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Abstract
Equations driven by fractional Brownian motion are attracting more and more
attention. This paper considers fractional stochastic differential equations with
distributed delay. With the variation-of-constants formula, an explicit expression and
asymptotic behavior of the solution are provided, sufficient conditions are derived to
guarantee the pth moment exponential stability and almost surely exponential
stability.
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1 Introduction
Fractional Brownian motion (fBm) was first studied in  by Kolmogorov [], who de-
fined it in a Hilbert space and named it a Wiener helix. Until , Mandelbrot and Van
Ness [] provided the stochastic integral representation of fBm in terms of a standard
Brownian motion, the name fBm was then introduced. As an extension of classic Brow-
nian motion, fBm can give a better description to model natural situations like the tem-
perature at a specific place as a function of time and so on []. Because of their extensive
applications in finance, economics, biology, etc., fBm is attracting more and more atten-
tion.
An fBm with Hurst index H ∈ (, ) is a continuous and centered Gaussian process

{BH (t), t ≥ } with covariance function

E
[
BH (t)BH(s)

]
=


(
tH + sH – |t – s|H)

.

For H = 
 , the fBm is exactly the standard Brownian motion without memory. For H �= 

 ,
it is usually divided into two cases,  <H < 

 and 
 <H < . The case for H > 

 is called a
long memory process, while H < 

 is called a short memory process.
It is known that fBm shares something with Brownianmotion, but the critical difference

is that the increments of fBm are dependent while that of Brownian motion are indepen-
dent. Therefore, fBm is neither a Markov process, nor a semimartingale, and the theories
of stochastic differential equations (SDEs) driven by standard Brownian motion are in-
valid in the case of fBm. Recently, there are some studies on existence, uniqueness, and
stability of the solutions for fractional SDEs. Ferrante and Rovira [] proved the existence
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and uniqueness for a stochastic delay differential equation driven by a fractional Brow-
nian motion with Hurst parameter H > /. Ferrante and Rovira [] gave a proof of the
existence and uniqueness for stochastic delay differential equations with hereditary drift
driven by a fractional Brownian motion with Hurst parameterH > /. Caraballo et al. []
investigated the existence, uniqueness, and exponential asymptotic behavior of mild solu-
tions to stochastic delay evolution equations perturbed by a fractional Brownian motion
with Hurst parameterH > /. Based on the research of [], Boufoussi and Hajji [] gave a
proof of the existence and uniqueness of mild solutions for a neutral stochastic differen-
tial equation with finite delay, driven by a fractional Brownian motion in a Hilbert space.
Dung [] gave a sufficient condition for the exponential asymptotic behavior of solutions
of a general class of linear fractional SDEs with time-varying delays. However, to the best
of our knowledge, fractional SDEs with distributed delay have not been considered till
now. In this paper, SDEs driven by an fBm with distributed delay will be introduced and
asymptotic behavior of the solution will be analyzed.
In [], Mandelbrot and Van Ness discussed the following integral representation:

BH (t) = BH () +


�(H + /)

(
Zt +

∫ t


(t – s)H–/ dW (s)

)
, t > ,

where

Zt =
∫ 

–∞

[
(t – s)H–/ – (–s)H–/]dW (s),

W (t) is a standard Brownian motion, � represents the gamma function, and  < H <  is
the Hurst parameter. There are also several other stochastic integral representations for
fBm [].
As to the presentation introduced by Mandelbrot and Van Ness [], the integral form

WH (t) =
∫ t


(t – s)H–/ dW (s)

is called the Riemann-Liouville fractional integral. There is a relation between the
Riemann-Liouville fractional Brownian motion (RLfBm) and fBm []. Considering that
the processZt has absolutely continuous trajectories, it suffices to consider the termWH(t)
instead of BH (t) [], thus, BH (t) will be denoted byWH (t) along our paper.
This paper is organized as follows: In Section , the explicit form of solution to the

retarded SDE with an fBm is given. In Section , asymptotic behavior of the solution is
provided, and sufficient conditions are derived to guarantee the pth moment exponential
stability and almost surely exponential stability.

2 Preliminary and explicit solution
In the following sections, we consider retarded SDE driven by an fBm in the form:

dX(t) =
(∫ 

–τ

X(t + θ )ρ(dθ )
)
dt + σ (t) dWH(t), t >  (.)

with the initial valueX(t) = ξ (t), t ∈ [–τ , ], whereWH(t) is a RLfBmwithHurst parameter
H > 

 , ρ(·) is a finite signed measure defined on [–τ , ].
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In order to give the explicit form of (.), we first consider the following deterministic
retarded differential equation:

dY (t) =
(∫ 

–τ

Y (t + θ )ρ(dθ )
)
dt (.)

with the initial value Y (t) = ξ (t), t ∈ [–τ , ]. It is easy to see that the characteristic equation
of (.) is

h(λ) := λ –
∫ 

–τ

eλθρ(dθ ) = .

