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Abstract
Ebola is a world health problem and with a recent outbreak. There exist different
models in the literature to predict its behavior, most of them based on data coming
from previous outbreaks or using restricted number of persons in the population
variable. This paper deals both with classical and fractional order SEIR (susceptible,
exposed, infections, removed) Ebola epidemic model and its comparison with real
data extracted from the reports periodically published by the World Health
Organization (WHO), starting from March 27th, 2014. As it has been shown in the
literature, one physical meaning of the fractional order in fractional derivatives is that
of index of memory; and therefore, it seems to be useful for epidemic models, as in
this paper. The number of confirmed cases by the WHO in its reports is used for our
analysis and estimation of the parameters in our classical and fractional SEIR models.
Our approach gives a good approximation to real data. Following our results, the
current outbreak will continue for approximately two years, assuming that no new
outbreak appears at a different community or country. Our estimates give a number
of the order nine million confirmed cases.
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1 Introduction
Ebola is a highly lethal virus, which has caused at least  confirmed outbreaks in Africa
between  and . In October  cases also appeared in the USA and Spain after
treating infected patients at Texas Health Presbyterian Hospital Dallas and Hospital Carlos
III de Madrid, respectively.

The origin of Ebola is somewhat not clear. Peter Piot discovered the Ebola virus in 
and helped to contain the first-ever recorded Ebola epidemic that same year in the first
recorded outbreak held at Nzara, Maridi and surrounding areas (Sudan) between June
and November .

Up to , about , cases and , deaths have been registered due to Ebola
virus(es). In the outbreak of  (Guinea, Liberia, Nigeria, Senegal, and Sierra Leone)
we have about , cases and , deaths at the time of writing this article (Decem-
ber st, ).

There exist five Ebola viruses according to the International Committee on Taxonomy
of Viruses currently: Ebola virus (EBOV), Sudan virus (SUDV), Reston virus (RESTV),
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Taï Forest virus (TAFV), and Bundibugyo virus (BDBV). Four of these viruses (except-
ing RESTV) are known to cause Ebola virus disease in humans. Up to , the SUDV
was present at  cases, the BDBV virus at  cases, one person was infected by the
TAFV virus, and the remaining cases (about ,) were due to the EBOV virus. The 
outbreak is related with the EBOV virus.

Despite extensive search, the reservoir of the Ebola virus has not yet been identified
but may include fruit bats []. Ebola is transmitted by physical contact with body fluids,
secretions, tissues, or semen from infected persons. The incubation period is - days,
and the infectious period is - days. The diagnosis of Ebola is not easy since many times
it is misdiagnosed as, for example, malaria and typhoid. The onset of Ebola is characterized
by severe headaches, malaise, fever, vomiting, bloody diarrhea, and rash.

The mortality rate of Ebola varies from % to %. Very recently a new study has
provided strong evidence that individual genetic differences play a major role in whether
people die from the disease []. This might help to understand the big differences in the
mortality rate of Ebola at different communities which are observed in the official data
reported. As an example, the estimates of the basic reproduction number [], R, are .
(% CI, . to .) for Guinea, . (% CI, . to .) for Liberia, . (% CI, .
to .) for Nigeria, and . (% CI, . to .) for Sierra Leone [].

In the  outbreak the mean incubation period is . days, and it does not vary by
country []. The mean time from the onset of symptoms to hospitalization, a measure of
the period of infectiousness in the community, is . ± . days, and it is not shorter for
health care workers than for other case patients. The mean time to death after admission
to the hospital is . ± . days, and the mean time to discharge is . ± . days []. The
mean length of stay in hospital is . days in Guinea, Liberia, and Sierra Leone.

In this paper we have analyzed both classical and fractional SEIR (susceptible-exposed-
infectious-removed) epidemic model for different values of the parameters, as compared
with the official data obtained from the World Health Organization (WHO). These models
have been used to compare the existing data of previous outbreaks [–] which have less
information as compared with the  outbreak.

We shall denote by S(t), E(t), I(t), and R(t) the susceptible, exposed, infectious, and re-
moved at time t. We shall also assume that

N = S(t) + E(t) + I(t) + R(t)

is the population (constant) studied in the model. Notice that N includes the recovered
individuals R(t).

