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Abstract
In this work, we introduce a linear finite-difference methodology to approximate
non-negative and bounded solutions of a coupled system of nonlinear parabolic
partial differential equations that describes the growth of two different microbial
colonies on a substrate of nutrients. Some simpler versions of the model of interest
possess qualitative results that guarantee the existence and uniqueness of
non-negative and bounded solutions. However, the exact determination of analytical
solutions of our system (and even of those simpler versions of our model)
corresponding to physically meaningful initial conditions, may be a difficult task,
whence the need to design computational methods to approximate the solutions of
our mathematical model is pragmatically justified. Our numerical technique has the
advantage of conditionally preserving the non-negative and bounded characters of
initial-boundary data. The most important analytical results of this work are
summarized as a theorem of existence and uniqueness of non-negative and bounded
numerical solutions, whose proof relies on the non-singularity property ofM-matrices,
and the fact that the entries of the inverses of these matrices are positive real
numbers. We provide some illustrative simulations to evince the fact that our method
preserves the mathematical characteristics of the solutions that we mentioned above.
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1 Introduction
The problem of modeling mathematically the growth dynamics of biological films is an
important topic of investigation in view of the many practical problems where these com-
plex structures appear. For instance, microbial films find applications in the development
of biological techniques to treat contaminated fluids [–], in the design of microbial fuel
cells to produce electricity by means of biological or chemical procedures [–], in the
production of new generations of sensors through bacterial signaling systems [] and in
the investigation of the corrosion of material surfaces for environmental engineering pur-
poses [, ], among many other scientific and engineering problems of pragmatic rele-
vance [, ]. Needless to mention that, according to a report by the Chinese National
Institute of Health [], biological films are likely to be directly or indirectly responsible
for most of the bacterial infections in humans.
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The mathematical modeling of biological films ideally offers the advantage of providing
an inexpensive means to determine some analytical properties of the solutions of quan-
titative paradigms in general scenarios. However, even simple biological film structures
possess a high level of complexity, which is difficult to be faithfully reflected in a single
system of partial differential equations. As a consequence, most of the realistic, mathe-
matical models used to describe the growth dynamics of microbial colonies are complex
systems of equations for which the exact determination of meaningful analytical solutions
is a difficult task. As expected, this complexity is substantially increased when one con-
siders not only the interaction between a single colony of bacteria with the substrate, but
also when different types of bacteria are present in the medium.
In the present work, we consider a nonlinear system of diffusive partial differential equa-

tions that models the interaction between two different types of microbial colonies and a
substrate of nutrients. Themathematical model under investigation is a slightly more gen-
eral version of the one proposed in [], and it is an extension of the systems of differential
equations studied in [–]. Our model reflects many of the characteristics found exper-
imentally in microbial films, like
(a) the existence of a sharp front of biomass at the fluid-solid transition,
(b) the presence of a threshold of biomass density,
(c) the fact that the spreading of biomass is significant only when the biomass is close to

the threshold,
(d) the application of reaction kinetics mechanisms in the production of biomass,
(e) the compatibility of the biomass spreading mechanism with hydrodynamics and

with nutrient transfer-consumption models,
among other features observed in the practice. The functions of interest in our model
(concentration of nutrients and population sizes) are non-negative functions that have
been normalized with respect to maximum allowed quantities, so that the sets of possible
values that these variables may take on are subsets of [, ].
In view of the difficulties to calculate analytical solutions of the model under study, we

propose here a computational method to approximate them. Motivated by some previ-
ous and successful efforts in the design of numerical techniques to estimate the solutions
of much simpler forms of the system of equations investigated in the present work [,
], we follow a linear approach [–] to provide a linear and implicit finite-difference
discretization of the mathematical model of interest. After some algebraic manipulations,
we will readily verify that our technique may be represented conveniently in vector form
using a square matrix with real entries which, under suitable conditions, turns out to be
anM-matrix, that is, a strictly diagonally dominant matrix with non-positive off-diagonal
entries, and positive components in its main diagonal [, ].
Following some approaches of the specialized literature employed for much simpler

models [–], the main properties of M-matrices will be used in order to establish the
conservation of the non-negative and the bounded characters of approximations. More
concretely, we will use the facts that every M-matrix is non-singular and that all the en-
tries of their inverses are positive numbers []. Using these tools, we will prove a theo-
rem of existence and uniqueness of non-negative and bounded solutions of our technique.
As expected, we will provide some simulations in order to evince the performance of our
method and illustrate the facts that non-negativity and boundedness are preserved at each
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iteration when some suitable conditions on the model and the computational parameters
are satisfied.
The present work is divided as follows. In Section , we introduce the mathematical

model under investigation, the physical relevance of themodel parameters, themathemat-
ical nomenclature and some conventions. Some particularmodels, for which theorems on
the existence and uniqueness of non-negative and bounded solutions are available, are de-
scribed in that stage of our work. Section  introduces the numerical technique employed
to approximate the solutions of our model. We introduce therein the discrete notation
employed in this manuscript and provide a useful vector representation of our method.
In Section , we derive some analytical properties of our finite-difference scheme (like its
capability to conditionally preserve the non-negative and bounded characters of approxi-
mations), and we present some illustrative simulations obtained through a computational
implementation of our technique. Finally, we close this work with a section of concluding
remarks.