Denote Z(t) as the fundamental solution of (.) with initial value Z() =  and Z(θ ) = ,
θ ∈ [–τ , ). By the variation-of-constants formula (see, e.g., []), the solution of (.) has
a unique explicit form:

Y (t) = Z(t)ξ () +
∫ 

–τ

∫ 

θ

Z(t + θ – s)ξ (s) dsρ(dθ ), t ≥ .

According to Hale [], for any α > α :=max{Re(λ) : h(λ) = }, there exists kα >  such
that the fundamental solution Z(t) satisfies the inequality

∣∣Z(t)∣∣ ≤ kαeαt , t ≥ –τ .

Before we introduce the explicit representation of (.), we first present a lemma that is
useful in later parts.

Lemma . [] For every ε > , denote by β =H – 
 , define

WH,ε(t) =
∫ t


(t – s + ε)β dW (s).

Then {WH,ε(t)}t≥ is a semimartingale with the following decomposition:

WH,ε(t) = εβW (t) +
∫ t


φε(s) ds, (.)

where φε(s) =
∫ s
 β(s + ε – u)β– dW (u). Furthermore,WH,ε(t) converges to WH (t) in L(
)

uniformly with respect to t ∈ [,T] when ε → .

Theorem . There is a unique strong solution {X(t)}t≥ to (.) which reads

X(t) = Z(t)ξ () +
∫ 

–τ

∫ 

θ

Z(t + θ – s)ξ (s) dsρ(dθ )

+
∫ t


Z(t – s)σ (s) dWH(s), t ≥ , (.)

where Z(t) is the fundamental solution of (.) with initial value Z() =  and Z(θ ) = ,
θ ∈ [–τ , ).
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Proof According to Dung [], the solution X(t) of (.) can be approximated by solving
the following equation:

dXε(t) =
(∫ 

–τ

Xε(t + θ )ρ(dθ )
)
dt + σ (t) dWH,ε(t), t > 

with the initial datum Xε(t) = ξ (t), t ∈ [–τ , ]. By the decomposition (.), we can rewrite
the above equation as

dXε(t) =
(∫ 

–τ

Xε(t + θ )ρ(dθ ) + σ (t)φε(t)
)
dt + σ (t)εβ dW (t), t > .

Multiplying this equation by e–λt , Reλ > c sufficiently large, integrating from  to ∞, de-
noting by L (Xε)(λ) the Laplace transform of Xε(t), we obtain

h(λ)L
(
Xε

)
(λ) = ξ () +

∫ 

–τ

∫ 

θ

eλ(θ–t)ξ (t) dtρ(dθ ) +
∫ ∞


e–λtσ (t)φε(t) dt

+
∫ ∞


e–λtσ (t)εβ dW (t).

An application of the Laplace inversion theorem (see, for example, []) yields

Xε(t) =
∫
(c)
eλth–(λ)

[
ξ () +

∫ 

–τ

∫ 

θ

eλ(θ–t)ξ (t) dtρ(dθ )

+
∫ ∞


e–λtσ (t)φε(t) dt +

∫ ∞


e–λtσ (t)εβ dW (t)

]
dλ.

Note that

L
(
Zε

)
(λ) = h–(λ),

where Zε(t) is the fundamental solution of

dY ε(t) =
(∫ 

–τ

Y ε(t + θ )ρ(dθ )
)
dt

with the initial value Zε() =  and Zε(θ ) = , θ ∈ [–τ , ).
With the definition of a convolution of the Laplace transform, we get

Xε(t) = Zε(t)ξ () +
∫ 

–τ

∫ 

θ

Zε(t + θ – s)ξ (s) dsρ(dθ )

+
∫ t


Zε(t – s)σ (s)φε(s) ds +

∫ t


Zε(t – s)σ (s)εβ dW (s).

Therefore, by (.), it follows that

Xε(t) = Zε(t)ξ () +
∫ 

–τ

∫ 

θ

Zε(t + θ – s)ξ (s) dsρ(dθ )

+
∫ t


Zε(t – s)σ (s) dWH,ε(s), t ≥ .

Let ε → , the representation of X(t) is obvious. �
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3 Exponential behavior
The following two theorems provide the pthmoment exponential stability and almost sure
exponential stability of the solutions to (.).

Theorem . Assume that α < , and there exists γ >  such that

∫ ∞


eγ s

∣∣σ (s)∣∣ ds < ∞, (.)

then there exist positive constants K and μ such that for each p > , and the solution of
(.) satisfies

E
∣∣X(t)∣∣p ≤ K‖ξ‖p∞e–μpt , t ≥ ,

where ‖ζ‖∞ := sup–τ≤θ≤ |ζ (θ )|.

Proof According to the explicit form (.), along with the inequality |a+b+ c|p ≤ kp(|a|p +
|b|p + |c|p), p,kp > , it is easy to get

E
∣∣X(t)∣∣p = E

∣∣∣∣Z(t)ξ () +
∫ 

–τ

∫ 

θ

Z(t + θ – s)ξ (s) dsρ(dθ )

+
∫ t


Z(t – s)σ (s) dWH(s)

∣∣∣∣
p

≤ kpE
(∣∣Z(t)ξ ()∣∣p +

∣∣∣∣
∫ 

–τ

∫ 

θ

Z(t + θ – s)ξ (s) dsρ(dθ )
∣∣∣∣
p

+
∣∣∣∣
∫ t


Z(t – s)σ (s) dWH(s)

∣∣∣∣
p)

≤ Ke–αpt‖ξ‖p∞ + kpE
∣∣∣∣
∫ t


Z(t – s)σ (s) dWH(s)

∣∣∣∣
p

. (.)

