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Abstract
This paper addresses decentralized exponential stability problem for a class of linear
large-scale systems with time-varying delay in interconnection. The time delay is any
continuous function belonging to a given interval, but not necessarily differentiable.
By constructing a suitable augmented Lyapunov-Krasovskii functional combined with
Leibniz-Newton’s formula, new delay-dependent sufficient conditions for the
existence of decentralized exponential stability are established in terms of LMIs.
Numerical examples are given to show the effectiveness of the obtained results.
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1 Introduction
The theory and applications of functional differential equations form an important part of
modern non-linear dynamics. Such equations are natural mathematical models for vari-
ous real life phenomena where the after-effects are intrinsic features of their functioning.
In recent years, functional differential equations have been used to model processes in
different areas such as population dynamics and ecology, physiology and medicine, eco-
nomics, and other natural sciences. Stability analysis of linear systems with time-varying
delays ẋ(t) = Ax(t) + Dx(t – h(t)) is fundamental to many practical problems and has re-
ceived considerable attention [–].Most of the known results on this problem are derived
assuming only that the time-varying delay h(t) is a continuously differentiable function,
satisfying some boundedness condition on its derivative: ḣ(t)≤ δ < . In delay-dependent
stability criteria, the main concern is to enlarge the feasible region of stability criteria in a
given time-delay interval. Interval time-varying delay means that a time delay varies in an
interval in which the lower bound is not restricted to being zero. By constructing a suitable
augmented Lyapunov functional and utilizing free weight matrices, some less conserva-
tive conditions for asymptotic stability are derived in [–] for systems with time delay
varying in an interval. However, the shortcoming of themethod used in these works is that
the delay function is assumed to be differential and its derivative is still bounded: ḣ(t) ≤ δ.
On the other hand, there has been a considerable research interest in large-scale in-

terconnected systems. A typical large-scale interconnected system such as a power grid
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consists of many subsystems and individual elements connected together to form a large,
complex network capable of generating, transmitting and distributing electrical energy
over a large geographical area. In general, a large-scale system can be characterized by a
large number of variables representing the system, a strong interaction between subsystem
variables, and a complex interaction between subsystems. The problem of decentralized
control of large-scale interconnected dynamical systems has been receiving considerable
attention, because there is a large number of large-scale interconnected dynamical systems
in many practical control problems, e.g., transportation systems, power systems, commu-
nication systems, economic systems, social systems, and so on [–]. The operation of
large-scale interconnected systems requires the ability to monitor and stabilize in the face
of uncertainties, disturbances, failures and attacks through the utilization of internal sys-
tem states. However, even with the assumption that all the state variables are available for
feedback control, the task of effective controlling a large-scale interconnected system us-
ing a global (centralized) state feedback controller is still not easy as there is a necessary
requirement for information transfer between the subsystems [–].
To the best of our knowledge, there has been no investigation on the exponential stabil-

ity of large-scale systems with time-varying delays interacted between subsystems. In fact,
this problem is difficult to solve; particularly, when the time-varying delays are interval,
non-differentiable and the output is subjected to such time-varying delay functions. The
time delay is assumed to be any continuous function belonging to a given interval, which
means that the lower and upper bounds for the time-varying delay are available, but the
delay function is bounded but not necessarily differentiable. This allows the time-delay to
be a fast time-varying function and the lower bound is not restricted to being zero. It is
clear that the application of any memoryless feedback controller to such time-delay sys-
tems would lead to closed loop systems with interval time-varying delays. The difficulties
then arise when one attempts to derive exponential stability conditions. Indeed, the ex-
isting Lyapunov-Krasovskii functional and associated results in [, , , –] cannot
be applied to solve the problem posed in this paper as they would either fail to cope with
the non-differentiability aspects of the delays, or lead to very complex matrix inequality
conditions, and any technique such as matrix computation or transformation of variables
fails to extract the parameters of thememoryless feedback controllers. This hasmotivated
our research.
In this paper, we consider a class of large-scale linear systems with interval time-varying