2 Preliminaries
2.1 Mathematical model
Let p be a positive integer, and let � be a bounded subset of Rp which is open and con-
nected. Throughout this manuscript, � will denote the closure of � in R

p, while R+ will
represent the closure of the set R+ of positive numbers in R. In this work, s, u and v will
be real functions defined in the set � × R+, which are twice differentiable in the interior
of their domains and satisfy the coupled system of parabolic partial differential equations

⎧⎪⎪⎨
⎪⎪⎩

∂s(x,t)
∂t = ds∇s(x, t) – fu(s(x, t),u(x, t)) – fv(s(x, t), v(x, t)),

∂u(x,t)
∂t =∇ · (Du(u(x, t), v(x, t))∇u(x, t)) + g(s(x, t),w(x, t)),

∂v(x,t)
∂t = (J∇) · (Dv(u(x, t), v(x, t))∇v(x, t)) + g(s(x, t),w(x, t)),

()

for every (x, t) ∈ �×R
+. Here, the set � will represent a spatial domain which may physi-

cally be identified with a Petri dish for practical purposes, and the variable t denotes time.
The spatial operators ∇ , ∇· and ∇ are, respectively, the gradient, the divergence and the
Laplacian.
Physically, the system of equations () describes the dynamics of interaction between a

substrate of nutrients s and two different biological colonies labeled here C and C, with
respective relative densities u and v that have been normalizedwith respect to amaximum
value of the biological mass. In system (), the function w is the total biological mass of
the system at each point of � and each instant of time, that is, for every (x, t) ∈ � ×R

+,

w(x, t) = u(x, t) + v(x, t). ()

For the sake of concreteness, we may think of the growth dynamics of biological films
formed of colonies of pseudomonas putida and listeria monocytogenes on a Petri dish with
a substrate of nutrients. Moreover, in our investigation the diffusion factors are provided
by the expressions

Du(u, v) = du
uβ

( – u – v)α
, ()
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Dv(u, v) = dv
vβ

( – u – v)α
, ()

and the reaction functions are given by

fu(s,u) = k
su

k + s
, ()

fv(s, v) = k′


sv
k′
 + s

, ()

g(s,w) = k
sw

k + s
– kw, ()

g(s,w) = k′


sw
k′
 + s

+ k
kw
k + s

– k′
w. ()

In ourmodel, the constants ds (the substrate diffusion coefficient), du and dv (the diffusion
coefficients corresponding to C and C, respectively), k and k′

 (the maximum specific
consumption rate of each colony), k and k′

 (the Monad half-saturation constant of each
of the colonies), k and k′

 (the maximum specific growth rate of anaerobic growth for
C and C, respectively), k and k′

 (the decay rate of the total biomass of the system for
each colony), k (the maximum specific growth rate of aerobic growth), α and β are all
non-negative numbers with α,β ≥ .
On the other hand, J is a real matrix of size p × p, which represents the direction of

preferred biomass spreading across the substrate. In the two-dimensional case, J is a -
by- diagonal matrix of the form

J =

(
 
 θ

)
, ()

where θ is a fixed number in the interval [, ]. In this case, one readily verifies that (J∇)
is the modified divergence operator

(J∇) =
(

∂

∂x
, θ

∂

∂y

)
. ()

Before we close this section, it is worthwhile to notice that system () is a generalized
form of the model investigated in []. In fact, our model reduces to the one studied in
that work if we let k = k′

. In the present manuscript, the distinction between the decay
rate of the total biomass for each colony is made in order to derive a particular model of
interaction between a substrate of nutrients and a single microbial colony.

2.2 Substrate-biomass model
It is worthwhile to notice that () reduces to a previously studiedmodel in the investigation
of microbial films when the biomass is formed exclusively by one colony type. Indeed,
letting v be equal to zero, the resulting system of equations may be rewritten as

⎧⎨
⎩

∂s
∂t (x, t) = ds∇s(x, t) – k s(x,t)u(x,t)k+s(x,t)

,
∂u
∂t (x, t) =∇ · (D(u(x, t))∇u(x, t)) + k s(x,t)u(x,t)

k+s(x,t)
– ku(x, t),

()
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whereu is the biomass density normalizedwith respect to amaximumpossible value, and s
represents the density of the substrate of nutrients.Meanwhile, the functionD : [, ) →R

is reduced to

D(u) = du
uβ

( – u)α
()

for every u ∈ [, ). Appropriate initial-boundary conditions are required. For instance,
one may consider

⎧⎨
⎩s(x, t) = , u(x, t) = , ∀x ∈ ∂�,∀t ≥ ,

s(x, ) = s(x), u(x, ) = u(x), ∀x ∈ �,
()

for suitable functions s,u :� →R.
Let F be the real function defined on [, ) through the expression

F (u) =
∫ u



vβ

( – v)α
dv. ()

Our work is greatly motivated by the next analytical result.

Proposition  Let s and u satisfy the following conditions:
(A) s ∈ L∞(�)∩H(�) and ≤ s(x) ≤  for every x ∈ �,
(B) u ∈ L∞(�) and F (u) ∈H

(�),
(C) u(x)≥  for every x ∈ �, and ‖u‖L∞(�) < .

Then there exists a unique solution of system () subject to (),which satisfies the following
properties:
. s,u ∈ L∞(� ×R

+)∩C(L(�), [,∞)),
. s,F (u) ∈ L∞(H(�),R+)∩C(L(�), [,∞)),
.  ≤ s(x, t),u(x, t)≤  for every (x, t) ∈ � ×R

+, and ‖u‖L∞(�×R+) < .

Proof The proof is a direct consequence of Theorems . and . of []. �

It is important to remark the fact that this result guarantees the existence anduniqueness
of non-negative and essentially bounded solutions of the particular biofilm model ().
However, even for this simplified version of (), the calculation of particular solutions for
non-trivial initial conditions is a complicated task. These observations motivate the nu-
merical approach reported in this manuscript.