Denote by

I(t) := kpE
∣∣∣∣
∫ t


Z(t – s)σ (s) dWH(s)

∣∣∣∣
p

.

We should remind the reader that fBm is a centered Gaussian process. So, before consid-
ering I(t), we can give an estimation on | ∫ t

 Z(t – s)σ (s) dWH(s)| first. Applying (.), we
obtain

∫ t


Z(t – s)σ (s) dWH(s)

= lim
ε→

∫ t


Z(t – s)σ (s) dWH,ε(s)

= β

∫ t



∫ s


Z(t – s)σ (s)(s – u)β– dW (u) ds

= β

∫ t



∫ t

u
Z(t – s)σ (s)(s – u)β– dsdW (u).
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By the Itô isometry formula and the Hölder inequality, we have

E

∣∣∣∣
∫ t


Z(t – s)σ (s) dWH(s)

∣∣∣∣


= β
∫ t



(∫ t

u
Z(t – s)σ (s)(s – u)β– ds

)

du

≤ β
∫ t



(∫ t

u

∣∣Z(t – s)σ (s)
∣∣(s – u)β– ds

)(∫ t

u
(s – u)β– ds

)
du

≤ tβ
∫ t



∣∣Z(t – s)σ (s)
∣∣sβ ds ≤ tβ

∫ t



∣∣Z(t – s)σ (s)
∣∣ ds

≤ kαt
β

∫ t


e–α(t–s)

∣∣σ (s)∣∣ ds.

By virtue of [, Lemma .] and condition (.), letting γ = α ∧ γ , we have

E

∣∣∣∣
∫ t


Z(t – s)σ (s) dWH(s)

∣∣∣∣


≤ kαt
βe–γt

∫ ∞


eγ s

∣∣σ (s)∣∣ ds ≤ K
 e

–γt ,

where K
 = kαtβe–γt

∫ ∞
 eγ s|σ (s)| ds, γ = 

γ. Therefore, the Gaussian property leads
to I(t)≤ Kp

 e–γpt . An application of I(t) on (.) yields

E
∣∣X(t)∣∣p ≤ K‖ξ‖p∞e–μpt , t ≥ ,

where μ = α ∧ γ. This completes the proof. �

Theorem . Assume that (.) is satisfied, then there exists a positive constant ν such
that the solution of (.) has the property

lim sup
t→∞


t
log

∣∣X(t)∣∣ ≤ –ν.

Proof For n –  ≤ t ≤ n, n≥ , X(t) can be represented as

X(t) = X(n – ) +
∫ t

n–

(∫ 

–τ

X(s + θ )ρ(dθ )
)
ds +

∫ t

n–
σ (s) dWH(s).

With the inequality |a + b + c| ≤ (|a| + |b| + |c|), we derive from (.) that

E

(
sup

n–≤t≤n

∣∣X(t)∣∣) ≤ E
∣∣X(n – )

∣∣ + E
(∫ n

n–

(∫ 

–τ

X(s + θ )ρ(dθ )
)
ds

)

+ E
(

sup
n–≤t≤n

∣∣∣∣
∫ t

n–
σ (s) dWH(s)

∣∣∣∣
)

≤ C‖ξ‖∞e–μ(n–) +Ce–μ(n–) + J(t),

where J(t) = E(supn–≤t≤n | ∫ t
n– σ (s) dW

H(s)|).
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Next, by the Burkhold-Davis-Gundy inequality, (.) and (.), we arrive at

J(t) ≤ E

(
sup

n–≤t≤n

∣∣∣∣
∫ t

n–
σ (s) dWH(s)

∣∣∣∣
)

≤ C

∫ n

n–

(∫ n

u
σ (s)β(s – u)β– ds

)

du≤ Ce–γ (n–).

Let γ = μ ∧ γ , we see that

E

(
sup

n–≤t≤n

∣∣X(t)∣∣) ≤ Ce–γn.

Then, with the Chebyshev inequality, for any γ < γ,

P

(
sup

n–≤t≤n

∣∣X(t)∣∣ > e–γn
)

≤ eγnE
(

sup
n–≤t≤n

∣∣X(t)∣∣) ≤ Ce–(γ–γ)n.

Since
∑∞

n= e–(γ–γ)n < ∞, by virtue of Borel-Cantelli lemma, there exists an 
 ∈ 
 with
P(
) =  such that for every ω ∈ 
, there exists an integer n(ω), for n ≥ n(ω), n –  ≤
t ≤ n,

∣∣X(t)∣∣ ≤ e–γn ≤ e–γt .

The desired conclusion is satisfied with ν = γ. �

Remark . This provides a method to ensure the exponential stability of SDEs driven by
an fBm, and it can be generalized to fractional SDEs of neutral type.
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