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Abstract

In this paper, we investigate the value distribution of difference polynomial and
obtain the following result, which improves a recent result of K. Liu and L.Z. Yang: Let f
be a transcendental meromorphic function of finite order o, ¢ be a nonzero constant,
and a(2) # 0 be a small function of f, and let

P(2)=anZ" + ap 12" + -+ a1z + ag

be a polynomial with a multiple zero. If L(1/f) < o, then P(f)f(z + ¢) — at(z) has infinitely
many zeros. We also obtain a result concerning the value distribution of g-difference
polynomial.
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1 Introduction and main results

Throughout the paper, we assume that the reader is familiar with the standard symbols
and fundamental results of Nevanlinna theory as found in [1-3]. A function f(z) is called
the meromorphic function, if it is analytic in the complex plane except at isolated poles.
For any non-constant meromorphic function f, we denote by S(r,f) any quantity satisfy-

ing

Stf)
o T(f)

’

possibly outside of a set of finite linear measure in R*. A meromorphic function a(z) is
called a small function of f(z) provided that T(r,a) = S(r,f). As usual, we denote by o (f)
the order of a meromorphic function f(z), and denote by A(f) (A(1/f)) the exponent of
convergence of the zeros (poles) of f(z).

Recently, a number of papers concerning the complex difference products and the differ-
ences analogues of Nevanlinna’s theory have been published (see [4—12] for example), and
many excellent results have been obtained. In 2007, Laine and Yang [10] investigated the
value distribution of difference products of entire functions, and obtained the following
result.
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Theorem A Let f(z) be a transcendental entire function of finite order, and c be a non-

zero complex constant. Then for n > 2, f(2)"f(z + c) assumes every non-zero value a € C
infinitely often.

Liu and Yang [11] improved Theorem A, and proved the next result.

Theorem B Let f(z) be a transcendental entire function of finite order, and ¢ be a non-
zero complex constant. Then for n > 2, f(2)"f(z + ¢) — p(z) has infinitely many zeros, where
p(z) # 0 is a polynomial in z.

The purpose of this paper is to investigate the value distribution of difference poly-
nomial P(f)f(z + ¢) — «(z) and g-difference polynomial P(f)f(qz) — «(z), where P(z) =
a,Z2" + ay12"1 + - -+ + a1z + ap with constant coefficients a, (# 0),a,_1,...,40, and «(2)
is a mall function of f(z).

For the sake of simplicity, we denote by s(P) and m(P) the number of the simple zeros

and the number of multiple zeros of a polynomial
P()=a,2" +ay12" + -+ @iz + ag

respectively.

We obtain the following result which improves Theorem A and Theorem B.

Theorem 1.1 Let f be a transcendental meromorphic function of finite order o (f) = o, and

¢ be a non-zero constant, and let

Pz)=a,2" +a,12" + -+ @iz + ag

be a polynomial with constant coefficients a, (#0),a,-1,...,a¢ and m(P) > 0. If)»(}%) <o,
then P(f)f (z + ¢) — a(z) has infinitely many zeros, where a(z) # 0 is a small function of f.

2
Remark 1 The result of Theorem 1.1 may be false if «(z) = 0, for example, f(z) = eZT, it
is obvious that f2f(z + 1) has no zeros. The following example shows that the assumption
)L(%) < o in Theorem 1.1 cannot be deleted. In fact, let f(z) = %, ¢=mi, a(z) = -1, and
P(z) = z2. Then )L(}) =o(f)=1and P(f)f (z + ¢) — a(z) = 1er has no zeros. Also, let f(z) =

i+, c=mialz)=1,and P(z) = z(z — i + 1)(z — i — 1). Then P(f)f(z + c¢) — a(z) = —e**

has no zeros. This shows that the restriction in Theorem 1.1 to the multiple zero case is

essential.

Considering the value distribution of g-differences polynomials, we obtain the following

result.

Theorem 1.2 Let f(z) be a transcendental entire function of zero order, and «(z) € S(r,f).
Suppose that q is a non-zero complex constant and n is an integer. If m(P) > 0, then

P(f)f (qz) — «(z) has infinitely many zeros.
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2 Some lemmas
Lemma 2.1 [6] Given two distinct complex constants 1, 12, let f be a meromorphic func-

tion of finite order o. Then, for each € > 0, we have

f(Z + nl) _ o-l+e
m(r,f(z+n2)>—0(r )

Lemma 2.2 [6] Let f be a transcendental meromorphic function of finite order o, ¢ be a

complex number. Then, for each ¢ > 0, we have
T(r,f(z+0)) = T(r,f(2)) + O(r"**) + O(logr).
The following lemma is a revised form of Lemma 2.4.2 in [2].