For our purposes we have followed the Ebola disease outbreak news published by the
WHO. In their webpage it is possible to find a number of reports from the starting cases
(March rd, ) up to the time of writing this article (December st, ). We have
followed the number of confirmed cases in Guinea, Liberia, and Sierra Leone. In order to
make the model as much accurate as possible, we have followed also the information pub-
lished by Humanitarian Data Exchange (HDX) which provide more detailed information
about the spread of the outbreak. More precisely, in Liberia there exist confirmed cases
in all the  counties (Bomi, Bong, Gbarpolu, Grand Bassa, Grand Cape Mount, Grand
Gedeh, Grand Kru, Lofa, Margibi, Maryland, Montserrado, Nimba, Rivercess, River Gee,
and Sinoe). Moreover, in Sierra Leone there also exist confirmed cases in all the  districts
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(Bo, Bombali, Bonthe, Kailahun, Kambia, Kenema, Koinadugu, Kono, Moyamba, Port
Loko, Pujehun, Tonkolili, Western Rural, and Western Urban). Nevertheless, in Guinea
there do not exist confirmed cases in the following prefectures: Fria, Gaoual, Koubia,
Koundara, Labé, Lélouma, Mali, Mandiana, and Tougué. Therefore, the total population
in our model (according to updated data) is fixed to be ,, people. As will be noted
later, we will consider as N in our model a portion of such total population.

There exist some other models for the  Ebola outbreak [–] and previous out-
breaks [–].

2 Materials and methods
2.1 Classical model
Using [], we have the following system of differential equations as model:

⎧
⎪⎪⎪⎪⎪⎨

⎪⎪⎪⎪⎪⎩

S′(t) = – βS(t)(qE(t)+I(t))
N ,

E′(t) = βS(t)(qE(t)+I(t))
N – δE(t),

I ′(t) = δE(t) – γ I(t),

R′(t) = γ I(t).

()

In this model the parameter β = pc, where p is the probability of successfully getting in-
fected when coming into contact with an infected individual, and c is the per-capita con-
tact rate. That is, β is an average of the number of infected people by contact with one
symptomatic individual who has been infected with Ebola virus. However, Ebola virus can
be also transmitted by latent individuals; that is, asymptomatic people who are infected
(E(t) in our model). Of course, it is well known that an individual has a higher chance of
getting infected for an infectious individual than for a latent individual. This justifies fac-
tor q ∈ [, ] in the second equation of (). Moreover, the parameter γ is the per-capita
death rate, which also depends on the country; this parameter has been fixed to / days–

in our numerical computations. Furthermore, the parameter δ is the per-capita infectious
rate, we have fixed to /.

2.2 Fractional model
Fractional calculus has recently found wide applications in many areas of science and engi-
neering, for example, viscoelastic systems, fluid dynamics, solid dynamics, to cite some of
them []. Recently, it has been used to analyze a dengue epidemic model []. Despite the
fact that the operator of fractional derivative is more complicated than the classical one,
there exist numerical methods for solving systems of nonlinear differential equations [].
One physical meaning of the fractional order in fractional derivatives is that of index of
memory []. Moreover, fractional calculus plays an important role in superdiffusive and
subdiffusive processes, which makes it a useful tool in epidemiology []. Some properties
of fractional orthogonal polynomials have been recently presented in [, ].

The fractional Riemann-Liouville derivative of order α of f is defined as [, ]

Dαf (t) = DI–αf (t) =


�( – α)
d
dt

∫ t


(t – s)αf (s) ds.

This is well defined if, for example, f ∈ L
loc(R).
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There are many more fractional derivatives. We are not giving a complete list, but recall
the Caputo derivative [, ]

cDαf (t) = I–αDf (t) =


�( – α)

∫ t


(t – s)–αf ′(s) ds,

which is well defined, for example, for absolutely continuous functions. Note that the value
of the Caputo fractional derivative of the function f at point t involves all the values of f ′(s)
for s ∈ [, t].

As in the integer case we have

Dα
(
Iαf

)
(t) = f (t), cDα

(
Iαf

)
(t) = f (t)

but Iα(Dαf ) or Iα(cDαf ) are not, in general, equal to f . Indeed

Iα
(cDαf

)
(t) = f (t) – f (),

and (see [], (.), p.)

Iα
(
Dαf

)
(t) = f (t) – ctα–,

where c ∈R. Also [], (..), p.

cDαf (t) = Dα
(
f (t) – f ()

)
.

Notice that cDαf (t) tends to f ′(t) as α → .
We have written system () in terms of fractional differential equations as

⎧
⎪⎪⎪⎪⎪⎨

⎪⎪⎪⎪⎪⎩

DαS(t) = – βS(t)(qE(t)+I(t))
N ,

DαE(t) = βS(t)(qE(t)+I(t))
N – δE(t),

DαI(t) = δE(t) – γ I(t),

DαR(t) = γ I(t),

()

where the parameters β , γ , δ, and q have the same meaning as in the classical model (),
N is the total population and α ∈ (, ) is the derivation order.

