I^{\prime}(u)=\theta G^{\prime}(u$, nd thus

$$
0=\left\langle I^{\prime}(u), u\right\rangle=\theta\left(2 v^{2}+\frac{1}{}\left(\int_{\mathrm{R}^{3}}|\nabla u|^{2} d x\right)^{2}-6 \int_{\mathrm{R}^{3}} k(x)|u|^{6} d x-2 \mu \int_{\mathrm{R}^{3}} h(x)|u|^{2} d x\right)
$$

Since $u \in{ }^{\top}$ we ge ${ }^{+}$

$$
0=\theta\left(4 .\left(\|u\|^{2}-\mu \int_{\mathrm{R}^{3}} h(x)|u|^{2} d x\right)-2 b\left(\int_{\mathrm{R}^{3}}|\nabla u|^{2} d x\right)^{2}\right)
$$

which 1 mplies that $\theta=0$ and u is a nontrivial critical point of the functional I in $H^{1}\left(\mathrm{R}^{3}\right)$. T] erefore, the nonzero function u can solve Eq. (1.1), that is,

$$
\begin{equation*}
-\left(a+b \int_{\mathrm{R}^{3}}|\nabla u|^{2} d x\right) \Delta u+u=k(x)|u|^{2^{*}-2} u+\mu h(x) u . \tag{3.23}
\end{equation*}
$$

In (3.23), using $u^{-}=\max \{-u, 0\}$ as a test function and integrating by parts, by $\left(\mathrm{k}_{1}\right),\left(\mathrm{h}_{2}\right)$, and $\left(\mu_{1}\right)$ we obtain

$$
\begin{aligned}
0= & \int_{\mathrm{R}^{3}} a\left|\nabla u^{-}\right|^{2} d x+\int_{\mathrm{R}^{3}}\left|u^{-}\right|^{2} d x+b \int_{\mathrm{R}^{3}}|\nabla u|^{2} d x \int_{\mathrm{R}^{3}}\left|\nabla u^{-}\right|^{2} d x \\
& +\int_{\mathrm{R}^{3}} k(x)\left|u^{-}\right|^{2^{*}-2}\left|u^{-}\right|^{2} d x+\int_{\mathrm{R}^{3}} \mu h(x)\left|u^{-}\right|^{2} d x \geq 0 .
\end{aligned}
$$

Then $u^{-}=0$ and $u \geq 0$. From Harnack's inequality [27] we can infer that $u>0$ for all $x \in \mathrm{R}^{3}$. Therefore, u is a positive solution of (1.1). The proof is complete by choosing $\omega_{0}=u$.

4 Sign-changing solution

This subsection is devoted to proving the existence of sign-changing solution of Eq. (1.1). Let $\bar{N}=\left\{u=u^{+}-u^{-} \in H^{1}\left(\mathrm{R}^{3}\right): u^{+} \in N, u^{-} \in N\right\}$, where $u^{ \pm}=\max \{ \pm u, 0\}$. If $u^{+} \neq 0$ and $u^{-} \neq 0$, then u is called a sign-changing function. We define $c_{2}=\inf _{u \in \bar{N}} I(u)$.

Lemma 4.1 Assume that $\left(\mu_{1}\right),\left(\mathrm{k}_{1}\right)-\left(\mathrm{k}_{2}\right)$, and $\left(\mathrm{h}_{1}\right)-\left(\mathrm{h}_{2}\right)$ hold. Then for $\frac{3}{2}<\beta<3, c_{2}<c_{1}+$.
Proof By Lemma 2.4, using first the same argument as in [22] or [28], we have tt at there are $s_{1}>0$ and $s_{2} \in \mathrm{R}$ such that

$$
\begin{equation*}
s_{1} \omega_{0}+s_{2} \omega_{\varepsilon} \in \bar{N} \tag{4.1}
\end{equation*}
$$

Next, we prove that there exists $\varepsilon>0$ small enough such that

$$
\begin{equation*}
\sup _{s_{1}>0, s_{2} \in \mathrm{R}} I\left(s_{1} \omega_{0}+s_{2} \omega_{\varepsilon}\right)<c_{1}+c^{*} \tag{4.2}
\end{equation*}
$$