2.3 Simple model
Let r : � × R

+ → R be a continuous function. A further simplification of () leads to the
nonlinear partial differential equation investigated in [, ], which is a model that con-
siders the presence of one colony of bacteria with no dynamical interaction with the sub-
strate. Themathematical system investigated in those reports is described by the following
equation:

∂u
∂t

(x, t) = ∇ · (D(
u(x, t)

)∇u(x, t)
)
+ r(x, t)u(x, t) ()
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for every (x, t) ∈ � × R
+. Obviously, suitable initial conditions must be imposed on �.

Following the approach of Section ., we consider initial-boundary conditions of the form

⎧⎨
⎩u(x, t) = , ∀x ∈ ∂�,∀t ≥ ,

u(x, ) = u(x), ∀x ∈ �.
()

Under these circumstances, the following result is an immediate corollary of Proposi-
tion . It establishes sufficient conditions for the existence and uniqueness of non-negative
and bounded solutions of Equation () subject to ().

Corollary  Let r and φ satisfy:
(A) r ∈ L∞(� ×R

+)∩ (L(�), [,∞)) and  ≤ r(x, t)≤  for every (x, t) ∈ � ×R
+,

(B) u ∈ L∞(�) and F (u) ∈H
(�),

(C) u(x)≥  for every x ∈ �, and ‖u‖L∞(�) < .
Then there exists a unique solution u of () subject to the initial-boundary conditions (),
which satisfies the following properties:
. u ∈ L∞(� ×R

+)∩C(L(�), [,∞)),
. F (u) ∈ L∞(H(�),R+)∩C(L(�), [,∞)),
.  ≤ u(x, t) ≤  for every (x, t) ∈ � ×R

+, and ‖u‖L∞(�×R+) < .

3 Computational model
3.1 Nomenclature
For the rest of this work, we will restrict our attention to the case p = . Lower and higher
dimensional scenarios are treated in a similar fashion.
Throughout this manuscript, we will assume that K ,M and N are positive integers and

fix the spatial domain � = [, ]× [, ] of R. We will take uniform partitions of [, ], of
the form

 = x < x < · · · < xm < · · · < xM =  ()

and

 = y < y < · · · < yn < · · · < yN = , ()

for everym ∈ {, , . . . ,M} and n ∈ {, , . . . ,N}. Clearly, the corresponding partition norms
are given by

�x = /M, ()

�y = /N . ()

Fix also a temporal period of length equal to T ∈R
+, and take a uniform partition of the

interval [,T] of the form

 = t < t < · · · < tk < · · · < tK = T ()

http://www.advancesindifferenceequations.com/content/2013/1/357
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for every k ∈ {, , . . . ,K}. Let

�t = T/K ()

be the corresponding partition norm. For each m ∈ {, , . . . ,M}, n ∈ {, , . . . ,N} and k ∈
{, , . . . ,K}, we use the notation skm,n, ukm,n and vkm,n to represent approximations to the
exact values of s, u and v, respectively, at the point (xm, yn, tk). Moreover, define

wk
m,n = ukm,n + vkm,n. ()

In addition, wewill employ the following standard forward-difference operators, defined
for q = s,u, v, and for everym ∈ {, . . . ,M – }, n ∈ {, . . . ,N – } and k ∈ {, , . . . ,K – }:

δ±
x q

k
m,n =

qkm±,n – qkm,n

±�x
, ()

δ±
y q

k
m,n =

qkm,n± – qkm,n

±�y
, ()

δ+t q
k
m,n =

qk+m,n – qkm,n

�t
. ()

Clearly, these linear operators provide first-order approximations of the partial derivatives
of q with respect to x, y and t, respectively, at the point (xm, yn, tk). We also define the
discrete operators

δ()x skm,n =
skm+,n – skm,n + skm–,n

(�x)
, ()

δ()y skm,n =
skm,n+ – skm,n + skm,n–

(�y)
, ()

which are respectively approximations of order (�x) and (�y) of the second-order par-
tial derivative of s with respect to x and with respect to y. Let

δ()x,ys
k
m,n =

(
δ()x + δ()y

)
skm,n. ()

We need to introduce now some non-standard operators. Let q = u, v, and let m ∈
{, . . . ,M – }, n ∈ {, . . . ,N – } and k ∈ {, , . . . ,K}. To that end, define

μ±
x q

k
m,n =

qkm±,n + qkm,n


, μ±

y q
k
m,n =

qkm,n± + qkm,n


. ()

Also, let

ζ±
x qkm,n =Dq

(
μ±
x q

k
m,n,μ

±
x p

k
m,n

)
δ±
x q

k+
m,n, ()

ζ±
y qkm,n =Dq

(
μ±
y q

k
m,n,μ

±
y p

k
m,n

)
δ±
y q

k+
m,n, ()

where p = u, v but p �= q. Let

ζxqkm,n =
ζ +
x qkm,n + ζ –

x qkm,n

�x
, ζyqkm,n =

ζ +
y qkm,n + ζ –

y qkm,n

�y
. ()
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For any real number r, define

ζ r
x,yq

k
m,n = (ζx + rζy)qkm,n. ()

For the sake of convenience, we introduce the function F : R+ × R+ × [, ) → R given
by the expression

Fu(s, s,u, v) = k
su

k + s
+ k′


sv

k′
 + s

. ()

3.2 Finite-difference scheme
Following the nomenclature introduced in Section ., the finite-difference methodology
employed here to approximate the solutions of the biological filmmodel () is given by the
system of recursive equations

⎧⎪⎪⎨
⎪⎪⎩

δ+t skm,n = dsδ()x,ysk+m,n – F(sk+m,n, skm,n,ukm,n, vkm,n),

δ+t ukm,n = ζ 
x,yukm,n + g(skm,n,wk+

m,n),

δ+t vkm,n = ζ θ
x,yvkm,n + g(skm,n,wk+

m,n),

()

for every m ∈ {, . . . ,M – }, n ∈ {, . . . ,N – } and k ∈ {, , . . . ,K – }. In addition, we will
impose discrete, homogeneous Neumann boundary data for each of the three functions
of interest.
Let z = x, y, and let

Rz =
�t

(�z)
. ()

The following remarkswill be useful in Section . in order to establish themain properties
of our method. They will also serve as an intermediate step in order to present our finite-
difference scheme in vector form.