delays in interconnections. Compared to the existing results, our result has its own ad-
vantages. (i) Stability analysis of previous papers reveals some restrictions: The time delay
was proposed to be either time-invariant interconnected or the lower delay bound is re-
stricted to being zero, or the time delay function should be differential and its derivative
is bounded. In our result, the above restricted conditions are removed for the large-scale
systems. In addition, the time delay is assumed to be any continuous function belonging
to a given interval, whichmeans that the lower and upper bounds for the time-varying de-
lay are available, but the delay function is bounded but not necessarily differentiable. This
allows the time-delay to be a fast time-varying function, and the lower bound is not re-
stricted to being zero. (ii) The developed method using new inequalities for lower bound-
ing cross terms eliminates the need for over-bounding and provides larger values of the
admissible delay bound.We propose a set of new Lyapunov-Krasovskii functionals, which
are mainly based on the information of the lower and upper delay bounds. (iii) The con-
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ditions will be presented in terms of the solution of LMIs that can be solved numerically
in an efficient manner by using standard computational algorithms [].
The paper is organized as follows. Section  presents definitions and some well-known

technical propositions needed for the proof of the main results. Main result for decen-
tralized exponential stability of large-scale systems is presented in Section . Numerical
examples showing the effectiveness of the obtained results are given in Section . The
paper ends with conclusions and cited references.

2 Preliminaries
The following notations are used in this paper. R+ denotes the set of all real non-negative
numbers; Rn denotes the n-dimensional space with the scalar product 〈·, ·〉 and the vector
norm ‖ · ‖; Mn×r denotes the space of all matrices of (n× r)-dimensions; AT denotes the
transpose of matrix A; A is symmetric if A = AT ; I denotes the identity matrix; λ(A) de-
notes the set of all eigenvalues of A; λmin/max(A) = min/max{Reλ;λ ∈ λ(A)}; C([a,b],Rn)
denotes the set of all Rn-valued differentiable functions on [a,b]; L([,∞],Rr) stands for
the set of all square-integrable Rr-valued functions on [,∞]. xt := {x(t + s) : s ∈ [–h, ]},
‖xt‖ = sups∈[–h,] ‖x(t + s)‖; C([, t],Rn) denotes the set of all Rn-valued continuous func-
tions on [, t]; matrix A is called semi-positive definite (A≥ ) if 〈Ax,x〉 ≥  for all x ∈ Rn;
A is positive definite (A > ) if 〈Ax,x〉 >  for all x 	= ; A > B means A – B > . ∗ denotes
the symmetric term in a matrix.
Consider a class of linear large-scale systems with interval time-varying delays com-

posed of N interconnected subsystems i = ,N of the form

ẋi(t) = Aixi(t) +
N∑

j 	=i,j=
Dijxj

(
t – hij(t)

)
, t ∈ R+,

xi(t) = ϕi(t), ∀t ∈ [–h, ],

(.)

where xT (t) = [xT (t), . . . ,xTN (t)], xi(t) ∈ Rni , is the state vector, the system matrices Ai, Dij

are of appropriate dimensions.
The time delays hij(·) are continuous and satisfy the following condition:

 ≤ h ≤ hij(t) < h, t ≥ ,∀i, j = ,N ,

and the initial function ϕ(t) = [ϕ(t), . . . ,ϕN (t)T ], ϕi(t) ∈ C([–h, ],Rni ), with the norm

‖ϕi‖ = sup
–h≤t≤

{∥∥ϕi(t)
∥∥,∥∥ϕ̇i(t)

∥∥}, ‖ϕ‖ =
√√√√ N∑

i=

‖ϕi‖.

Definition . Given α > . The zero solution of system (.) is α-exponentially stable if
there exists a positive number N >  such that every solution x(t,ϕ) satisfies the following
condition:

∥∥x(t,ϕ)∥∥≤Ne–αt‖ϕ‖, ∀t ∈ R+.

We end this section with the following technical well-known propositions, which will be
used in the proof of the main results.
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Proposition . For any x, y ∈ Rn and positive definite matrix P ∈ Rn×n, we have

xTy≤ yTPy + xTP–x.

Proposition . (Schur complement lemma []) Given constant matrices X , Y , Z with
appropriate dimensions satisfying X = XT ,Y = YT > . Then X +ZTY–Z <  if and only if

(
X ZT

Z –Y

)
<  or

(
–Y Z
ZT X

)
< .