Obviously, it follows from (2) of Lemma 2.3 that, for any $s_{1}>0 \mathrm{a}_{2} \mathrm{~d} s_{2} \in \mathrm{R}$ satisfying $\| s_{1} \psi_{1}+$ $s_{2} \omega_{\varepsilon} \|>\rho, I\left(s_{1} \omega_{0}+s_{2} \omega_{\varepsilon}\right)<0$. We only estimate $I\left(c_{1} \omega_{0}+s_{2} \omega\right.$ y for all $\left\|s_{1} \omega_{0}+s_{2} \omega_{\varepsilon}\right\| \leq \rho$. By calculation we see that

$$
\begin{equation*}
I\left(s_{1} \omega_{0}+s_{2} \omega_{\varepsilon}\right)=I\left(s_{1} \omega_{0}\right)+\Pi_{1}+\Gamma+\Pi_{3}+\Gamma_{5}, \Pi_{5}+\Pi_{6} \tag{4.3}
\end{equation*}
$$

where

$$
\begin{aligned}
\Pi_{1}= & \left.\frac{a s_{2}^{2}}{2} \int_{\mathrm{R}^{3}}\left|\nabla w_{\varepsilon} d x+\frac{b s_{2}^{4}}{4}\left(\int_{\mathrm{R}^{3}}\left|\nabla w_{\varepsilon}\right|^{2} d x\right)^{2}-\frac{s_{2}^{6}}{6} \int_{\mathrm{R}^{3}} k\left(x_{0}\right)\right| w_{\varepsilon}\right|^{6} d x, \\
\Pi_{2}= & \frac{s_{2}^{6}}{6} \int_{\mathrm{R}^{3}} \int^{1}\left(x_{0}\right)\left|w_{\varepsilon}\right|-\frac{s_{2}^{6}}{6} \int_{\mathrm{R}^{3}} k(x)\left|w_{\varepsilon}\right|^{6} d x, \\
\Pi_{3}= & \int_{\mathrm{R}^{3}} k(2)\left(\left|s_{1} \omega_{0}\right|^{6}+\left|s_{2} w_{\varepsilon}\right|^{6}-\left|s_{1} \omega_{0}+s_{2} w_{\varepsilon}\right|^{6}\right) d x, \\
\Pi_{4}= & \int_{\mathrm{R}^{3}}\left|w_{\varepsilon}\right|^{2} d x-\frac{\mu s_{2}^{2}}{2} \int_{\mathrm{R}^{3}} h(x)\left|w_{\varepsilon}\right|^{2} d x, \\
\Gamma_{5}= & \frac{b}{4}\left[\left(\int_{\mathrm{R}^{3}}\left|\nabla\left(s_{1} \omega_{0}+s_{2} \omega_{\varepsilon}\right)\right|^{2} d x\right)^{2}-\left(\int_{\mathrm{R}^{3}}\left|\nabla\left(s_{1} \omega_{0}\right)\right|^{2} d x\right)^{2}\right. \\
& \left.-\left(\int_{\mathrm{R}^{3}}\left|\nabla\left(s_{2} \omega_{\varepsilon}\right)\right|^{2} d x\right)^{2}\right],
\end{aligned}
$$

and

$$
\Pi_{6}=\int_{\mathrm{R}^{3}}\left(a \nabla\left(s_{1} \omega_{0}\right) \nabla\left(s_{2} \omega_{\varepsilon}\right)+\left(s_{1} \omega_{0}\right)\left(s_{2} \omega_{\varepsilon}\right)-\mu h(x)\left(s_{1} \omega_{0}\right)\left(s_{2} \omega_{\varepsilon}\right)\right) d x
$$

By (3.16) we obtain that

$$
\begin{equation*}
\sup _{s_{2} \in \mathrm{R}} \Pi_{1}=\frac{a b S^{3}}{4\|k\|_{\infty}}+\frac{b^{3} S^{6}}{24\|k\|_{\infty}^{2}}+\frac{\left(b^{2} S^{4}+4 a\|k\|_{\infty} S\right)^{\frac{3}{2}}}{24\|k\|_{\infty}^{2}}+O\left(\varepsilon^{\frac{1}{2}}\right) . \tag{4.4}
\end{equation*}
$$