Remark  It important to notice that the three difference equations in () are approx-
imations of the biological film model (), which may be written in explicit form after we
perform suitable algebraic steps. Indeed, for instance, the difference equation employed
to approximate the dynamics of the substrate function may be rewritten as

αxsk+m–,n + αysk+m,n– + φk
m,ns

k+
m,n + αysk+m,n+ + αxsk+m+,n = skm,n, ()

where

αz = –dsRz, ()

φk
m,n =  – αx – αy +

k�tukm,n

k + skm,n
+
k′
�tvkm,n

k′
 + skm,n

()

for z = x, y, and everym ∈ {, . . . ,M–}, n ∈ {, . . . ,N –} and k ∈ {,  . . . ,N –}. Obviously,
the coefficients αx and αy are negative, the coefficient φk

m,n is positive, and the inequality
|αx| + |αy| < φk

m,n holds.
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We analyze now the second recursive formula of ().

Remark  On the other hand, the discrete equation in (), which approximates the dy-
namics of u, may be written as

βu,k,–
x,m,nu

k+
m–,n + βu,k,–

y,m,nu
k+
m,n– + ϕk

m,nu
k+
m,n

+ βu,k,+
y,m,nu

k+
m,n+ + βu,k,+

x,m,nu
k+
m+,n + γ k

m,nv
k+
m,n = ukm,n, ()

where

βq,k,±
z,m,n = –RzDq

(
μ±
z q

k
m,n,μ

±
z p

k
m,n

)
, ()

γ k
m,n = k�t – k

�tskm,n

k + skm,n
, ()

ϕk
m,n =  – βu,k,–

x,m,n – βu,k,–
y,m,n – βu,k,+

y,m,n – βu,k,+
x,m,n + γ k

m,n ()

for z = x, y, q = u, v, p ∈ {u, v} \ {q}, and for every m ∈ {, . . . ,M – }, n ∈ {, . . . ,N – } and
k ∈ {,  . . . ,K –}. Observe that the coefficients β

q,k,±
z,m,n in Equation () are all non-positive

numbers and that the constants γ k
m,n are all less than or equal to zero if and only if

k ≤ k
skm,n

k + skm,n
()

holds. Observe that () is satisfied in the particular case when k = , and the approxi-
mation to the substrate function at the point (xm, yn) and time tk is non-negative. Finally,
notice that the inequality

∣∣γ k
m,n

∣∣ + ∑
z=x,y

∣∣βu,k,±
z,m,n

∣∣ < ϕk
m,n ()

holds if and only if

 + γ k
m,n > , ()

whenever γ k
m,n ≤  and ϕk

m,n > .

Next, we examine the last iterative formula of ().

Remark  Finally, we consider the last difference equation of (), which approximates
the values of the function v. In this case, it is also easy to verify that the finite-difference
approximation is equivalent to the equation

βv,k,–
x,m,nv

k+
m–,n + βv,k,–

y,m,nv
k+
m,n– +ψk

m,nv
k+
m,n

+ βv,k,+
y,m,nvm,n+ + βv,k,+

x,m,nv
k+
m+,n + εkm,nu

k+
m,n = vkm,n ()
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for eachm ∈ {, . . . ,M – }, n ∈ {, . . . ,N – } and k ∈ {, , . . . ,K – }. Here, the coefficients
β are given by the expression (), and

εkm,n = k′
�t – k′


�tskm,n

k′
 + skm,n

– k
k�t

k + skm,n
, ()

ψk
m,n =  – βu,k,–

x,m,n – βu,k,–
y,m,n – βu,k,+

y,m,n – βu,k,+
x,m,n + εkm,n. ()

It is important to recall that the coefficients βv,k,±
z,m,n are non-negative for z = x, y, and that all

the constant εkm,n is non-positive if and only if

k′
 ≤ k′


skm,n

k′
 + skm,n

+ k
k

k + skm,n
()

is satisfied. This last inequality holds in particular when k′
 = , and the approximation to

the substrate function at the point (xm, yn) and time tk is non-negative. Finally, assuming
that εkm,n is non-positive and ψk

m,n is positive, then the inequality

∣∣εkm,n
∣∣ + ∑

z=x,y

∣∣βv,k,±
z,m,n

∣∣ < ψk
m,n ()

holds if and only if

 + εkm,n >  ()

is satisfied.