Proposition . [] For any constant matrix Z = ZT >  and scalar h, h̄,  < h < h̄ such
that the following integrations are well defined, then

–
∫ t

t–h
x(s)TZx(s)ds≤ –


h

(∫ t

t–h
x(s)ds

)T

Z
(∫ t

t–h
x(s)ds

)
,

–
∫ –h

–h̄

∫ t

t+θ

x(s)TZx(s)dsdθ

≤ –


h̄ – h

(∫ –h

–h̄

∫ t

t+θ

x(s)dsdθ

)T

Z
(∫ –h

–h̄

∫ t

t+θ

x(s)dsdθ

)
.

3 Main results
In this section, we investigate the decentralized exponential stability of linear large-scale
system (.) with interval time-varying delays. It will be seen from the following theorem
that neither free-weighting matrices nor any transformation are employed in our deriva-
tion. Before introducing themain result, the following notations of severalmatrix variables
are defined for simplicity

Mi
 = AT

i Pi +AiPi + αPi

+ (Qi + Ri) – SiAi – eαhRi – eαhRi

–
(
e–βh

h – h

)
(h – h)Wi +

N∑
j 	=i,j=

PiDijDT
ij Pi

+
N∑

j 	=i,j=
SiDijDT

ij S
T
i + SiAiAT

i S
T
i,

Mi
k = –SiAi, ∀k = ,N ,

Mi
(N+) = αhRi – SiAi,

Mi
(N+) = eαhRi + SiAi,

Mi
(N+) = Si – SiAi,

Mi
(N+) =

(
e–βh

h – h

)
(h – h)Wi,

Mi
km = , ∀k 	=m,k,m = ,N ,

Mi
kk = –eαhUi – eαhUi +

N∑
j 	=i,j=

SiDijDT
ij S

T
i + I, ∀k = ,N ,
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Mi
k(N+) = eαhUi, Mi

k(N+) = eαhUi, Mi
k(N+) = Si, Mi

k(N+) = ,

Mi
(N+)(N+) = –eαhQi – eαhRi – eαhUi +

N∑
j 	=i,j=

SiDijDT
ij S

T
i,

Mi
(N+)(N+) = , Mi

(N+)(N+) = Si, Mi
(N+)(N+) = ,

Mi
(N+)(N+) = –eαhQi – eαhRi – eαhUi +

N∑
j 	=i,j=

SiDijDT
ij S

T
i,

Mi
(N+)(N+) = Si, Mi

(N+)(N+) = Si,

Mi
(N+)(N+) =

(
h + h

)
Ri + (h – h)Ui + Si + (h – h)hWi

+
N∑

j 	=i,j=
SiDijDT

ij S
T
i,

Mi
(N+)(N+) = , Mi

(N+)(N+) =
(
e–βh

h – h

)
Wi,

λi = λmin(Pi), λ = min
i=,N

λi, λ =max
i=,N

λi,

λi = λmax(Pi) + α–λmax(Qi) + hλmax(Ri)

+ (h – h)λmax(Ui) + (h – h)hλmax(Wi).

The following is the main result of the paper, which gives sufficient conditions for the
decentralized exponential stability of linear large-scale system (.) with interval time-
varying delays. Essentially, the proof is based on the construction of Lyapunov Krasovskii
functions satisfying the Lyapunov stability theorem for a time-delay system [].

Theorem . Given α > . System (.) is α-exponentially stable if there exist symmetric
positive definite matrices Pi, Qi, Ri, Ui,Wi, i = ,N , and matrices Sij, i = ,N , j = , , . . . , ,
such that the following LMI holds:

Mi =

⎡
⎢⎢⎢⎣
Mi

 Mi
 · · · Mi

(N+)
∗ Mi

 · · · Mi
(N+)

· · · · · ·
∗ ∗ · · · Mi

(N+)(N+)

⎤
⎥⎥⎥⎦ < , i = ,N . (.)

Moreover, the solution x(t,ϕ) of the system satisfies

∥∥x(t,ϕ)∥∥≤
√

λ

λ
e–αt‖ϕ‖, ∀t ∈ R+.