It follows from (3.18) that

$$
\begin{equation*}
\Pi_{2} \leq C \varepsilon^{\frac{1}{2}} \tag{4.5}
\end{equation*}
$$

From the elementary inequality

$$
|s+t|^{q} \geq|s|^{q}+|t|^{q}-C\left(|s|^{q-1} t+|t|^{q-1} s\right) \quad \text { for any } q \geq 1
$$

the fact that $\omega_{0} \in H^{1}\left(\mathrm{R}^{3}\right) \cap L^{\infty}\left(\mathrm{R}^{3}\right)$, and from (3.14) we have

$$
\begin{aligned}
\Pi_{3} & \leq C \int_{\mathrm{R}^{3}} k(x)\left(\left|\omega_{0}\right|^{5} \omega_{\varepsilon}+\omega_{0}\left|w_{\varepsilon}\right|^{5}\right) d x \\
& \leq\|k\|_{\infty}\left\|\omega_{0}\right\|_{\infty} \int_{\mathrm{R}^{3}}\left|w_{\varepsilon}\right|^{5} d x+\|k\|_{\infty}\left\|\omega_{0}^{5}\right\|_{\infty} \int_{\mathrm{R}^{3}} w_{\varepsilon} d x \\
& \leq C \varepsilon^{\frac{1}{4}}
\end{aligned}
$$

By (3.19) we have

$$
\begin{equation*}
\Pi_{4} \leq C \varepsilon^{\frac{1}{2}}-C \varepsilon^{1-\frac{\beta}{2}} \tag{4.7}
\end{equation*}
$$

and using (3.13), we have

$$
\begin{align*}
\Pi_{5} \leq & \frac{b}{4}\left[4\left(\int_{\mathrm{R}^{3}}\left|\nabla\left(s_{1} \omega_{0}\right)\right|^{2} d x\right)^{2}\right. \\
& \left.-\left(\int_{\mathrm{R}^{3}}\left|\nabla\left(s_{1} \omega_{0}\right)\right|^{2} d x\right)\left|\nabla\left(s_{2} \omega_{\varepsilon}\right)\right|^{2} d x\right)^{2} \\
= & \frac{3 b}{4}\left(\int_{\mathrm{R}^{3}} \mid \nabla\left(\left.\nabla\left(s_{2} \omega_{\varepsilon}\right)\right|^{2} d x\right)^{2} d \gamma\right)^{2}+\frac{3 b}{4}\left(\int_{\mathrm{R}^{3}}\left|\nabla\left(s_{2} \omega_{\varepsilon}\right)\right|^{2} d x\right)^{2} \\
\leq & C+C \varepsilon \varepsilon^{2} . \tag{4.8}
\end{align*}
$$

Since a s ive solution of (1.1), by the Sobolev inequality we obtain
$=s_{1} s_{2} \int_{\mathrm{R}^{3}} k(x)\left|\omega_{0}\right|^{5} \omega_{\varepsilon} d x-b \int_{\mathrm{R}^{3}}\left|\nabla\left(s_{1} \omega_{0}\right)\right|^{2} d x \int_{\mathrm{R}^{3}} \nabla\left(s_{1} \omega_{0}\right) \nabla\left(s_{2} \omega_{\varepsilon}\right) d x$
$\leq\|k\|_{\infty}\left\|\omega_{0}^{5}\right\|_{\infty} \int_{\mathrm{R}^{3}} w_{\varepsilon} d x+b\left(\int_{\mathrm{R}^{3}}\left|\nabla\left(s_{1} \omega_{0}\right)\right|^{2} d x\right)^{\frac{3}{2}}\left(\int_{\mathrm{R}^{3}}\left|\nabla\left(s_{2} \omega_{\varepsilon}\right)\right|^{2} d x\right)^{\frac{1}{2}}$

$$
\begin{equation*}
\leq C \varepsilon^{\frac{1}{4}} \tag{4.9}
\end{equation*}
$$

It follows from (4.3)-(4.9) that, for $\frac{3}{2}<\beta<3$,

$$
\begin{aligned}
I\left(s_{1} \omega_{0}+s_{2} \omega_{\varepsilon}\right) & \leq I\left(s_{1} \omega_{0}\right)+c^{*}+C+C \varepsilon^{\frac{1}{4}}+C \varepsilon^{\frac{1}{2}}-C \varepsilon^{1-\frac{\beta}{2}} \\
& <I\left(s_{1} \omega_{0}\right)+c^{*}=c_{1}+c^{*}
\end{aligned}
$$

as $\varepsilon \rightarrow 0$, which implies that (4.2) holds. This finishes the proof of Lemma 4.1.