3.3 Vector representation
The present section is devoted to present the new system of algebraic equations (), ()
and () conveniently in a single and recursive vector representation. To that end, we
arrange the approximations of the method at the time tk in lexicographic order. More
precisely, we let

sk =
(
sk,, . . . , s

k
,N , s

k
,, . . . , s

k
,N , . . . , s

k
M,, . . . , s

k
M,N

)
, ()

uk =
(
uk,, . . . ,u

k
,N ,u

k
,, . . . ,u

k
,N , . . . ,u

k
M,, . . . ,u

k
M,N

)
, ()

vk =
(
vk,, . . . , v

k
,N , v

k
,, . . . , v

k
,N , . . . , v

k
M,, . . . , v

k
M,N

)
. ()

Let xk = (sk|uk|vk) be the juxtaposition of the vectors sk , uk and vk in that order, and let
wk be the lexicographically ordered vector of the approximate total biomass of the system
at the time tk , that is, let

wk = uk + vk . ()

Throughout, we define the vector bk exactly as the vector xk , except that the components
corresponding to boundary points are equal to zero.
Let k be an element of {, , . . . ,K – }. We use the notation I to represent the identity

matrix of size N ×N , and let I ′ be the diagonal matrix of size N ×N , all of whose entries

http://www.advancesindifferenceequations.com/content/2013/1/357
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in the diagonal are ones, except the first and the last. Define the tridiagonal matrix Bk
m as

the matrix of the same size of I given by

Bk
m =

⎛
⎜⎜⎜⎜⎜⎜⎜⎜⎜⎜⎜⎝

 –   · · ·    
αy φk

m, αy  · · ·    
 αy φk

m, αy · · ·    
...

...
...

...
. . .

...
...

...
...

    · · · αy φk
m,N– αy 

    · · ·  αy φk
m,N– αy

    · · ·   – 

⎞
⎟⎟⎟⎟⎟⎟⎟⎟⎟⎟⎟⎠

()

for everym ∈ {, . . . ,M–}. Define the blockmatrixBk of size (M+)(N +)×(M+)(N +)
through

Bk =

⎛
⎜⎜⎜⎜⎜⎜⎜⎜⎜⎜⎜⎝

I –I   · · ·    
αxI ′ Bk

 αxI ′  · · ·    
 αxI ′ Bk

 αxI ′ · · ·    
...

...
...

...
. . .

...
...

...
...

    · · · αxI ′ Bk
M– αxI ′ 

    · · ·  αxI ′ Bk
M– αxI ′

    · · ·   –I I

⎞
⎟⎟⎟⎟⎟⎟⎟⎟⎟⎟⎟⎠
, ()

where the zeros are zero matrices of size N ×N .
On the other hand, for each m ∈ {, . . . ,M – }, let �k

m be the matrix of the same size of
Bk
m given by

�k
m =

⎛
⎜⎜⎜⎜⎜⎜⎜⎜⎜⎝

 –   · · ·   
β
u,k,–
y,m, ϕk

m, β
u,k,+
y,m,  · · ·   

 β
u,k,–
y,m, ϕk

m, β
u,k,+
y,m, · · ·   

...
...

...
...

. . .
...

...
...

    · · · βu,k,–
y,m,N– ϕk

m,N– β
u,k,+
y,m,N–

    · · ·  – 

⎞
⎟⎟⎟⎟⎟⎟⎟⎟⎟⎠
, ()

and let Ek,±
q,m be the diagonal matrix of the same size as Gk

m provided by

Ek,±
q,m =

⎛
⎜⎜⎜⎜⎜⎜⎜⎜⎜⎜⎜⎝

   · · ·   
 β

q,k,±
x,m,  · · ·   

  β
q,k,±
x,m, · · ·   

...
...

...
. . .

...
...

...
   · · · β

q,k,±
x,m,N–  

   · · ·  β
q,k,±
x,m,N– 

   · · ·   

⎞
⎟⎟⎟⎟⎟⎟⎟⎟⎟⎟⎟⎠
. ()
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Define then the block matrix �k of the same size as Bk via

�k =

⎛
⎜⎜⎜⎜⎜⎜⎜⎜⎜⎝

I –I   · · ·   
Ek,–
u, �k

 Ek,+
u,  · · ·   

 Ek,–
u, �k

 Ek,+
u, · · ·   

...
...

...
...

. . .
...

...
...

    · · · Ek,–
u,N– �k

N– Ek,+
u,N–

    · · ·  –I I

⎞
⎟⎟⎟⎟⎟⎟⎟⎟⎟⎠
. ()

Let Zk be the diagonal matrix of size (M + )(N + ) × (M + )(N + ) whose diagonal
components are the constants γ k

m,n arranged in lexicographic order for all those coordi-
nates (m,n) which do not correspond to the boundaries of �; otherwise, let those entries
be equal to zero. Define the matrix Hk in a similar fashion as Zk , but using now the coef-
ficients εkm,n instead of γ k

m,n.
Finally, for eachm ∈ {, . . . ,M – }, let �k

m be the matrix of the same size of Bk
m provided

by the formula

�k
m =

⎛
⎜⎜⎜⎜⎜⎜⎜⎜⎜⎝

 –   · · ·   
β
v,k,–
y,m, ψk

m, β
v,k,+
y,m,  · · ·   

 β
v,k,–
y,m, ψk

m, β
v,k,+
y,m, · · ·   

...
...

...
...

. . .
...

...
...

    · · · β
v,k,–
y,m,N– ψk

m,N– β
v,k,+
y,m,N–

    · · ·  – 

⎞
⎟⎟⎟⎟⎟⎟⎟⎟⎟⎠
, ()

and introduce the block matrix �k of the same size as Bk through

�k =

⎛
⎜⎜⎜⎜⎜⎜⎜⎜⎜⎝

I –I   · · ·   
Ek,–
v, �k

 Ek,+
v,  · · ·   

 Ek,–
v, �k

 Ek,+
v, · · ·   

...
...

...
...

. . .
...

...
...