Proof We consider the following Lyapunov-Krasovskii functional for system (.):

V (t,xt) =
N∑
i=

∑
j=

Vij(t,xt),

http://www.advancesindifferenceequations.com/content/2013/1/332
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where

Vi = xTi (t)Pixi(t),

Vi =
∫ t

t–h
eα(s–t)xTi (s)Qixi(s)ds,

Vi =
∫ t

t–h
eα(s–t)xTi (s)Qixi(s)ds,

Vi = h
∫ 

–h

∫ t

t+s
eα(τ–t)ẋTi (τ )Riẋi(τ )dτ ds,

Vi = h
∫ 

–h

∫ t

t+s
eα(τ–t)ẋTi (τ )Riẋi(τ )dτ ds,

Vi = (h – h)
∫ –h

–h

∫ t

t+s
eα(τ–t)ẋTi (τ )Uiẋi(τ )dτ ds,

Vi =
∫ –h

–h

∫ 

θ

∫ t

t+s
eα(τ+s–t)ẋTi (τ )Wiẋi(τ )dτ dsdθ .

It is easy to verify that

N∑
i=

λi
∥∥xi(t)∥∥ ≤ V (t,xt), V (,x) ≤

N∑
i=

λi‖ϕi‖. (.)

Taking the derivative of V in t along the solution of system (.), we have

V̇i = xTi (t)Piẋi(t)

= xTi (t)
[
AT
i Pi +AiPi

]
xi(t) + xTi (t)PiDijxj

(
t – hij(t)

)
;

V̇i = xTi (t)Qixi(t) – e–αhxTi (t – h)Qixi(t – h) – αVi;

V̇i = xTi (t)Qixi(t) – e–αhxTi (t – h)Qixi(t – h) – αVi;

V̇i ≤ h ẋ
T
i (t)Riẋi(t) – he–αh

∫ t

t–h
ẋTi (s)Riẋi(s)ds – αVi;

V̇i ≤ hẋ
T
i (t)Riẋi(t) – he–αh

∫ t

t–h
ẋTi (s)Riẋi(s)ds – αVi;

V̇i ≤ (h – h)ẋTi (t)Uiẋi(t)

– (h – h)e–αh
∫ t–h

t–h
ẋTi (s)Uiẋi(s)ds – αVi;

V̇i ≤ (h – h)hẋTi (t)Wiẋi(t)

– e–βh
∫ –h

–h

∫ t

t+θ

ẋTi (s)Wiẋi(s)dsdθ – αVi.

Applying Proposition . and the Leibniz-Newton formula

∫ t

t–h
ẋi(s)ds = xi(t) – xi(t – h),
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we have

–hi
∫ t

t–hi
ẋTi (s)Riẋi(s)ds≤ –

[∫ t

t–hi
ẋi(s)ds

]T
Ri

[∫ t

t–hi
ẋi(s)ds

]

≤ –
[
xi(t) – xi(t – hi)

]TRi
[
xi(t) – xi(t – hi)

]
= –xTi (t)Rxi(t) + xTi (t)Rixi(t – hi) – xTi (t – hi)Rixi(t – hi).

Note that

∫ t–h

t–h
ẋTi (s)Uiẋi(s)ds =

∫ t–hji(t)

t–h
ẋTi (s)Uiẋi(s)ds +

∫ t–h

t–hji(t)
ẋTi (s)Uiẋi(s)ds.

Using Proposition . gives

[
h – hji(t)

]∫ t–hji(t)

t–h
ẋTi (s)Uiẋi(s)ds

≥
[∫ t–hij(t)

t–h
ẋi(s)ds

]T
Ui

[∫ t–hji(t)

t–h
ẋi(s)ds

]

≥ [xi(t – hji(t)
)
– xi(t – h)

]TUi
[
xi
(
t – hji(t)

)
– xi(t – h)

]
.

Since h – hji(t)≤ h – h, we have

[h – h]
∫ t–hji(t)

t–h
ẋTi (s)Uiẋi(s)ds

≥ [xi(t – hji(t)
)
– xi(t – h)

]TUi
[
xi
(
t – hji(t)

)
– xi(t – h)

]
,

then

– (h – h)
∫ t–hji(t)

t–h
ẋTi (s)Uiẋi(s)ds

≤ –
[
xi
(
t – hji(t)

)
– xi(t – h)

]TUi
[
xi
(
t – hji(t)

)
– xi(t – h)

]
.