Lemma 4.2 Suppose that $\left(\mu_{1}\right),\left(\mathrm{k}_{1}\right)-\left(\mathrm{k}_{2}\right)$, and $\left(\mathrm{h}_{1}\right)-\left(\mathrm{h}_{2}\right)$ hold. Then, for $\frac{3}{2}<\beta<3$, there exists $\omega_{1} \in \bar{N}$ such that $I\left(\omega_{1}\right)=c_{2}$.

Proof Let $\left\{u_{n}\right\} \subset \bar{N}$ be such that $I\left(u_{n}\right) \rightarrow c_{2}$. Since $u_{n} \in \bar{N}$, we may assume that there exist constants d_{1} and d_{2} such that $I\left(u_{n}^{+}\right) \rightarrow d_{1}$ and $I\left(u_{n}^{-}\right) \rightarrow d_{2}$ and $d_{1}+d_{2}=c_{2}$. Then

$$
\begin{equation*}
d_{1} \geq c_{1}, \quad d_{2} \geq c_{1} \tag{4.10}
\end{equation*}
$$

Just as the proof of (3.22), we can prove the boundedness of $\left\{u_{n}^{+}\right\}$and $\left\{u_{n}^{-}\right\}$. Going, if no essary, to a subsequence, we may assume that $u_{n}^{ \pm} \rightharpoonup u^{ \pm}$in $H^{1}\left(\mathrm{R}^{3}\right)$ as $n \rightarrow \infty$.

We claim $u^{+} \neq 0$ and $u^{-} \neq 0$. Arguing by contradiction, if $u^{+}=0$ or $u^{-}=0$, then y (4.10) and Lemma 3.2,

$$
c_{1}+c^{*} \leq d_{2}+d_{1}=c_{2}
$$

which contradicts Lemma 4.1. Hence, $u^{+} \neq 0$ and $u^{-} \neq 0$. We cl $1 \mathrm{~m}_{1}$ tat $u_{n}^{ \pm} \rightarrow u^{ \pm}$strongly in $H^{1}\left(\mathrm{R}^{3}\right)$. Indeed, according to Lemma 3.2, we get one of the ${ }^{1}{ }_{C}$
(i) $\left\{u_{n}^{+}\right\}$converges strongly to u^{+};
(ii) $d_{1}>I\left(t\left(u^{+}\right) u^{+}\right)$;
(iii) $d_{1}>c^{*}$;
and we also have one of the following:
(iv) $\left\{u_{n}^{-}\right\}$converges strongly to u^{-};
(v) $d_{2}>I\left(t\left(u^{-}\right) u^{-}\right)$;
(vi) $d_{2}>c^{*}$.

We will prove that only cases i) and (isord. For example, in cases (i) and (v) or (ii) and (v), from $u^{+}-t\left(u^{-}\right) u^{-} \in \bar{N} \mathrm{o}, t\left(u^{\prime} u^{+}-t\left(u^{-}\right) u^{-} \in \bar{N}\right.$ we have

$$
c_{2} \leq I\left(u^{+}-t\left(u^{-}\right),-\right)=I\left(u^{+}\right)+1\left(-t\left(u^{-}\right) u^{-}\right)<d_{1}+d_{2}=c_{2}
$$

or

$$
\left.\left.c_{2} \varkappa^{+}\right) u-t\left(u^{-}\right) u^{-}\right)=I\left(t\left(u^{+}\right) u^{+}\right)+I\left(-t\left(u^{-}\right) u^{-}\right)<d_{1}+d_{2}=c_{2} .
$$