Lemma 2.3 Let f(z) be a transcendental meromorphic solution of

S"Ale.f) = B(z,f),

where A(z,f), B(z,f) are differential polynomials in f and its derivatives with meromor-
phic coefficients, say {a, | . € I}, n be a positive integer. If the total degree of B(z,f) as a

polynomial in f and its derivatives is less than or equal to n, then

m(r,Az,f)) < Zm(V, a;) +S(r.f).

rel

Lemma 2.4 [12] Let f(z) be a non-constant meromorphic function of finite order, ¢ € C.
Then

1 1
N(r,m) §N<r,%) +S8(r.f), N(r,f(z+c)) <N(.f) + S(r.f),

N(r, jﬁ) < ﬁ(r, J%) £S0f) N(nfle+0) <N + S0,

outside of a possible exceptional set E with finite logarithmic measure.

Lemma 2.5 [4] Letf be a non-constant zero-order meromorphic function, and q € C\ {0}.
Then

flg2)\ _
’”(” i) ) =o(T0f)

on a set of logarithmic density 1.

Remark 2 For the similar reason in Theorem 1.1 in [4], we can easily deduce that

() o

also holds on a set of logarithmic density 1.
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Proof Using the identity

p>—r Re( P2
=Re , ,
p2 —2prcos(p —0) +r? pet? —z

and let Poisson-Jensen formula with R = p, we see

2 i0 i0
/ log[f(pei9)|Re<pe, +z  pe +qz>d6

o et — 7 el(i qz
v D log

o fiog -
)|~
(Z ﬂn)(ﬂ _anqz)
qZ—an)(p —ay2)

lanl<p
_ Z p _bqu)
|bml<p m)(lo - WIZ)

=8(z) + S1(2) — S5(2),

where {a,} and {b,,} are the zeros and poles of f, respectively. Integration on the set E :=

{p €10,27] ;| i (qr:ew | > 1} gives us the proximity function,

/(@) /(@)
m(rf(q2)> /1 f(qZ)
. . o d

- [(510¢) +5,¢) =53 e)) 5

o / i 4 i / iy dl/f
< [ (i) ]+ 506 306 ) -

Since S} =-S; (i=1,2,3) in [4], we get |S}| = |S;] (i =1,2,3).
Following the similar method in the proof of Theorem 1.1 in [4], we get the result. [

Lemma 2.6 Let f be a non-constant zero-order entire function, and q € C\ {0}. Then

T(r.Pf)f(q2) = T(r P()f @) + S f)
on a set of logarithmic density 1.

Proof Since f is an entire function of zero-order, we deduce from Lemma 2.5 that

T(r, P(f)f (qz)) = m(r, P(f)f (qz2))
<m(r,P(f)f (2)) + m (

<m(r,P(f)f (2)) + S(r.f)
=T(r,P(F)f (2)) + S(r.f),

G

that is

T(r, P(F)f (q2)) < T(r, P(F)f (2)) + S(r.f)- (2.1)

Page 4 of 9
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On the other hand, using Remark 2, we get

T(r, P()f (2)) = m(r, P(f)f (2))
<m(r,P(f)f (qz)) + m(r, /@ )

f(qz)
= m(V,P(f)f(qZ)) +S8(r,f)
= T(r, P(f)f (q2)) + S(r.f),
that is
T(r, P () < T(r, P (a2) + S(r.f). (2.2)
The assertion follows from (2.1) and (2.2). O

3 Proof of Theorem 1.1

Let B(z) be the canonical products of the nonzero poles of P(f)f (z + c) —a(z). Since A(1/f) <
o and «(z) is a small function of f(z), we know that o (8) = A(B) < o (f). Suppose on contrary
to the assertion that P(f)f(z + ¢) — a(z) has finitely many zeros. Then we have

P(F)f (z + ¢) - a(z) = R(2)e??/B(z),
where Q(z) is a polynomial, and R(z) # 0 is a rational function. Set H(z) = R(z)/B(z). Then
oH)<o(f)=0, (3.1)
and
P(f)f (z + ¢) — a(z) = H(z)e?®. (3.2)
Differentiating (3.2) and eliminating e?®, we obtain

P () (&)f (z + c)H(2) + P(f)f (2 + )H (2) — P(f)f (z + c)H'(z) — P(f)f (z + ¢)Q (2)H(2)
=d'(2)H(z) - a(2)H'(z) - a(2)Q (2)H(2). (3.3)

Let a1, an,...,a; be the distinct zeros of P(z). Then
PU) = anlf — )" (f — )™ - (f ~ )",

Substituting this into (3.3), we have
t
an l—[(f—a;)”/_l { (m l_[(f—otj) + 11y n(f— o)+ l_l(f— oc,))
j=1 j#A j#2 j#t

x f(z+c)H@)f'(2) +f'(z + ¢)H(z)
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xl_[(f o) f(z+c)(H(z +Q z)H(z H(f o))
j=1

j=1

=d'(2)H(z) — a(2)H'(z) — a(2)Q'(2)H(2).