Similarly, we have

– (h – h)
∫ t–h

t–hji(t)
ẋTi (s)Uiẋi(s)ds

≤ –
[
xi(t – h) – xi

(
t – hji(t)

)]TUi
[
xi(t – h) – xi

(
t – hji(t)

)]
.

Note that when hji(t) = h or hji(t) = h, we have

[
xi(t – h) – xi

(
t – hji(t)

)]T =  or
[
xi
(
t – hji(t)

)
– xi(t – h)

]
= ,

http://www.advancesindifferenceequations.com/content/2013/1/332
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respectively. Besides, using Proposition . again, we have

e–βh
∫ –h

–h

∫ t

t+θ

ẋTi (s)Wiẋi(s)dsdθ

≤ –e–βh 
h̄ – h

(∫ –h

–h̄

∫ t

t+θ

x(s)dsdθ

)T

Z
(∫ –h

–h̄

∫ t

t+θ

x(s)dsdθ

)

≤ –e–βh

h – h

(
(h – h)xi(t) –

∫ t–h

t–h
xi(θ )dθ

)T

×Wi

(
(h – h)xi(t) –

∫ t–h

t–h
xi(θ )dθ

)
.

Hence,

V̇i ≤ (h – h)hẋTi (t)Wiẋi(t) – αVi –
e–βh

h – h

(
(h – h)xi(t) –

∫ t–h

t–h
xi(θ )dθ

)T

×Wi

(
(h – h)xi(t) –

∫ t–h

t–h
xi(θ )dθ

)
.

Therefore, we have

V̇ (·) + αV (·) ≤ xTi (t)
[
AT
i Pi +AiPi + αPi + (Qi + Ri)

]
xi(t)

+ xTi (t)Pi

N∑
j 	=i,j=

Dijxj
(
t – hij(t)

)
– eαhxTi (t – h)Qixi(t – h)

– eαhxTi (t – h)Qixi(t – h) + ẋTi (t)
[(
h + h

)
Ri + (h – h)Ui

]
ẋi(t)

+ (h – h)hẋTi (t)Wiẋi(t)

– eαh
[
xi(t) – xi(t – h)

]TRi
[
xi(t) – xi(t – h)

]
– eαh

[
xi(t) – xi(t – h)

]TRi
[
xi(t) – xi(t – h)

]

– eαh
N∑

j 	=i,j=

[
xi
(
t – hji(t)

)
– xi(t – h)

]TUi
[
xi
(
t – hji(t)

)
– xi(t – h)

]

– eαh
N∑

j 	=i,j=

[
xi(t – h) – xi

(
t – hji(t)

)]TUi
[
xi(t – h) – xi

(
t – hji(t)

)]

–
e–βh

h – h

(
(h – h)xi(t) –

∫ t–h

t–h
xi(θ )dθ

)T

Wi(h – h)xi(t)

–
∫ t–h

t–h
xi(θ )dθ . (.)

By using the following identity relation:

ẋi(t) –Aixi(t) –
N∑

j 	=i,j=
Dijxj

(
t – hij(t)

)
= ,
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we have

xTi (t)Siẋi(t) – xTi (t)SiAixi(t) – xTi (t)Si
N∑

j 	=i,j=
Dijxj

(
t – hij(t)

)
= ,

xTi (t – h)Siẋi(t) – xTi (t – h)SiAixi(t) – xTi (t – h)Si
N∑

ji,j=

Dijxj
(
t – hij(t)

)
= ,

xTi (t – h)Siẋi(t) – xTi (t – h)SiAixi(t)

– xTi (t – h)Si
N∑

ji,j=

Dijxj
(
t – hij(t)

)
= , (.)


N∑

j 	=i,j=
xTi
(
t – hji(t)

)
Siẋi(t) – 

N∑
j 	=i,j=

xTi
(
t – hji(t)

)
SiAixi(t)

– 
N∑

j 	=i,j=
xTi
(
t – hji(t)

)
Si

N∑
j 	=i,j=

Dijxj
(
t – hij(t)

)
= ,

ẋTi (t)Siẋi(t) – ẋTi (t)SiAixi(t) – ẋTi (t)Si
N∑

j 	=i,j=
Dijxj

(
t – hij(t)

)
= .