A 1y one o 'etwo inequalities is impossible. In cases (i) and (vi) or (ii) and (vi) or (iii) and (v_{t}, ve have

$$
\begin{aligned}
& c_{1}+c^{*} \leq I\left(u^{+}\right)+c^{*}<d_{1}+d_{2}=c_{2} \\
& c_{1}+c^{*} \leq I\left(t\left(u^{+}\right) u^{+}\right)+c^{*}<d_{1}+d_{2}=c_{2} \\
& c_{1}+c^{*} \leq c^{*}+c^{*}<d_{1}+d_{2}=c_{2}
\end{aligned}
$$

and any one of the three inequalities is a contradiction. Therefore, we prove that only (i) and (iv) hold. Hence, we obtain that $\left\{u_{n}^{+}\right\}$and $\left\{u_{n}^{-}\right\}$converge strongly to u^{+}and u^{-}, respectively, and we obtain $u^{+}, u^{-} \in N$. Denote $\omega_{1}=u^{+}-u^{-}$. Then $\omega_{1} \in \bar{N}$ and $I\left(\omega_{1}\right)=$ $d_{1}+d_{2}=c_{2}$.

Proof of Theorem 1.2 Now we show that ω_{1} is a critical point of I in $H^{1}\left(\mathrm{R}^{3}\right)$. Arguing by contradiction, assume that $I^{\prime}\left(\omega_{1}\right) \neq 0$. For any $u \in N$, we claim that $\left\|G^{\prime}(u)\right\|_{H^{-1}}=$
$\sup _{\|\nu\|=1}\left|\left\langle G^{\prime}(u), v\right\rangle\right| \neq 0$. In fact, by the definition of N and Lemma 2.2, for any $u \in N$, we have

$$
\begin{aligned}
\left\langle G^{\prime}(u), u\right\rangle= & 2\left(\|u\|^{2}-\mu \int_{\mathrm{R}^{3}} h(x)|u|^{2} d x+b\left(\int_{\mathrm{R}^{3}}|\nabla u|^{2} d x\right)^{2}\right)+2 b\left(\int_{\mathrm{R}^{3}}|\nabla u|^{2} d x\right)^{2} \\
& -6 \int_{\mathrm{R}^{3}} k(x)|u|^{6} d x \\
= & 2\left(\|u\|^{2}-\mu \int_{\mathrm{R}^{3}} h(x)|u|^{2} d x+b\left(\int_{\mathrm{R}^{3}}|\nabla u|^{2} d x\right)^{2}\right)+2 b\left(\int_{\mathrm{R}^{3}}|\nabla u|^{2} d x\right)^{2} \\
& -6\left(\|u\|^{2}-\mu \int_{\mathrm{R}^{3}} h(x)|u|^{2} d x+b\left(\int_{\mathrm{R}^{3}}|\nabla u|^{2} d x\right)^{2}\right) \\
= & \left.-4\left(\|u\|^{2}-\mu \int_{\mathrm{R}^{3}} h(x)|u|^{2} d x+b\left(\int_{\mathrm{R}^{3}}|\nabla u|^{2} d x\right)^{2}\right)+2^{1} \mid \nabla v_{\mathrm{R}^{3}} u^{2} x\right)^{2} \\
\leq & -4\left[\left(1-\frac{\mu}{\tilde{\mu}}\right)\|u\|^{2}+b\left(\int_{\mathrm{R}^{3}}|\nabla u|^{2} d x\right)^{2}\right]+2 b\left(\left.\left.\right|_{\mathrm{R}^{3}} u\right|^{2} d x\right)<0 .
\end{aligned}
$$

Then we define

$$
\Phi(u)=I^{\prime}(u)-\left\langle I^{\prime}(u), \frac{G^{\prime}(u)}{\left\|G^{\prime}(u)\right\|}\right\rangle \frac{G^{\prime}(u)}{\left\|G^{\prime}(u)\right\|},
$$