    · · · Ek,–
v,N– �k

N– Ek,+
v,N–

    · · ·  –I I

⎞
⎟⎟⎟⎟⎟⎟⎟⎟⎟⎠
. ()

Remark  In view of the nomenclature introduced in this work and the algebraic presen-
tation of the recursive equations of ourmethod, the iterative system of equations (), ()
and () may be presented in vector form as

⎧⎨
⎩Akxk+ = bk , ∀k ∈ {, , . . . ,K – },
x = x,

()

where Ak is the block matrix of size [(M + )(N + )]× [(M + )(N + )] defined by

Ak =

⎛
⎜⎝

Bk  
 �k Zk

 Hk �k

⎞
⎟⎠ , ()
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and x is the lexicographically ordered vector of initial approximations. Clearly, the zeros
of this matrix are zero matrices of size (M + )(N + )× (M + )(N + ).

In view of these remarks, the method introduced in this work is linear and implicit, and
provides linear approximations to the solutions of (). Computationally, our technique is
coded using an implementation of the stabilized bi-conjugate gradient method, which is a
method that has been employed in several works to solve sparse systems arising in biology
[, ], among other disciplines of the natural science and engineering.

4 Results
In this section, we establish firstly some results on the existence and uniqueness of non-
negative and bounded solutions of the finite-difference method () using the vector rep-
resentation (). In a second stage, we provide some illustrative simulations that reflect
the capability of the method to yield non-negative and bounded approximations for non-
negative and bounded initial profiles.

4.1 Analytical results
The analytical cornerstone of our investigation is the concept of M-matrices. Recall that
anM-matrix is a real, square matrix A which satisfies the following three properties:

(i) the off-diagonal elements of A are non-positive numbers,
(ii) the diagonal entries are positive numbers, and
(iii) the matrix A is strictly diagonally dominant.

In general, theM-matrices are important inmany areas ofmathematics; in particular, they
are useful tools in the field of numerical analysis, where the fact thatM-matrices are non-
singular is employed extensively. Moreover, all the entries of the inverse of anyM-matrix
are positive numbers []. These facts are summarized conveniently in the following re-
sult.

Lemma . (Fujimoto []) Every M-matrix is invertible, and the entries of its inverse
matrix are all positive numbers.

We say that a real vector x is non-negative (respectively, positive) if all of its compo-
nents are non-negative (respectively, positive) numbers; this fact is represented by x ≥ 
(respectively, x > ). We say that x is bounded from above (respectively, strictly bounded
from above) by  if all the components of x are less than or equal to (respectively, strictly
less than) , a fact that is denoted by x ≤  (respectively, x < ). It is readily checked that
x ≤  holds if and only if e– x ≥ , where e is the vector of the same size of x, all of whose
components are equal to . We employ the notation  ≤ x ≤  (respectively,  ≤ x < ) to
signify that the vector x is non-negative and bounded from above (respectively, strictly
bounded from above) by .
The following result establishes that the matrix Ak in Equation () is anM-matrix un-

der suitable conditions. We will use here the remarks of Section . and will follow the
notation introduced previously. Throughout, k will be an element of the set {, , . . . ,K –}.

Lemma . Assume that  ≤ sk ≤  and  ≤ uk ,vk < . Then Ak is an M-matrix if all the
conditions (), (), () and () hold for every m ∈ {, . . . ,M – } and n ∈ {, . . . ,N – }.
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Proof By Remarks , ,  and the inequalities () and (), the off-diagonal entries of Ak

are non-positive. In turn, the inequalities () and () assure the strict diagonal domi-
nance of this matrix. We conclude then that Ak is anM-matrix by definition. �

The following is the main analytical result of this work. It establishes sufficient con-
ditions that guarantee the existence and uniqueness of non-negative and bounded new
approximations at each iteration of the finite-difference scheme ().

Theorem . (Existence and uniqueness) If  ≤ xk < , then xk+ ≥  holds if the inequal-
ities () and (), as well as

 + γ k
m,n > ukm,n ()

and

 + εkm,n > vkm,n, ()

are all satisfied for every m ∈ {, . . . ,M – } and n ∈ {, . . . ,N – }.

Proof Beforehand, notice that the inequalities () and () imply respectively that ()
and () also hold. Under these circumstances, Ak is anM-matrix and, by Lemma ., it is
non-singular and the entries of its inverse are all positive numbers. Also, xk ≥  and, thus,
bk ≥ . It follows that xk+ = (Ak)–xk ≥ . In order to establish the boundedness from
above, let e be the vector of the same dimension as xk , all whose components are equal
to , and let yk = e – xk . Notice that Equation () becomes

Akyk = ck , ()

where

ck = Ake – bk . ()

It is important to notice that the rows of matrix Ak associated to the homogeneous Neu-
mann boundary conditions contain a  and a – as their only nonzero entries, and that
the corresponding components of bk are equal to zero. In view of that, those entries of ck

are equal to zero. We analyze next the rest of the rows of Ak , focusing on each of the three
block rows of the presentation ().
• Row . Evidently, the corresponding component of ck is given by the expression

φk
m,n + αx + αy =  for some m ∈ {, . . . ,M – } and n ∈ {, . . . ,N – }.