Note that P(z) has at least one multiple zero, we may assume that 7; > 1 without loss of

generality, and we have
an(f — 1) F(z,f) = o ()H(2) - a(2)H'(2) - a(2)Q (2)H (2), (3.4)

where

F.f) =] - { (nl [10-op+m[]¢-ap++n]]0- Ofi))

j=2 j# j#2 j#t
t

x flz+HQR) (@) +f z+H@) [ [(f - )

j=1

~fe+o)(H @)+ Q@HE) [ [(f - )
j=1

Now we distinguish two cases.
Case 1. F(z,f) = 0. In this case, we obtain from (3.4) that

o' (2)H(2) — a(2)H'(z) — a(2)Q (2)H(2) = 0

Since «(z) # 0 and H(z) # 0, by integrating, we have

]% = ke??, (3.5)

where k is a non-zero constant. From (3.2) and (3.5), we have
P(f)f(z+¢c) = (— + l)a(z)

By Lemma 2.2, we have

nT(r,f(z)) = T(r,P(f)) + 01
<T(rf(z+c)+T(r,az)+0(1)
= T(r,f(z)) + O(r“‘“g) +S8(r.f).

Since n > n; > 2, and f(z) is a transcendental, this is impossible.
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Case 2. F(z,f) # 0. In this case, we set

Flap-rL
:l_[(f—aj)"/_l[(nll_[(f—oz,-)+n21_[(f—ocj)+--~+ntl—[(f—a/)>
j=2 jA J#2 j#t
VAR f@  fe+of+q) e
@ f(2)H ()f o Fero 1@ f(z)H(z)L[(f )

S om0+ QH) ] - .
f(2) i

Since f(z) = (f(z) — ;) + @y and f® = (f — a;)®, we know that F’(z,f) is a differential poly-
nomial of f(z) — &; with meromorphic coefficients, and

an(f — 1) F'(z,f) = & (2)H(2) — a(2)H'(2) - 2(2)Q () H (2). (3.6)

By Lemma 2.3, we have

m(r,(f ~1)'F (z,/)) < 3m <V’f(;(z)c)> * ’”( J}((ZZ : cc))) ”’(’ ff —(21>

+5T(r,H) + S(r.f) (3.7)

fork=0and k=1.

Now for any given ¢ (0 < ¢ < 1), we obtain from Lemma 2.1, Lemma 2.2 and (3.1) that

m( ! (;—(+)c)) 0" ), T(nH)=0(""), (3.8)
'(z+9) -
m(rj} (ZZ:CC) ) =0(r" ) + S(r,f). (3.9)

The lemma of logarithmic derivative implies that

m( Jf()) S(r.f). (3.10)

-

It follows from (3.7) to (3.10) that

m(r,F*(z,f)) = O(r‘H?) +S(r.f), (3.11)
m(r,(f —e1)E (z,f)) = O(r" ) + S(r, f). (3.12)

Since (f — a1)F (z,f) = F(z,f), we obtain from the definition of F(z,f) that

N(r,F(z,f)) = O(N(r,H(2)) + N(r,f)) = O(r"™°) + S(r.f).
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Thus,

T(r,(f —o1)F (z,f)) = O(r" ™) + S(r.f). (3.13)

Note that, a zero of f(z) — a; which is not a pole of f(z + ¢) and H(z), is a pole of F'(z,f)
with the multiplicity at most 1, we know from (3.6), (3.1), Lemma 2.4 and A(1/f) < o that

1 1
U =DN (”f(z> . al) = N(“ < @DHE) -« @H @) —a@) Q/(Z)H(Z))
+ O(N(r,f(z +¢))) + O(N(r,H))
=0(r"™) (3.14)

for the positive ¢ sufficiently small. Hence (see the definition of F(z,f)),

N(r,f(z,f)):O(N(r, ) +N(r,f)+N(r,H))

1
f-a
= O(r"_s) +S8(r,f). (3.15)
It follows from (3.15) and (3.11) that
T(r,F (z,f)) = O(r" ) + S(r.f). (3.16)
Thus, we deduce from (3.16) and (3.13) that

(f—al)F*(zyf))

T(r,f(z)) = T(r,f(z) - 051) +0(1) = T(r, Fp

= O(r"_s) +8(r,f).
This contradicts that f is of order o. Theorem 1.1 is proved.

4 Proof of Theorem 1.2
Denote F(z) = P(f)f(qz). From Lemma 2.6 and the standard Valiron-Mohon’ko theorem,
we deduce

T(r,F(2)) = T(r,P(f)f (2)) + S(r,f)
= (n+ 1T (r,f(2)) + S(r.f).

Since f is a entire function, then by the second main theorem and Lemma 2.5, we have

— — 1 — 1
T(V,F(Z)) SN(I",F(Z))‘I’N(V’,%) +N(r,m) +S(r,f)

<N (g ) N ) N (o ) #5600
- P 'flg2) "F(2) - a(2)
< (s(P) + m(P)) T (r,f(2)) + T(r.f (q2))

— 1
N i) S0
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f(gz)
f(@

< (s(P) + m(P))T(r.f () + m(r,

— 1
+N(r, F—(z) —a(z)) +S(r.f)

< (S(P) +m(P) + 1) T(r,f(z)) + ﬁ(r

) +m(r,f(2))

e (Z)) S0,

that is,

1
N(r, m) > (n —s(P) - m(P)) T(r,f(z)) + S(r,f(z)).

Since f is a transcendental entire function with m(P) > 0, we deduce that P(f)f (qz) — «(z)
has infinitely many zeros.
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