2.3 Initial conditions and values of the parameters
As already mentioned, we have the following values for the parameters in the classical ()
and fractional model ()

TP = ,,, δ =



, γ =




, ()

where TP is the total population of the three countries considered (as indicated in Ta-
ble ). Moreover, the initial conditions are fixed as follows in the numerical experiments
performed:

S() = TP
m


, E() = , I() = , R() = , ()
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Table 1 Reported cumulative numbers of confirmed cases of Ebola outbreak. In this table we
show the confirmed cases as they appear in official data obtained from the World Health
Organization (WHO). Note that, according to these data, there some dates (November 5th,
2014) in which the cumulative number of confirmed cases decreases. The data of Liberia
between the days October 17th, 2014 and October 22nd, 2014 also seem curious

Date Guin. Lib. S. Leone Total

27/03/2014 15 0 0 15
31/03/2014 24 0 0 24
01/04/2014 35 0 0 35
05/04/2014 54 0 0 54
07/04/2014 54 0 0 54
09/04/2014 66 0 0 66
14/04/2014 71 0 0 71
16/04/2014 101 0 0 101
17/04/2014 109 0 0 109
20/04/2014 112 0 0 112
23/04/2014 115 0 0 115
26/04/2014 121 0 0 121
01/05/2014 127 0 0 127
03/05/2014 127 0 0 127
05/05/2014 127 0 0 127
07/05/2014 129 0 0 129
10/05/2014 129 6 0 135
12/05/2014 138 6 0 144
23/05/2014 146 6 0 152
27/05/2014 163 6 7 176
30/05/2014 172 6 14 192
01/06/2014 193 6 18 217
03/06/2014 207 6 31 244
05/06/2014 210 6 33 249
16/06/2014 254 18 92 364
18/06/2014 258 24 103 385
20/06/2014 260 34 147 441
30/06/2014 293 52 199 544
02/07/2014 292 54 211 557
06/07/2014 294 63 269 626
08/07/2014 296 70 298 664
12/07/2014 297 70 339 706
14/07/2014 301 70 346 717
17/07/2014 301 76 368 745
20/07/2014 304 77 405 786
23/07/2014 311 84 419 814
27/07/2014 336 100 473 909

Date Guin. Lib. S. Leone Total

30/07/2014 337 109 507 953
01/08/2014 340 129 540 1,009
04/08/2014 351 143 576 1,070
06/08/2014 355 148 631 1,134
11/08/2014 362 158 656 1,176
13/08/2014 376 190 733 1,299
16/08/2014 396 200 775 1,371
18/08/2014 423 242 783 1,448
22/08/2014 443 269 804 1,516
29/08/2014 482 322 935 1,739
05/09/2014 604 614 1,146 2,364
08/09/2014 664 634 1,234 2,532
12/09/2014 678 654 1,287 2,619
16/09/2014 743 790 1,464 2,997
18/09/2014 750 812 1,513 3,075
22/09/2014 818 863 1,640 3,321
24/09/2014 832 890 1,745 3,467
26/09/2014 876 914 1,816 3,606
01/10/2014 950 927 2,076 3953
03/10/2014 977 931 2,179 4,087
08/10/2014 1,044 941 2,455 4,440
10/10/2014 1,097 943 2,593 4,633
15/10/2014 1,184 950 2,849 4,983
17/10/2014 1,217 965 2,977 5,159
22/10/2014 1,289 965 3,223 5,477
25/10/2014 1,312 965 3,389 5,666
29/10/2014 1,391 2,515 3,700 7,606
31/10/2014 1,409 2,515 3,778 7,702
05/11/2014 1,457 2,451 4,057 7,965
07/11/2014 1,479 2,514 4,149 8,142
12/11/2014 1,612 2,553 4,523 8,688
14/11/2014 1,647 2,562 4,683 8,892
19/11/2014 1,698 2,643 5,056 9,397
21/11/2014 1,745 2,669 5,152 9,566
26/11/2014 1,850 2,727 5,441 10,018
28/11/2014 1,892 2,753 5,595 10,240
01/12/2014 1,921 2,801 5,831 10,553

where m is a value to be fixed later, i.e., the susceptible population is a percentage of the
total population. Notice that in this case N = TP m

 + . As it was indicated before, the
mortality of Ebola depends on individual genetic differences [], so that we shall analyze
different values of m. If m =  then S() = TP, R() =  and all the population is con-
sidered as susceptible. Up to now there has been no empirical evidence that a person can
be immune. In such a case, m <  and R() > . The initial number of infected people is
fixed to  following the WHO Ebola virus disease in Guinea - update dated March th,
: ‘To date,  cases have tested positive by PCR testing for the ebolavirus, confirmed
by collaborating laboratories including the Institut Pasteur Lyon, France, Institut Pasteur
(IP) Dakar, Senegal and Bernhard-Nocht Institute of Tropical Medicine Hamburg, Ger-
many. Laboratories studies demonstrated that Zaire ebolavirus is the virus responsible for
the outbreak.’
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In Table  we have included the data we have considered for our numerical computa-
tions.