• Row . In this case, the corresponding component of the vector ck is

ϕk
m,n +

∑
z=x,y

βu,k,±
z,m,n + γ k

m,n – ukm,n =  + γ k
m,n – ukm,n ()

for suitablem ∈ {, . . . ,M – } and n ∈ {, . . . ,N – }.
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• Row . For each row of the third block row of the matrix Ak , the corresponding
component of ck assumes the form

ψk
m,n +

∑
z=x,y

βv,k,±
z,m,n + εkm,n – nkm,n =  + εkm,n – vkm,n >  ()

for some m ∈ {, . . . ,M – } and n ∈ {, . . . ,N – }.
We have verified that all the components of ck are non-negative in all cases. Thus, yk ≥ 
or, equivalently, that xk is bounded from above by , as desired. �

4.2 Numerical examples
In this section, we provide some numerical simulations in order to evince the performance
of our method in general and, in particular, its capability to preserve the non-negative and
bounded characters of solutions. Throughout, we will restrict our attention to the domain
� = [, ] × [, ] of R. The boundary conditions will be homogeneous of the Neumann
type, and the initial biomass profiles considered will take on the form

h(x) =
L∑
l=

Cl exp
[
–rl(x – xl) – sl(y – yl)

]
, ()

for every x = (x, y) which belongs to �. Here, L is a suitable positive integer, Cl , rl and sl
are positive numbers, and xl = (xl, yl) are points in the interior of � for each l ∈ {, . . . ,L}.
For the sake of convenience, we define the vectors rl = (rl, sl) for each such l.
Our first example provides a qualitative comparison against some of the results reported

in [, ]. To that end, observe that the partial differential equation () is obtained from
system () by fixing the constants ds = dv = , k = r, k = k′

 = k = k′
 = k′

 = k = k′
 = k = .

In addition, we must consider the initial conditions s(x, ) = s and v(x, ) =  for every
x ∈ �, and any fixed constant s ∈ (, ).

Example  Consider system () with the parameter values and initial conditions of the
previous paragraph, in which case the model equation () results. Let the initial profile of
the function u be given by (), with L = ; C = ., C = ., C = ., C = .,
C = .; r = (, ), r = (, ), r = (, ), r = (, ), r = (, ); x =
(., .), x = (., .), x = (., .), x = (., .), x = (., .). Fix the model
constants du =  × –, r = . and α = β = , and the computational parameters �x =
�y = . and �t = .. Under these circumstances, Figures - show the approximate
solution of the function u at the times , ,  and , respectively. The results are in good
qualitative agreement with respect to those reported in Figure  of [], which correspond
to Example . therein. Moreover, the present example illustrates the capability of our
method the preserve the non-negativity and the boundedness of the solutions.

For our following example, we study the dynamics of growth of a biological film whose
interactionwith the (non-constant) substrate is described by ().Observe that that system
is obtained from () by letting dv = , k′

 = k′
 = k′

 = k = , and letting k′
 and k being fixed

positive constants, say, equal to . Also, we need to impose the initial condition v(x, ) = 
for every x ∈ �.
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Figure 1 Approximate solution u at time 0. Graph of the approximate solution u of Equation () on the
domain � = [0, 1]× [0, 1] at the time 0. The model and computational parameters, as well as the initial and
boundary conditions, are given in Example 1.

Figure 2 Approximate solution u at time 6. Graph of the approximate solution u of Equation () on the
domain � = [0, 1]× [0, 1] at the time 6. The model and computational parameters, as well as the initial and
boundary conditions, are given in Example 1.

Figure 3 Approximate solution u at time 8. Graph of the approximate solution u of Equation () on the
domain � = [0, 1]× [0, 1] at the time 8. The model and computational parameters, as well as the initial and
boundary conditions, are given in Example 1.
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Figure 4 Approximate solution u at time 10. Graph of the approximate solution u of Equation () on the
domain � = [0, 1]× [0, 1] at the time 10. The model and computational parameters, as well as the initial and
boundary conditions, are given in Example 1.

Figure 5 Approximate solutions s and u at time 2.5. Graphs of the approximate solutions s and u of
Equation () on the domain � = [0, 1]× [0, 1] at the time 12.5. The model and computational parameters, as
well as the initial and boundary conditions, are given in Example 2.

Example  Fix the set of parameter values and initial data described in the preced-
ing paragraph for the model () whence the simplified model () results. In addition,
we consider the same initial profile for the function u employed in Example , and let
s(x, ) =  for every x ∈ �. The rest of the parameters are ds = ., du = ., k = .,
k = ., k = ., k = ., k′

 = k =  and θ = . Computationally, we used the values
�x = �y = . and �t = .. Under these conditions, Figures - show the approxi-
mate solution of u at the times , ,  and , respectively. The insets are the corre-
sponding approximations to the substrate function s.

We consider now the full system ().
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Figure 6 Approximate solutions s and u at time 25. Graphs of the approximate solutions s and u of
Equation () on the domain � = [0, 1]× [0, 1] at the time 25. The model and computational parameters, as
well as the initial and boundary conditions, are given in Example 2.

Figure 7 Approximate solutions s and u at time 50. Graphs of the approximate solutions s and u of
Equation () on the domain � = [0, 1]× [0, 1] at the time 50. The model and computational parameters, as
well as the initial and boundary conditions, are given in Example 2.

Example  Let ds = ., du = ., dv = ., k = ., k′
 = ., k = ., k′

 = .,
k = ., k′

 = ., k = k′
 = , k = ., k = ., θ = . and α = β = . Fix a homo-

geneous initial substrate equal to .. The initial profile of the colony C is given by ()
with L = ; C = ., C = ., C = ., C = .; r = (, ), r = (, ), r =
(, ), r = (, ); x = (., .), x = (., .), x = (., .), x = (., .).
Meanwhile, the colony C has L = ; C = ., C = ., C = ., C = .; r =
(, ), r = (, ), r = (, ), r = (, ); x = (., .), x = (., .),
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Figure 8 Approximate solutions s and u at time 100. Graphs of the approximate solutions s and u of
Equation () on the domain � = [0, 1]× [0, 1] at the time 100. The model and computational parameters, as
well as the initial and boundary conditions, are given in Example 2.