Adding all the zero items of (.) into (.), we obtain

V̇ (·) + αV (·) ≤ xTi (t)
[
AT
i Pi +AiPi + αPi + (Qi + Ri) – SiAi

– eαhRi – eαhRi –
(
e–βh

h – h

)
(h – h)Wi

]
xi(t)

+ 
N∑

j 	=i,j=
DijxTi (t)[Pi – SiDij – SiAi]xj

(
t – hij(t)

)

+ xTi (t – h)
[
–eαhQi – eαhRi – eαhUi

]
xi(t – h)

+ xTi (t – h)
[
–eαhQi – eαhRi – eαhUi

]
xi(t – h)

+ ẋTi (t)
[(
h + h

)
Ri + (h – h)Ui + Si + (h – h)hWi

]
ẋi(t)

+
N∑

j 	=i,j=
xTi
(
t – hji(t)

)[
–eαhUi – eαhUi

]
xi
(
t – hji(t)

)

+ xTi (t)
[
eαhRi – SiAi

]
xi(t – h) + xTi (t)

[
eαhRi + SiAi

]
xi(t – h)

+ eαh
N∑

j 	=i,j=
xTi (t – h)Uixi

(
t – hji(t)

)

+ eαh
N∑

j 	=i,j=
xTi (t – h)Uixi

(
t – hji(t)

)

+ xTi (t)[Si – SiAi]ẋi(t) + xTi (t – h)Siẋi(t)

+ xTi (t – h)Siẋi(t) + 
N∑

j 	=i,j=
xTi
(
t – hji(t)

)
Siẋi(t)
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– 
N∑

j 	=i,j=
ẋTi (t)Sixj

(
t – hij(t)

)

– 
N∑

j 	=i,j=
xTi
(
t – hji(t)

)
SiDijxj

(
t – hij(t)

)

– 
N∑

j 	=i,j=
xTi
(
t – hji(t)

)
SiAixi(t) – xTi (t – h)Si

N∑
j 	=i,j=

Dijxj
(
t – hij(t)

)

– xTi (t – h)Si
N∑

j 	=i,j=
Dijxj

(
t – hij(t)

)

–
(∫ t–h

t–h
xi(θ )dθ

)T[(e–βh

h – h

)
Wi

](∫ t–h

t–h
xi(θ )dθ

)

+ xTi (t)
[(

e–βh

h – h

)
(h – h)Wi

](∫ t–h

t–h
xi(θ )dθ

)
.

Applying Proposition ., we obtain

xTi (t)Pi

N∑
j 	=i,j=

Dijxj
(
t – hij(t)

)≤ N∑
j 	=i,j=

xTi (t)PiDijDT
ij Pixi(t)

+
N∑

j 	=i,j=
xj
(
t – hij(t)

)Txj(t – hij(t)
)
,

–xTi (t)Si
N∑

j 	=i,j=
Dijxj

(
t – hij(t)

)≤ N∑
j 	=i,j=

xTi (t)SiDijDT
ij S

T
ixi(t)

+
N∑

j 	=i,j=
xj
(
t – hij(t)

)Txj(t – hij(t)
)
,

–ẋTi (t)Si
N∑

j 	=i,j=
Dijxj

(
t – hij(t)

)≤ N∑
j 	=i,j=

ẋTi (t)SiDijDT
ij S

T
iẋi(t)

+
N∑

j 	=i,j=
xj
(
t – hij(t)

)Txj(t – hij(t)
)
,

– xTi (t – h)Si
N∑

j 	=i,j=
Dijxj

(
t – hij(t)

)≤ N∑
j 	=i,j=

xTi (t – h)SiDijDT
ij S

T
ixi(t – h)(t)

+
N∑

j 	=i,j=
xj
(
t – hij(t)

)Txj(t – hij(t)
)
, (.)