3 Results and discussion
3.1 Results
By using the predictor-corrector PECE method of Adams-Bashforth-Moulton [], we
have solved numerically the above systems of differential equations () and () and found
the best value of the parameter q that minimizes the � norm between the real data and
the models, defined by

ρ =

√
√
√
√

a∑

j=

|rj – mj|,

where rj is the cumulative number of infected people according to the data at day j and
mj is the prediction proposed by the model. Notice that we will not use α, the order of
derivation, as optimization parameter.

The system has been solved for times starting at t =  and ending at td =  days. In
each plot, we show in blue line the real data and in red dashed line the results of our model
for the fixed parameters. We have also included the norm ρ of the difference in each case.

In each picture we show both model and real data as accumulated values.
To evaluate the equilibrium points, we consider the system

 = –
βS(t)(qE(t) + I(t))

N
,  =

βS(t)(qE(t) + I(t))
N

– δE(t),

 = δE(t) – γ I(t),  = γ I(t),

which has as solution E(t) = I(t) = . Hence S(t) + R(t) = N . If, for example, R() = , then
S() = N . In this case m = .

The Jacobian

J =

⎛

⎜
⎜
⎜
⎝

– β(qE(t)+I(t))
N – βqS(t)

N – βS(t)
N 

β(qE(t)+I(t))
N

βqS(t)
N – δ

βS(t)
N 

 δ –γ 
  γ 

⎞

⎟
⎟
⎟
⎠

at the equilibrium point E(t) = I(t) =  is given by

J =

⎛

⎜
⎜
⎜
⎝

 – qS(t)
,, – S(t)

,, 
 qS(t)

,, – 


S(t)
,, 

 
 – 

 
  

 

⎞

⎟
⎟
⎟
⎠

for the specific values of β , γ , δ, and N indicated before. Therefore, the eigenvalues

λ = ,

λ = ,
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Figure 1 Comparison between our model and real data. In this figure we show a comparison between
our model given by the system of nonlinear differential equations (1) and real data coming from the WHO
included as Table 1. The values of the parameters arem = 80, q = 0.030 (left) andm = 75, q = 0.067 (right). The
errors using �2 norm are 5,185.344 and 5,309.831, respectively.

Figure 2 Model prediction and real data for a shorter period of time. In this figure we show the
prediction of our model given by the system of nonlinear differential equations (1) in a shorter interval of time
(200 days). The values of the parameters are the same as for Figure 1.

λ =
qS(t) – ,, –

√
q(S(t)) + ,,(q + )S(t) + ,,,,

,,,
,

λ =
qS(t) – ,, +

√
q(S(t)) + ,,(q + )S(t) + ,,,,

,,,
.

For q ∈ [, ] and m ≥  (that is, S() is at least % of the total population, which is a
reasonable assumption), we have that λ <  and λ > .

The qualitative analysis of a fractional model is a difficult problem. The stability of the
disease-free equilibrium needs further study, and it will be considered in the future.

.. Classical derivatives model ()
We would like to mention here that for m ≥  the value of q in () that best fits the real
data is negative which has no probability meaning.

The results for classical derivative are shown in Figures , , and .
In Figure , the picture on the left has been obtained for m =  in () and q = .; the

picture on the right has been obtained for m =  in () and q = .. The � norms are
,. and ,., respectively. Therefore, the daily difference between our predic-
tion of cumulative cases and real data is less than  cases each day. Despite the difficulty
of the real data analyzed (see Table , e.g., the difference in confirmed cases in Liberia from
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Figure 3 Another comparison between our model and real data. In this case we considerm = 70,
q = 0.110 (left) andm = 65, q = 0.159 (right). Using the �2 norm we obtain similar errors as in Figure 1,
5,462.073 and 5,610.436, respectively.

Figure 4 Comparison between our model and real data. In this figure we show a comparison between
our model given by the system of nonlinear fractional differential equations (2) and real data coming from the
WHO included as Table 1. The values of the parameters arem = 90, q = 0.058, α = 0.9 (left) andm = 85,
q = 0.090, α = 0.9 (right). The errors using �2 norm are 5,848.597 and 5,959.564, respectively.

