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Abstract

In this paper, the concepts of a right fractional sum and right fractional difference
operators are introduced. Some basic properties of a right fractional sum and right
fractional difference operators are proved. According to these properties of a right
fractional sum and right fractional difference operators, we studied an initial problem
and a boundary value problem with two-point boundary conditions. We hope that
the present work will facilitate solving a fractional difference equation with right
fractional difference operators.
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1 Introduction

Recently, there appeared a number of papers on the discrete fractional calculus, which
has helped to build up some of the basic theory of this area. For example, Atici and Eloe
discussed the properties of the generalized falling function, a corresponding power rule
for fractional delta-operators, and the commutativity of fractional sums in [1]. Goodrich
studied a fractional boundary value problem in [2], which gave the existence results for a
certain two-point boundary value problem of right-focal type for a fractional difference
equation. The authors of [3] have developed a well-posed initial value problem and pro-
posed multiple solution algorithms. An interesting recent paper by Atici and Sengiil [4]
addressed the use of fractional difference equations in tumor growth modeling. For re-
cent studies in discrete fractional calculus involving initial boundary value problems, see
[5-32].

From the above works, we can see in fact, although the discrete fractional calculus have
been studied by many authors, to the best of our knowledge, that the properties of a right
fractional difference operator have not been discussed. Our objective is twofold. On one
hand we proceed to develop the theory of fractional difference calculus, namely we intro-
duce the concepts of a right fractional sum and right fractional difference operators and
prove some basic properties of a right fractional sum and right fractional difference oper-
ators. On the other hand, according to these properties of a right fractional sum and right
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fractional difference operators, we studied an initial problem and a boundary value prob-
lem with two-point boundary conditions. The proofs are similar to those of earlier work
by both Goodrich [2] and Holm [10]; there nonetheless is something new and interesting
here. The contributions of this article aim to initiate the study of right fractional difference
operator. This interest is in part due to the useful applications of the fractional calculus
together with its interesting and often nontrivial mathematical theory. On the other hand,
it might be of interest to see what happens in the case of more complicated boundary con-
ditions or a higher-order problem. Due to the lack of commutativity of the right fractional
difference, the sequential boundary value problem is of interest. Furthermore, combining
the results of Goodrich [2] and Holm [10], there seem to be considerable possibilities for
future work to address the sequential boundary value problems with left and right frac-
tional difference operators, and such investigations might provide interesting future work.
We believe that the present work facilitates solving a fractional difference equation with a
right fractional difference operator.

2 Right fractional sum and right fractional difference operators
In this section, the concepts of a right fractional sum and right fractional difference oper-
ators are introduced and their some basic properties are proved.

Denote ;)N:={b} -No={...,b-2,b-1,b},b e R.

Definition 1 (see [2]) We define £~ := r?ﬁﬁl), for any ¢ and v for which the right-hand

side is defined. We also appeal to the convention that if £ + 1 — v is a pole of the Gamma
function and if £ + 1 is not a pole, then > = 0.

Definition 2 The vth order right fractional sum of a function f defined on ,N, for v > 0,
is defined to be

b
V) = % S s-t- 1), e s N, 2.1)

s=t+v
We also define the trivial right sum by ,Vf(t) = f(t), for t € ,N.

Definition3 Letf :; N — Rand v > 0 be given, and let N € N be chosen such that N -1 <
v < N. The vth order right fractional difference of f is given by

(V)@ = VF(E) = (CONVN, V@), te oy, N (2.2)

Using Definition 3 together with a function f : ;N — R and an order v > 0 with N -1 <
v < N, we may calculate the domain of the vth order right fractional difference as

D{,V'f} =D{VN, v ¥t =D{,v- Nl = yN

Moreover, the domains of all four sum and difference compositions are given below.
Letf:,N — Rand v, > 0 be given. Let N, M € Ny be chosen so that N -1 <v <N and
M—-1<u <M. Then

D{b—uv_vbv_uf} = b—/l.—vN: D{b—uvvbv_ﬂf} = b—/L—N+\)N7

D{b—Mﬂl,V_vbvuf} = b—M+/L—vN: D{b—MﬂLVUbvuf} = h—M+/L—N+vN'
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Theorem 1 Let f : )N — R and v > 0 be given, with N — 1 < v < N. The following two
definitions for the right fractional difference yV"f : ,_n+wN — R are equivalent:

pVf() = CON VIV NS (), (2.3)
A5 (s—t—1)2=Lf(s), N-1<v<N,
v — L'(-v) S=t—v
sV f(2) CONYNF (), DN (2.4)