– 
N∑

j 	=i,j=
xTi
(
t – hji(t)

)
Si

N∑
j 	=i,j=

Dijxj
(
t – hij(t)

)

≤
N∑

j 	=i,j=
xTi
(
t – hji(t)

)
SiDijDT

ij S
T
ixi
(
t – hji(t)

)
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+
N∑

j 	=i,j=
xj
(
t – hij(t)

)Txj(t – hij(t)
)
,

–xTi (t – h)Si
N∑

j 	=i,j=
Dijxj

(
t – hij(t)

)≤ N∑
j 	=i,j=

xTi (t – h)SiDijDT
ij S

T
ixi(t – h)

+
N∑

j 	=i,j=
xj
(
t – hij(t)

)Txj(t – hij(t)
)
,

–xTi (t)SiAixj
(
t – hij(t)

)≤ xTi (t)SiAiAT
i S

T
ixi(t)

+
N∑

j 	=i,j=
xj
(
t – hij(t)

)Txj(t – hij(t)
)
.

Therefore, applying inequalities (.) and noting that

N∑
i=

N∑
j=,j 	=i

xj
(
t – hij(t)

)Txj(t – hij(t)
)
=

N∑
i=

[ N∑
j=,i	=j

xi
(
t – hji(t)

)Txi(t – hji(t)
)]

,

N∑
i=

N∑
j=,j 	=i

aijxj
(
t – hij(t)

)Txj(t – hij(t)
)
=

N∑
i=

[ N∑
j=,i	=j

ajixi
(
t – hji(t)

)Txi(t – hji(t)
)]

,

we have

V̇ (·) + αV (·)

≤
N∑
i=

[
xTi (t)

[
AT
i Pi +AiPi + αPi + (Qi + Ri) – SiAi

– eαhRi – eαhRi –
(
e–βh

h – h

)
(h – h)Wi

+
N∑

j 	=i,j=
PiDijDT

ij Pi +
N∑

j 	=i,j=
SiDijDT

ij S
T
i + SiAiAT

i S
T
i

]
xi(t)

+ xTi (t – h)

[
–eαhQi – eαhRi – eαhUi +

N∑
j 	=i,j=

SiDijDT
ij S

T
i

]
xi(t – h)

+ xTi (t – h)

[
–eαhQi – eαhRi – eαhUi +

N∑
j 	=i,j=

SiDijDT
ij S

T
i

]
xi(t – h)

+ ẋTi (t)

[(
h + h

)
Ri + (h – h)Ui + Si + (h – h)hWi

+
N∑

j 	=i,j=
SiDijDT

ij S
T
i

]
ẋi(t) +

N∑
j 	=i,j=

xTi
(
t – hji(t)

)[
–eαhUi – eαhUi

+
N∑

j 	=i,j=
SiDijDT

ij S
T
i + I

]
xi
(
t – hji(t)

)

+ xTi (t)
[
eαhRi – SiAi

]
xi(t – h)

]
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+
N∑
i=

[
xTi (t)

[
eαhRi + SiAi

]
xi(t – h) + eαh

N∑
j 	=i,j=

xTi (t – h)Uixi
(
t – hji(t)

)

+ eαh
N∑

j 	=i,j=
xTi (t – h)Uixi

(
t – hji(t)

)

+ xTi (t)[Si – SiAi]ẋi(t) + xTi (t – h)Siẋi(t)

+ xTi (t – h)Siẋi(t) + 
N∑

j 	=i,j=
xTi
(
t – hji(t)

)
Siẋi(t)

– 
N∑

j 	=i,j=
xTi
(
t – hji(t)

)
SiAixi(t)

–
(∫ t–h

t–h
xi(θ )dθ

)T[(e–βh

h – h

)
Wi

](∫ t–h

t–h
xi(θ )dθ

)

+ xTi (t)
[(

e–βh

h – h

)
(h – h)Wi

](∫ t–h

t–h
xi(θ )dθ

)]

=
N∑
i=

ζT
i (t)Miζi(t),

where ζT
i (t) = [xTi (t),xTi (t – h),xTi (t – h), (xTi (t – hji))Nj 	=i,j=, ẋTi (t),

∫ t–h
t–h

xTi (θ )dθ ].
By condition (.), we obtain

V̇ (t,xt)≤ –αV (t,xt), ∀t ∈ R+. (.)

Integrating both sides of (.) from  to t, we obtain

V (t,xt)≤ V (ϕ)e–αt , ∀t ∈ R+.

Furthermore, taking condition (.) into account, we have

λ
∥∥x(t,ϕ)∥∥ ≤ V (xt) ≤ V (ϕ)e–αt ≤ λe–αt‖ϕ‖,

then

∥∥x(t,ϕ)∥∥≤
√

λ

λ
e–αt‖ϕ‖, t ∈ R+.