October th to October nd), we would like to notice that our model is quite accurate
to the real data of confirmed cases extracted from the WHO.

In Figure , we show the prediction of our model during a shorter interval of time using
the same values of the parameters as in Figure .

In Figure  we consider at first m =  in () and q = .; the right-hand side of Fig-
ure  has been obtained for m =  in () and q = .. The � norms are ,. and
,., respectively. The daily difference is in these cases less than  confirmed cases,
which is about .% of error as compared with the mean of the data.

.. Fractional derivatives model ()
The results for the fractional derivatives model are shown in Figures , , and .

In Figure , the picture on the left has been obtained for m =  in (), q = ., and
α = .; the picture on the right has been obtained for m =  in (), q = ., and α = ..
The � norms are ,. and ,., respectively.

In Figure , we show the prediction of our model during a shorter interval of time using
the same values of the parameters as in Figure .

In Figure  we consider at first m =  in (), q = ., and α = .. The right-hand side
of Figure  has been obtained for m =  in (), q = ., and α = .. The � norms are
,. and ,., respectively.
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Figure 5 Model prediction and real data for a shorter period of time. In this graph we show the
prediction of our model given by the system of nonlinear fractional differential equations (2) in a shorter
interval of time (200 days). The values of the parameters are the same as for Figure 4.

Figure 6 Another comparison between our model and real data when α = 0.9. In this case we consider
m = 80, q = 0.169 (left) andm = 75, q = 0.128 (right). Using the �2 norm we obtain similar errors as in Figure 4,
6,078.286 and 6,208.718, respectively.

Figure 7 Fractional model with small α. This
graph has been obtained form = 80 in (4), q = 0.345,
and α = 0.75.

It is also possible to relax the parameter of derivation α. As an example, for α = ., the
best fitting is shown in Figure . Notice that when α is smaller, then it seems that q must
be bigger.

In Figure  we show the prediction of our model with m =  in (), q = ., and
α = . for a period of time of two years ( days).

As we show in Figure  and Figure , state trajectories of E(t) and R(t) have a similar
behavior to those of I(t) for classical and fractional order model.
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Figure 8 Our prediction for a long period of
time. In this graph we show the prediction of our
model given by the system of nonlinear fractional
differential equations (2) for a long period of time
(two years). We have consideredm = 80, q = 0.127,
and α = 0.9.

Figure 9 This graph shows evolution of exposed (left) and removed (right) population. We have
considered the same values of the parameters as on left side of Figure 1.

Figure 10 This graph shows evolution of exposed (left) and removed (right) population. We have
considered the same values of the parameters as on left side of Figure 8.

3.2 Discussion
We have analyzed both classical and new fractional SEIR (susceptible, exposed, infectious,
removed) epidemic model for different values of the parameters, as compared with the
official data obtained from the WHO. These models have been used to compare the exist-
ing data of previous outbreaks, which is much less detailed than the  outbreaks. Our
model gives a good approximation to real data and may be useful for some predictions and
help to implement some effective public health measures.
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Up to now it has not been possible to decide which model (classical derivative or frac-
tional derivative) is giving better approximation to the real data, but with classical deriva-
tive the value of m in () must be smaller than or equal to  in order that q >  gives the
minimum value of ρ .

It seems that the number of confirmed cases will be increasing, but the implementa-
tion of effective public health measures would help to stop the rising number of cases.
Numerical experiments show that with the current real data the number of confirmed
cases becomes stable in approximately two years after the start of the outbreak as shown
in Figure .

4 Conclusions
In this paper we have analyzed the data published by the World Health Organization in
order to provide a prediction of the outbreak in Liberia, Guinea, and Sierra Leone. The
number of confirmed cases since the beginning of the outbreak has increased to about
, infected people at the time of writing this article. Our model fits accurately the
real data considered. Following our results, the current outbreak will continue for approx-
imately two years for a total estimate of the order of nine million infected people. If the
high fatality of Ebola is considered, the urgency of public health measures is mandatory.
We have used mathematical models which consider susceptible, exposed, infectious, and
removed people. Our models are based on differential equations which are numerically
solved to provide the graphs included in the paper. First, we consider classical differential
equations and secondly fractional differential equations which generalize the classical ap-
proach. Our estimates give a number of the order  ×  confirmed cases. Despite the
fact that individual genetic differences play a major role in whether people die from the
disease, by using the available data and our analysis the number of predicted dead people
is extremely high. Finally, it is worth mentioning here that the integer order differential
equation SEIR model () gives better results in terms of the � norm than the fractional
SEIR model ().
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