Choose $\lambda \in\left(0, \min \left\{\left\|u^{+}\right\|,\left\|u^{-}\right\|\right\} / 3\right)$ such that $\|\Psi \quad-\Phi(u)\| \leq \frac{1}{2}\left\|\Phi\left(\omega_{1}\right)\right\|$ for any $v \in N$ with $\left\|\nu-\omega_{1}\right\| \leq 2 \lambda$. Let $\chi: N \rightarrow[0,1]$ be a in , ,hit mapping such that

$$
\chi(v)= \begin{cases}0, & v \in N \text { with }\|v-\quad\| \geq 2 \lambda \\ 1, & v \in N \text { with } \| v-\omega_{1 \|} \leq \lambda\end{cases}
$$

and for positive onstant.on $\eta:\left[0, s_{0}\right] \times N \rightarrow N$ be the solution of the differential equation

$$
\frac{d \eta(s, v)}{d s}=-\chi(\eta(s, v)) \Phi(\eta(s, v)) \quad \text { for }(s, v) \in\left[0, s_{0}\right] \times N
$$

$$
\psi(\tau)=t\left((1-\tau) \omega_{1}^{+}+\tau \omega_{1}^{-}\right)\left((1-\tau) \omega_{1}^{+}+\tau \omega_{1}^{-}, \xi(\tau)=\eta\left(s_{0}, \psi(\tau)\right)\right) \quad \text { for } 0 \leq \tau \leq 1 .
$$

We now give the proof of the fact that $I(\xi(\tau))<I(u)$ for some $\tau \in(0,1)$. Obviously, if $\tau \in$ $\left(0, \frac{1}{2}\right) \cup\left(\frac{1}{2}, 1\right)$, then we have $I\left(\xi\left(\frac{1}{2}\right)\right)<I\left(\psi\left(\frac{1}{2}\right)\right)<I\left(\omega_{1}\right)$ and $I(\xi(\tau)) \leq I(\psi(\tau))<I\left(\omega_{1}\right)$.

Since $t\left(\xi^{+}(\tau)\right)-t\left(\xi^{-}(\tau)\right) \rightarrow-\infty$ as $\tau \rightarrow 0+0$ and $t\left(\xi^{+}(\tau)\right)-t\left(\xi^{-}(\tau)\right) \rightarrow+\infty$ as $\tau \rightarrow 1-0$, there exists $\tau_{1} \in(0,1)$ such that $t\left(\xi^{+}(\tau)\right)=t\left(\xi^{-}(\tau)\right)$. Thus, $\xi\left(\tau_{1}\right) \in \bar{N}$ and $I\left(\xi\left(\tau_{1}\right)\right)<I\left(\omega_{1}\right)$, which contradicts to the definition of c_{2}. Hence, we get that $I^{\prime}\left(\omega_{1}\right)=0$ and ω_{1} is a signchanging solution of problem (1.1). The proof of Theorem 1.2 is complete.

Competing interests

The authors declare that they have no competing interests.

Authors' contributions

Both authors contributed to each part of this work equally and read and approved the final version of the manuscript.

Author details

${ }^{1}$ Department of Mathematics and Statistics, Henan University of Science and Technology, Luoyang, 471003, P.R. China
${ }^{2}$ School of Mathematics and Statistics, Central South University, Changsha, 410075, P.R. China.

Acknowledgements

The authors would like to thank the referees for their valuable suggestions and comments, which led to improvement of the manuscript. Research was supported by Natural Science Foundation of China 11271372 and by Hunan Provincial Natural Science Foundation of China 12JJ2004.