Proof Let f and v be given as in the statement of the theorem. We are proposing two
definitions (2.3) and (2.4) and demonstrating that they are identically equal.
If v = N, then (2.3) and (2.4) are clearly equivalent, since in this case,

bV (1) = GOV VTEIE () = (CDN VN VR () = (DN ().
If N =1 <v <N, then a direct application of (2.3) yields

pVUF(E) = (1)NVN v NIE ()

b
=(—1)NVN(—F(NI_U) > (s—t—l)Mf(S)>

=t+N-v

b
= (-)NVNly <; > s-t- 1)Mf(s))

F(N - V) s=t+N-v
NyN-L 1 s ¢t —1)N=v-l
= (-1) F(N_v)sg_vu— - M= (s)

b
s X (s—t)Mf(s)>

+

1 b
= (-)N-1yN- <— (s—t— 1)Mf(s)>
WD, 2,

b

> (s -t =17 (s). .

§=l—v

_ 1
T T(=v)

Lemmal Letb e R and p >0 be given. Then
V(b-t):=—ulb-t)2 (2.5)

for any t, for which both sides are well defined.
Furthermore, for v>0 with N -1<v <N,

pu Vb= D = (b - OB, te g, N (26)
and

b—uvv(b - t)ﬁ = /J«H(b - t)ll—V, te b—/L—N+UN' (27)
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Proof 1t is easy to show (2.5) using the definition of the nabla difference and properties of
the gamma function. For (2.6) and (2.7), we first note that (b - t)&, (b — £)“*Y, and (b - t)L=~
are all well defined and positive on their respective domains 5N, p_,-vN, 5_,_nsuN.

We next show that (2.6) and (2.7) hold. The course of this proof as regards the techniques
heavily relies on Holm [10]. For convenience of the reader, we display it as follows.

For v = 1, we see from direct calculation that

V(b - )L
V-t =, VI ———
b ( ) b—y ( ,LL+1
b— +
3oV
s=t+1 M+1
_bi (b—s+ 1)L (h—g)l
_s:t+1 n+1 u+1
(-t oped
N n+1 n+1
= u (b - )L,

For v € (0,1) U (1, +00), define for ¢ € ,_,_,N the functions
at) =y V(b - D)
and
0(6) = = — )1,
We will show that both g; and g, solve the well-posed, first-order initial value problem

b-t-pn-v+1)Vg@t) +(u+v)g(t) =0, te€p N,

(2.8)
gb—pu—-v)=T(u+1).

Since

ab-p-v)= I'(v) D (s—t-1p=e gl

= (s=b+p+v-1)2LpH-s

_ Lt
—F(v)(v *=pkt
=T(u+1)

and

&b-p—v)=p=(u+v)=T(u+1),

both g; and g; satisfy the initial condition in (2.8).
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An effort is required to show that g; satisfies the difference equation in (2.8). For ¢ €

b—p—v N,

ng-( Z(s—t—)“ )M)

b-p
F(lv)(Z(s—t—l)” b s Z (s— )b -s

s=t+v s=t+v-1

—(w-1) 4

"o D (s—t-1)2b-s)t - (b-t+1-v)-.

v
s=t+v

Also, we may manipulate g; directly to obtain

S

1 -
ai(t) = O (s—t—1)"Lph-s~
1 X
=Ty 2o (5t =2) - Db - )
1 X
= ) 2Lt ) ) = om0 -
e M_le(s—t— 1)22(p - s)
1
'mz(b-s—u)(s—t—l)ﬂ(b_s)ﬁ
b-p
=$Z(S-t—l)ﬁ(b-s)&
1
Ty DR
= h(t) - k(),
where

S=t+v

K(t) 1= s Y0 (s — £ = D)2 (b — )AL,

h(t) = bt ’va” 2’]*“ (s—t—1)=2(b—s)L,

Summing k() by parts, we obtain

k(t)