Figure 9 Approximate solutions u and s at time 2.5. Graph of the approximate solution u of Equation ()
on the domain � = [0, 1]× [0, 1] at the time 2.5. The model and computational parameters, as well as the
initial and boundary conditions, are given in Example 3. The inset is a checkerboard graph corresponding to
the function s.

x = (., .), x = (., .). Computationally, we let�x =�y = ., and fix�t = ..
Figures - present the results of simulating the growth dynamics of the biofilm system
() under these circumstances. The graphs show snapshots of the solutions of u and v
at the times . and , while the insets provide the corresponding approximations of the
substrate and the total biological mass of the system. The results give evidence of the com-
plex dynamics of growth of the two colonies of bacteria and the substrate of nutrients. We
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Figure 10 Approximate solutions v and w at time 2.5. Graph of the approximate solution v of
Equation () on the domain � = [0, 1]× [0, 1] at the time 2.5. The model and computational parameters, as
well as the initial and boundary conditions, are given in Example 3. The inset is a checkerboard graph
corresponding to the function w.

Figure 11 Approximate solutions u and s at time 25. Graph of the approximate solution u of Equation ()
on the domain � = [0, 1]× [0, 1] at the time 25. The model and computational parameters, as well as the
initial and boundary conditions, are given in Example 3. The inset is a checkerboard graph corresponding to
the function s.

have observed that the conditions of non-negativity and boundedness are satisfied at each
iteration, facts which are in agreement with Theorem ..

Next, we approximate the solutions of the problem proposed in Example  at longer
periods of time.

Example  As a continuation of the previous example, we consider the same model with
the sameparameters and initial condition. Figures - present the approximate solutions
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Figure 12 Approximate solutions v and w at time 25. Graph of the approximate solution v of Equation ()
on the domain � = [0, 1]× [0, 1] at the time 25. The model and computational parameters, as well as the
initial and boundary conditions, are given in Example 3. The inset is a checkerboard graph corresponding to
the function w.

Figure 13 Approximate solutions u and s at time 50. Graph of the approximate solution u of Equation ()
on the domain � = [0, 1]× [0, 1] at the time 50. The model and computational parameters, as well as the
initial and boundary conditions, are given in Example 4. The inset is a checkerboard graph corresponding to
the function s.

at the times  and . Observe that the biomass has consumed most of the nutrients of
the substrate by the time . After a period of time of length , the substrate function
is basically identically equal to zero. It is worth noticing that the non-negative character
of the substrate and biomasses is preserved at each iteration, even during longer periods
of time. These facts are in perfect agreement with Theorem .. We have obtained sim-
ulations for longer periods of time. The results reflect that the solution u tends to reach
a constant function as t goes to infinity, which is in obvious agreement with the expres-
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Figure 14 Approximate solutions v and w at time 50. Graph of the approximate solution v of Equation ()
on the domain � = [0, 1]× [0, 1] at the time 50. The model and computational parameters, as well as the
initial and boundary conditions, are given in Example 4. The inset is a checkerboard graph corresponding to
the function w.

Figure 15 Approximate solutions u and s at time 100. Graph of the approximate solution u of
Equation () on the domain � = [0, 1]× [0, 1] at the time 100. The model and computational parameters, as
well as the initial and boundary conditions, are given in Example 4. The inset is a checkerboard graph
corresponding to the function s.

sion of the second equation of system (). Meanwhile, we have observed that v tends to
increase approximately as a horizontal plane, as t increases. These observations are also
in agreement with the third equation of our model.

5 Conclusions
In this work, we designed a finite-difference method to approximate the solutions of a
mathematical model that appears in the investigation of food safety. The model is a cou-
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Figure 16 Approximate solutions v and w at time 100. Graph of the approximate solution v of
Equation () on the domain � = [0, 1]× [0, 1] at the time 100. The model and computational parameters, as
well as the initial and boundary conditions, are given in Example 4. The inset is a checkerboard graph
corresponding to the function w.

pled system of parabolic partial differential equations with nonlinear diffusion and reac-
tion laws, which describes the interaction between a substrate function and two different
microbial colonies. For simpler versions of the problem, the specialized literature provides
suitable theorems on the existence and uniqueness of solutions which are non-negative
and bounded from above at all times. However, even in the mathematically simpler ver-
sions of our system of equations, the exact determination of analytical solutions for sig-
nificant initial-value problems is a difficult task.
The method we introduced in this manuscript is a convenient, linear discretization of

the mathematical model of interest. After some calculations, we showed that the method
is a linear and implicit technique which may be rewritten in vector form through the mul-
tiplication by a real square matrix that, under suitable conditions on the parameters of
the analytical and computational models, turns out to be an M-matrix. The facts that
everyM-matrix is non-singular and that all the entries of their inverses are positive num-
bers are the most important tools to establish conditions that guarantee the existence and
uniqueness of non-negative and bounded approximations for every set of non-negative
and bounded initial conditions. The main result is summarized as a theorem of existence
and uniqueness of numerical solutions, and the computer simulations provided show that
the properties of non-negativity and boundedness are preserved at every iteration of the
method when the conditions of our result are satisfied.
Before we close this work, we must mention that we have obtained more computational

simulations of the evolution of solutions of model () with various sets of values of the
model parameters. On the one hand, the results evince the complex dynamics of this bi-
ological system, but they also motivate future numerical studies toward the resolution of
practical problems in the investigation of biological films.
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