Received: 28 March 2016 Accepted: 12 May 2016 Published online: 01 July 2016

References

1. Kirchhoff, G: Mechanik. Teubner, Leipzig (1883)
2. Chipot, M, Lovat, B: Some remarks on non local elliptic and parabolic problems. Nonlinear Anal. 30, 4619-d
3. Corrêa, FJSA: On positive solutions of nonlocal and nonvariational elliptic problems. Nonlinear Anz (2004)
4. He, X, Zou, W: Infinitely many positive solutions for Kirchhoff-type problems. Nonlinear Anal O(3), 140\% (2009)
5. Cheng, B, Wu, X: Existence results of positive solutions of Kirchhoff type problems. Nonlirea \quad I. 71, 488* 4892 (2009)
6. Alves, CO, Corrêa, FJSA, Ma, TF: Positive solutions for a quasilinear elliptic equation hhoff typy omput. Math. Appl. 49, 85-93 (2005)
7. Wu, X: Existence of nontrivial solutions and high energy solutions for Schröding irc equations in \mathbf{R}^{N}. Nonlinear Anal., Real World Appl. 12, 1278-1287 (2011)
8. He, X, Zou, W: Existence and concentration behavior of positive solutiol for a Kirchho -quation in R3 J. Differ. Equ. 252, 1813-1834 (2012)
9. Nie, J, Wu, X: Existence and multiplicity of non-trivial solutions for Schrödi ge,-Kry ohoff-type equations with radial potential. Nonlinear Anal. 75, 3470-3479 (2012)
10. Liu, Z, Guo, S: Positive solutions for asymptotically linear Sch'nger-Kirchh rif-type equations. Math. Methods Appl. Sci. (2013). doi:10.1002/mma. 2815
11. Sun, J, Wu, TF: Ground state solutions for an indefinite hoff ty problem with steep potential well. J. Differ. Equ. 256, 1771-1792 (2014)
12. Liu, H, Chen, H, Yuan, Y: Multiplicity of nontrivi solutions for ass of nonlinear Kirchhoff-type equations. Bound. Value Probl. 2015, 187 (2015)
13. $\mathrm{Xu}, \mathrm{L}, \mathrm{Chen}, \mathrm{H}$: Nontrivial solutions for Kivanofthe probs with a parameter. J. Math. Anal. Appl. 433, 455-472 (2016)
14. $\mathrm{Li}, \mathrm{G}, \mathrm{Ye}, \mathrm{H}$: Existence of positive ss atio nonlinear Kirchhoff type problems in R^{3} with critical Sobolev exponent and sign-changing nonlinearitis (2013). à 13.05.6777v1 [math.AP]
15. Wang, J, Tian, L, Xu, J, Zhane, F: Multiplicity al concentration of positive solutions for a Kirchhoff type problem with critical growth. J. Differ. Ec 253, 2314-2351 (2012)
16. Liang, S, Zhang, J: Existenc folution for Kirchhoff type problems with critical nonlinearity in \mathbf{R}^{3}. Nonlinear Anal., Real World Appl. 17, 126-1, 14)
17. Ambrosetti, A, Mà indi, A: Perturbation Methods and Semilinear Elliptic Problems on RN. Birkhäuser, Basel (2005)
18. Bartsch, T: Critical R Oin mon partially ordered Hilbert spaces. J. Funct. Anal. 186, 117-152 (2001)
19. Zhang, Z, Perera, K: Jigh chonging solutions of Kirchhoff type problems via invariant sets of descent flow. J. Math. Anal. Appi. 7(2), 45 5-463 (2006)
20. Mar Zha 4 7: Sigr-changing and multiple solutions of Kirchhoff type problems without the P.S. condition. Monlin Aादa....S), 1275-1287 (2009)
21 Hirano, $\mathrm{N}_{\text {, ii, }}$ N: A multiplicity result including a sign-changing solution for an inhomogeneous Neumann roblem wi / critical exponent. Proc. R. Soc. Edinb., Sect. A 137, 333-347 (2007)
21. ng, L, Rocha, EM, Chen, J: Positive and sign-changing solutions of a Schrödinger-Poisson system involving a crí Conlinearity. J. Math. Anal. Appl. 408, 55-69 (2013)
22. Willem, M: Minimax Theorems. Birkhäuser, Boston (1996)
23. Huang, L, Rocha, EM: A positive solution of a Schrödinger-Poisson system with critical exponent. Commun. Math. Anal. 15, 29-43 (2013)
24. Chen, J, Rocha, EM: Four solutions of an inhomogeneous elliptic equation with critical exponent and singular term. Nonlinear Anal. 71, 4739-4750 (2009)
25. Brézis, H, Lieb, EH: A relation between pointwise convergence of functions and convergence of functionals. Proc. Am. Math. Soc. 88, 486-490 (1983)
26. Gilbarg, D, Trudinger, N: Elliptic Partial Differential Equations of Second Order, 2nd edn. Grundlehren Math. Wiss., vol. 224. Springer, Berlin (1983)
27. Tarantello, G: Multiplicity results for an inhomogeneous Neumann problem with critical exponent. Manuscr. Math. 81,51-78 (1993)
28. Brézis, H, Nirenberg, L: Positive solutions of nonlinear elliptic equations involving critical Sobolev exponents. Commun. Pure Appl. Math. 36, 437-477 (1983)