Z s—t—1)=2(b— syt

s=t+v

1"(\))

b

1 . ((s—r=-1)2L
T T) Zw_S)LAS( v-1 )

s)E
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—_ H(S—t)ﬁ byt 1 (S_ )v . °
‘m“")" R r<>§v (s b= =17
1 I’L+]‘bM v—1 " A+l
= ()Z(—t) (b-s—1E—(b—t—v)t
S lbf(u E= 1w~ (bt — vt
\)—1_ )ut+v+1
1 M+1b" .
=— Z(s—t DA — syt
’lﬁ(:) v )ﬁ(b—t—u)&—(b—t—v)ﬂ]

1 |:/’L+1bﬂ v=1 +1]
= Y s—t-1)b-s)t—(b—t—v+ 1L

v_
s=t+v

It follows from the above work that

—(b-t-pu-v+1)Vg(t)=(v-Dh(t) + (b—t—v+ 1)~

(i + 1)@ (t) — (v =Dk(t) = (b—t — v + 1)L,
Hence,
(b-t—pu-v+1)Vgi(t) + (n +v)a(t) =0
Finally, g, also satisfies the difference equation (2.8):

b-t-p—-v+)Vg@)=b-t-p-v +1);Li[(b—t)ﬂ—(b—t+l)ﬂ]
—(b-t—p-v+ D+ v)(b - )=
= (1 +v)ga(0).
By the uniqueness of the solutions to the well-posed initial value problem (2.8), we con-
clude that ¢; =g, on ., N.
We next employ (2.5) and (2.6) to show (2.7) follows. For t € j_,,_n4vN,
pn V' (b=t = (-)NVN,_ VNI - g

_ (_I)NVN(H'— N—v)(b _ t);urN—v)

_ W[ T+ +N—v
=DV <F(/L+1+N—v)(b_t)“ )
_ NoN-1 I(p+1)
=DV (F(M+I+N—v)

_aw-ron-( Tle+1) \uaN=v-1
- (DN (F(M+N—v)(b £ )

(b=t N _ (bt + 1)H+_NV))
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- T(p+1)
T T(uw+1-v)
= uH(b — )2, O

(b-t)F=

Theorem 2 Let f: ;)N — R be given and suppose i, v > 0. Then
b-u Ve VTHE(@) = s VT (8) = 5oy V*VTf(R),  tep N

Proof Suppose f: N — Rand u,v >0. Thenfort e ,_,_,N,

b—p
b VBV (D) = % 2 G-t=D=es Z (1 -5 = 12 ()
—(u+v)
= Z Z (s+v—t-1)"L(u—s—v-1)~1f(u)
s=t  U=s+pL+v
b—p—v b—p—v

)Z Z (s+v—t -1 +pu-s—Dfr+p+v)

b-p-v r

=F(v)l“(u) ZZS+V—t_ Y=L+ —s—D)EL(r+ o+ v)

1 b—pu—v

" T Zf reuey)

X Z (s—(t—\))—l)ﬂ(r+p¢—s—1)"—_1

S=t—v+v

b—p—v

1
)Zf<r+u+v)wl WV =10t

T T(w

b—p—v

1 3 ) - D=+ =1 (- v))

T

Z (r—t = DELe ()

r=t+pL+v

sV (D).

F(v + 1)

Since v and u are arbitrary, we conclude more generally that
b-u Vo V() =y V() = po VTERVT(D), € popN O

Lemma2 Letf:,N — R begiven. For any k € Ny and . > 0 with M —1 < n < M, we have

pu VEGVTF ) =y VEHF(R), tep N, (2.9)

bsten V(e V() = o VF (), £ € e N (2.10)

Proof Let f, i, M, and k be as given in the statement of the lemma. We first prove (2.9).
We consider two cases.
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Casel. u =M.
Observe that for t € ,_;N,

b
v,V (1) =V (Zﬂs)) = £(0).
s=t+1

Furthermore, for any k € N* and ¢ € ,_«N, by Theorem 2, we have

VSV (@) = VI (Vi VT (V@)
= -V (v r()

= (- (@).
Therefore, for any ¢ € ,_»N, we obtain

-V VME(8) = (-D)FVE, VM ()

= () VMM, VM ()

= (D) VEME(2)

=, VEME@), ifk > M;
bV VME(E) = (-1)FVR, VML)

= (D' VTV MO8 ()

=, VEME@), ifk < M.

Case2. M —-1<pu<M.

b

VLV = vﬁ S;W(S —E- 1)
1 b b
- {Z(s - 1) - Z<s - t)"‘lf(s)]
1 b
TG T S:;j_l(s — - D22 (s)
= VIS ().