This completes the proof of the theorem. �

Remark . Theorem . provides sufficient conditions for linear large-scale system (.)
in terms of the solutions of LMIs, which guarantees the closed-loop system to be expo-
nentially stable with a prescribed decay rate α. The developed method using new inequal-
ities for lower bounding cross terms eliminates the need for over-bounding and provides
larger values of the admissible delay bound. Note that the time-varying delays are non-
differentiable; therefore, the methods proposed in [, , , –] are not applicable to
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system (.). LMI condition (.) depends on parameters of the system under considera-
tion as well as the delay bounds. The feasibility of the LMIs can be tested by the reliable
and efficient Matlab LMI Control Toolbox [].

4 Numerical examples
In this section, we give a numerical example to show the effectiveness of the proposed
result.

Example . This example is a large-scale model composed of two machine subsystems
as follows:

ẋ(t) = Ax(t) +Dx
(
t – h(t)

)
, t ∈ R+,

x(t) = ϕ(t), ∀t ∈ [–h, ],

ẋ(t) = Ax(t) +Dx
(
t – h(t)

)
, t ∈ R+,

x(t) = ϕ(t), ∀t ∈ [–h, ],

where the absolute rotor angle and angular velocity of the machine in each subsystem are
denoted by x = (x,x) and x = (x,x), respectively; the ith system coefficient Ai; the
modulus of the transfer admittance Dij; the initial input ϕi; the time-varying delays hij(t)
between the two machines in the subsystem:

h =

⎧⎨
⎩. + sin t if t ∈ I =

⋃
k≥[kπ , (k + )π ],

. if t ∈ R+ \ I ,

h =

⎧⎨
⎩. + . sin t if t ∈ I =

⋃
k≥[kπ , (k + )π ],

. if t ∈ R+ \ I ,

A =

(
– .
 –

)
, D =

(
–. .
. –.

)
,

A =

(
– .
 –

)
, D =

(
–. .
. –.

)
.

It is worth nothing that the delay functions h(t), h(t) are non-differentiable; therefore,
the methods in [, , , –] are not applicable to this system. By using LMI Toolbox
in Matlab [], LMIs (.) is feasible with h = ., h = ., α = ., and

P =

(
. .
. .

)
, P =

(
. .
. .

)
,

Q =

(
. –.
–. .

)
, Q =

(
. –.
–. .

)
,

R =

(
. .
. .

)
, R =

(
. .
. .

)
,

U =

(
. .
. .

)
, U =

(
. .
. .

)
,
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Figure 1 The trajectories of a solution of the linear large-scale system.

W =

(
. .
. .

)
, W =

(
. .
. .

)
,

S =

(
. .
. .

)
, S =

(
. .
. .

)
,

S =

(
. .
. .

)
, S =

(
. .
. .

)
,

S =

(
. .
. .

)
, S =

(
. .
. .

)
,

S =

(
. .
. .

)
, S =

(
. .
. .

)
,

S =

(
. .
. .

)
, S =

(
. .
. .

)
.

According to Theorem ., the system is exponentially stable. Finally, the solution x(t,ϕ)
of the system satisfies

∥∥x(t,ϕ)∥∥≤ .e–.t‖ϕ‖, ∀t ∈ R+.

Figure  shows the trajectories of x(t) and x(t) of the closed loop systemwith the initial
conditions ϕ(t) = [ ], ϕ(t) = [– ].
The trajectories of a solution of the linear large-scale system are shown in Figure , re-

spectively.

5 Conclusion
In this paper, the problem of the decentralized exponential stability for large-scale time-
varying delay systems has been studied. The time delay is assumed to be a function be-
longing to a given interval, but not necessarily differentiable. By effectively combining an
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appropriate Lyapunov functional with the Newton-Leibniz formula and free-weighting
parameter matrices, this paper has derived new delay-dependent conditions for the expo-
nential stability in terms of linear matrix inequalities, which allow simultaneous compu-
tation of two bounds that characterize the exponential stability rate of the solution. The
developed method using new inequalities for lower bounding cross terms eliminates the
need for over-bounding and provides larger values of the delay bound. Numerical exam-
ples are given to show the effectiveness of the obtained result.
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