Repeating the above process, we may see that (2.9) holds.
Next, by (2.9), we get

bt VS (6 VI (8) = (D) VH )MV (V1 (1))
- (_1)k+ka+M (bv—(M—u)f(t))

= st VM (, VRE (1)) = , VEEA (),

and hence (2.10) holds. O
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Theorem 3 Letf: ;N — R be given and suppose i,v >0 with N —1<v <N. Then
h—uvvbv_“f(t) = bVV—Mf(t), te b—[l,—N+UN' (211)

Proof Letf, v, N, and 1 be given as in the statement of the theorem and let ¢ € 5_,,_n,N.
Then by Theorem 2 and Lemma 2, we have
bV V(@) = (DN, VN, VA ()
= (DN, VN (g

= V(D). O

Theorem 4 Letf: ,N — R be given and suppose k € Ny be given. Then fort € ,_,N,

k-1

V) = VR -y bV (b)
j=

v—k+j

Moreover, if u >0 with M —1 < u < M, then for t € p_pr4,—vN,

M-1
VM b-M
(t) - Z b S + /1)

Frv-M+j+1)

stV VEF(0) = pVIf (b—M+p—1)M7. (213)

j=0

Proof We first consider (2.12). Let k € Ny be given. Then
» VU VEF(E) = (<15, VUV (1)

Z(s— t - 1)LV (s)

= (-1 o )(;H:v(s_t 1A (VR (s - 1)))

b+1

= (- F(l )<(S—t—1)” S AR CE V]

b
- -Ds-t- 1)Hv“f(s))

- VEIf ()

_ s =2kl -l
=(-1) < o S:;wfl(s -1V f(s) + o) b-t)y—

L1 3 okt BVESB)
_ (_1\k-1 1\ =2yk-1 v—1
- (D S=§M;_1(s =129l - AR )
_ (_1)\k-2 _ v—37k-2
=(-1) F(v SHU 2(s t—1)=VEf(s)

k= k-

bv Zf(b)( _ )v -2 bv lf(h) (b_t)v—l

F(v-1) r'(v)
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b
__1 kel
" To-® s=§k(s t-=1)="=A(s)
= bvlf(b) (b £ v—k+j
_],:ZOF(v—k+j+1) Y '

We next consider (2.13). Suppose that v, u > 0 with M — 1 < u < M. Defining
gt) =, V"M WE) and a:=b-M+ p,
where 4 is the domain of the first point g, we have, for £ € j_pr. -0 N,

sV bV (8) = pore VT ()M, VMo £ (1)
= (_1)2\{M+M v VMg(t)

= b-M+pu V_Vb—M+/l. VMg(t)

M- .
=p VM= g (t) - i -1+ V'8(4) (a - t)=MY
M py T(v—M+j+1) g

= poatep VI, VML ()

M1 (M)
_ Z b—M+MV]hV #f(ﬂ) (ﬂ _ t)v—M+f
j=0

Fv-M+j+1)

M-1

=V =)

Jj=0

V- M-+jfp — M )
2 SOZME) ) ppg gy o,
Frv-M+j+1) O

Theorem 5 Letf: ,N — R be given and suppose p,v >0 withN —1<v <N and M -1 <
n <M. Then fort € p_psp-n+vN,

1 N
VIMAf (b — M + ) ;
rn VU VEE(E) = VAR = Y 2 b=M+ -0~ (214
btV s V() = 5V () oADMY, )

Jj=0

where in agreement with both rule (2.14) and the standard convention on t, the terms in

the summation vanish in the case v € N.

Proof Letf, v, and u be given as in the statement of the theorem. Recall that Lemma 2
proves (2.14) in the case when v = N. On the other hand, if N -1 < v < N, then by Theo-

rem 4, we have for t € ,_pr4-n+0N,

batiu VbV () = (DN VN g, VTV, VS (1)

M-1

S VM - M+ )
I'N-v-M+j+1)

_ (—I)NVN |:bV—N+v+/Lf(t) _
j=0

x(b—M+/L—t)W:|
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M-1

=y VIS(8) - Z

Jj=0

x (~DNVN(b = M + p — £)N==M+

pVMS (b~ M+ 1)
N-v-M+j+1)

Sy VIMERE (b — M + 1) (b— M+t — )M

=oVIf - Z F(-v-M+j+1) O

3 Application
Theorem 6 Letf : ,N— Randv >0 begiven with N —1 < v < N, consider the initial value
problem of the vth right fractional difference equation

pVVy(E) =f(t), tepN,

, . (3.1)
V’y(b):Ai, l=0,1,...,N—1,Ai€R.
The general solution to (3.1) is
N-1
¥(O) = b V() + Y ailb— N + v — )=, (3.2)
i=0

where {a/}}\zf o are N real constants. Moreover, the unique solution to (3.1) is (3.2) with par-

ticular constants,

e i’i i (1= NV (=)
/ F(v—N+]+1) i v

k=0 i=0
a) Mo +1)
(ﬂ) TB+DMa-B+1)

Proof By Theorem 4, we have

N-1

V(&) = p-nen VL (£) + ]_Z bV;—t+uy;f+]Ijrf I)v) (b Nt vy,
We have
pVNVy(b—N +v) = ﬁ Z(S—b+N—v 1)FN-Ly(q)
1 j |
) F(N_i"_j)X::(k_”N_"‘1)_”N7_"'1y(b—j+k)

. Fk—j+N-v)
_F(N—v ,)Z rhan 2R

j ; ; ,
(k—=j+N-v-1)(k—-j+N-v=-2)---(N-v—))
Z C'(k+1)

k=0
xy(b-j+k)

j ,
- Z(—l)k<” v N)y(b ~j+k)

k=0
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1 J Jj—k i+k (V+—-NY (j—k
Therefore, o;; = TO-N+j+1) 2 k=0 Zizo(_l)m(wlk )(]i )Ai'
We consider two-point boundary value problem

WV +ft-v+LyEt-v+1)=0, telv-1Lb+v-1lx,

(3.3)
y(=1) =y(b) = 0,
where f : [0, b]y, x R — R is a continuous functionand v € (1,2], be N, b > 2.
By Theorem 4, we have
y(t) = —h_z_vV_”f(t —v+Lyt-v+ 1))
+Cb=-2+v—t) "+ Cyb-2+v—1)=2
1 b-2+v
:_mS:tw(s—t—l)ﬁf(s—v+1,y(s—v+1))
+C(b-2+v -1+ Cy(b -2 +v -1,
y(b) = Czr(l) - 1) = O, Cz = 0,
b+v-2
y(—1)=—m S (s—v+Lys—v+1)+ Cb-1+v)=L=0,
v
s=v-1
1 b+v-2
Gz Y Y (s—v+1y(s-v+1)),
1 (b+v—1)ﬂf(v)s=vz_ls (s v+Ly(s—v+ ))
b+v-2
y(t) = Z G(t, s)f(s —v+Ly(s—v+ 1)), (3.4)
s=v—1
where
%—(s—t—l)ﬂ, v-l<t+v—-1l<s<b+v-2,
G(t’ S) =5 v—l( - 71)—1
[(v) | &=l200= v-l<s<t+v-1<b+v-2. O

(b+v-1)r=L

Theorem 7 The Green’s function G(t,s) satisfies the following conditions:
(i) G(t,5)>0forte[0,b-1ln, andse[v,b+v—2]n,;
(ii) mMaxe(o,bly, G(t,s)=G(s—v+1,s),forse[v,b+v—2]y,;
(iii) there exists a positive number y € (0,1) such that
minte[%%h] G(t,s) >y maXee[-15]y G(t,5) =yG(s—v +1,5), for
sev-Lb+v-2y,,.

Proof (i) One can see that A;G(t,s) <0 forv-1<s<t+v-1,and A;G(¢s) > 0 for
v—1<t+v-1<s.Indeed, forv—-1<t+v-1<s, wehave

AGlts) = — _l)ﬂ[(s—t—Z)ﬂ(b—l FV)L (b v — £ - 3)0200),

b-1+v
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Thus, A;G(¢,5) > 0 if and only if

(s—t=2)=2(b-1+v)=L
(b+v—t—3)=2s-1

The inequality follows from the fact that t* is increasing and =% is decreasing if
0 <a <1. Since

G(-1,s) = G(b,s) =0
and

s hrv-2-s+v-1)=L
(b+v-1)1

&b+ 2v —s - 3)v=L
= Grv_DeL >0, sev-Lb+v-2]y,,,

G(s-v+1,s) =

(i), (ii) are proved.

Next, we prove the (iii). Clearly,

b+v—2-t)=L —t-1)=L(p4v-1)2=L
G(t,s) ((b++;v_s_?3)u;1—(SSE(LZU(_ZS),,);I, v-1<t+v-1l<s<b+v-2,
= v-1
G(s—v+1,5s) % v-l<s<t+v-1<bh+v-2.

Forv—1§S§t+v—1§b+v—2and§§t§%,

Gl(t,s) ~ b+v-2-—¢trt >(b+v—2—%)ﬂ
Gis—v+1ls) (Bb+2v-—s-31 =~ (hb+v-2)l

Forv-1<t+v-1l<s<b+v-2and % <t< %,weknowthat G(¢,s) is increasing with
respect to £, hence we have

G(t,s) >(b+u_2_§)ﬁ (s-2-1)b+v-122L

Gs—v+1ls) — (b+2v—s-3)-1 se=L(h +2v —s—3)v=L
B 1
T (b+2v—s—3)-L

v-1 V-
x[(%+v—2) - 1 (s—é—1> (b+u—1)u:|
4 su=L 4
1 3b vl (g3l b1
EWKTH) BT =R ]
1 3b vl (3 gyt
= sv=2 4 7 —1)x=t| =0,
>(b+u_2)u[<4+” ) eyt eVl ] 0
b v-1

. s—z-D= . . .
since —5—— is increasing for s.
Thus

min G(t,s) >y max G(ts)=yG(s-v+1,s),
te[g,%’] te[-Lbln_;
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where
. (b +v-2p=t
y_mm{m’
1 3b vl (B py -3t o
7(1””_2)4(2”‘2) ‘m“’”—”—” (3:5)

Below we shall employ the following fixed point result.

Lemma 3 (see [2]) Let B be a Banach space, and let P C B be a cone. Assume Q2 and 2,
are open discs contained in B with 0 € Q1, Q1 C Q and let A: P N (Q\Q1) > P bea
completely continuous operator such that, either

() I4Y1 < liyl, y € P 182 and [4yll > llyll, y € P 09K or

(i) Ayl = llyll, y € PN 02y and Ayl < llyll, y € P N 0Ly,
Then A has least one fixed point in P N (2:\2)).

Clearly, finding a solution y(¢) of the FBVP (3.3) is equivalent to finding a solution of the
summation equation (3.4).

For our purpose, define the Banach space B by
B= {y: [0,b]n, = R:y(-1) =y(b) = 0},

with norm ||y|| = MaXe[-1,5]y_, ly@®)].
Let y be defined by (3.5) and define cones P and P, in B by

P = {yeIB% :y(t)>0forte [—1,b]N_1},

Py = {yeP: min y(¢) > J/||)’||}'
te[£,38)

Thus, y is a solution of the boundary value problem (3.3) if and only if y is a fixed point of
the operator 7: B — B defined by

b+v-2

Ty(t) = Z G(t,s)f(s -v+Ly(s—-v+ 1)), te[-1,b]n,,.

s=v-1

We state three hypotheses that will be used below.

(Hy) ft-v+Lx)>0,(t,x)e[v-1,b+v—1]y,, x [0,+00);

(Hz) f(t—v +1,x) = h(z — v + 1)g(x), where 4 is a positive function, g is a nonnegative

function, and lim,_, o+ ‘@ =0, lim,_, o ‘@ = 00;

(Hs) f(t —v +1,x) = h(t — v + 1)g(x), where 4 is a positive function, g is a nonnegative
¢ @ _

function, and lim,_, o+ = =00, limy 00 =
Lemma 4 Assume condition (Hy) holds. Then Ty € Py for all y € P. In particular, the

operator T leaves the cone Py invariant.
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Proof Forall y € P,by Theorem 7 and (H,), we have T¥(t) > 0 for all ¢ € [-1, b]w_, . Further,
it follows immediately from Theorem 7(iii) that

b+v-2
min (Ty)(¢t) > max G(ts)f(s—v+1Ly(s—v+1))>y|Ty|.
hin, (DO = Zl i GBS ( y )= yITy
Therefore, Ty € Py. O

Theorem 8 Assume that conditions (H;) and (Hy) are satisfied. Then the FBVP (3.3) has
at least one solution y #0 € Py.

Theorem 9 Assume that conditions (Hy) and (Hs) are satisfied. Then the FBVP (3.3) has
at least one solutiony #0 € Py.

The proofs of Theorem 8 and 9 are similar to Theorems 4.1 and 4.2 in [24] and are
skipped.
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