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Abstract
In this paper we are interested in the fractional-order form of Chua’s system.
A discretization process will be applied to obtain its discrete version. Fixed points and
their asymptotic stability are investigated. Chaotic attractor, bifurcation and chaos for
different values of the fractional-order parameter are discussed. We show that the
proposed discretization method is different from other discretization methods, such
as predictor-corrector and Euler methods, in the sense that our method is an
approximation for the right-hand side of the system under study.
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Introduction
In recent years differential equations with fractional order have attracted many re-
searchers’ attention because of their applications inmany areas of science and engineering;
see, for example, [, ], and []. The need for fractional-order differential equations stems
in part from the fact that many phenomena cannot be modeled by differential equations
with integer derivatives. The fractional calculus has allowed the operations of integra-
tion and differentiation to be applied upon any fractional order. Recently, the theory of
fractional differential equations attracted many scientists and mathematicians to work on
[–]. For stability conditions and synchronization of a system of fractional-order differ-
ential equations, one can see [–].
We recall the basic definitions (Caputo) and properties of fractional order differentiation

and integration.

Definition  The fractional integral of order β ∈ R
+ of the function f (t), t > , is defined

by

Iβ f (t) =
∫ t



(t – s)β–

�(β)
f (s)ds,

and the fractional derivative of order α ∈ (n – ,n) of f (t), t > , is defined by

Dαf (t) = In–αDnf (t), D =
d
dt

.

In addition, the following results are the main ones in fractional calculus. Let β ,γ ∈ R
+,

α ∈ (, ),
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• Iβa : L → L, and if f (x) ∈ L, then Iγa Iβa f (x) = Iγ+β
a f (x).

• limβ→n Iβa f (x) = Ina f (x) uniformly on [a,b], n = , , , . . . , where Iaf (x) =
∫ x
a f (s)ds.

• limβ→ Iβa f (x) = f (x) weakly.
• If f (x) is absolutely continuous on [a,b], then limα→Dα

a f (x) =
df (x)
dx .

To solve fractional-order differential equations, there are two famous methods: fre-
quency domain methods [] and time domain methods []. In recent years it has been
shown that the second method is more effective because the first method is not always
reliable in detecting chaos [] and [].
Often it is not desirable to solve a differential equation analytically, and one turns to

numerical or computational methods.
In [], a numerical method for nonlinear fractional-order differential equations with

constant or time-varying delay was devised. It should be noticed that the fractional differ-
ential equations tend to lower the dimensionality of the differential equations in question;
however, introducing delay in differential equations makes them infinite dimensional. So,
even a single ordinary differential equation with delay could display chaos.
Dealing with fractional-order differential equations as dynamical systems is somehow

new and has motivated the leading research literature recently; see, for example, [, ]
and []. The non-local property of fractional differential equations means that the next
state of a system not only depends on its current state but also on its historical states. This
property is very close to the real world, and thus fractional differential equations have
become popular and have been applied to dynamical systems.
On the other hand, some examples of dynamical systems generated by piecewise con-

stant arguments were studied in [–].

Discretization process
In [], a discretization process is introduced to discretize the fractional-order differential
equations, and we take Riccati’s fractional-order differential equations as an example. We
noticed that when the fractional-order parameter α → , Euler’s discretization method is
obtained. In [], the same discretizationmethod is applied to the logistic fractional-order
differential equation.We concluded that Euler’smethod is able to discretize first-order dif-
ference equations; however, we succeeded in discretizing a second-order difference equa-
tion.
Here, we are interested in applying the discretization method to a system of differen-

tial equations like Chua’s system which is one of the autonomous differential equations
capable of generating chaotic behavior. This system is well known and has been studied
widely.
Let α ∈ (, ) and consider the differential equation of fractional order

Dαx(t) = f
(
x(t)

)
, t > .

x() = x, t ≤ .
()

The corresponding equation with a piecewise constant argument

Dαx(t) = f
(
x
(
r
[
t
r

]))
, x(t) = x, t ≤ . ()
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Let t ∈ [, r), then t
r ∈ [, ). So, we get

Dαx(t) = f (x), t ∈ [, r).

Thus

x(t) = x +
tα

�( + α)
f (x).

Let t ∈ [r, r), then t
r ∈ [, ). So, we get

Dαx(t) = f
(
x(r)

)
, t ∈ [r, r).

Thus

x(t) = x(r) +
(t – r)α

�( + α)
f
(
x(r)

)
.

Let t ∈ [r, r), then t
r ∈ [, ). So, we get

Dαx(t) = f
(
x(r)

)
, t ∈ [r, r).

Thus

x(t) = x(r) +
(t – r)α

�( + α)
f
(
x(r)

)
.

Repeating the process, we get when t ∈ [nr, (n + )r), then t
r ∈ [n,n + ). So, we get

Dαx(t) = f
(
xn(nr)

)
, t ∈ [nr, (n + )r).

Thus

xn+(t) = xn(r) +
(t – nr)α

�( + α)
f
(
xn(r)

)
.

Consider Chua’s dynamical system with cubic nonlinearity (see [, ])

x. = γ

(
y +



x –



x

)
,

y. = x – y + z,

z. = –βy.

()

In [], the author studied the effect of the fractional dynamics in Chua’s system. It has
been demonstrated that the usual idea of system order must be modified when fractional
derivatives are present.
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Here, we are concerned with fractional-order Chua’s system given by

Dαx(t) = γ

(
y +



x –



x

)
, ()

Dαy(t) = x – y + z, ()

Dαz(t) = –βy. ()

Actually, we are interested in discretizing fractional-order Chua’s systemwith piecewise
constant arguments given in the form

Dαx(t) = γ

(
y
(
r
[
t
r

])
+


x
(
r
[
t
r

])
–


x
(
r
[
t
r

]))
,

Dαy(t) = x
(
r
[
t
r

])
– y

(
r
[
t
r

])
+ z

(
r
[
t
r

])
,

Dαz(t) = –βy
(
r
[
t
r

])
,

()

with initial conditions x() = xo, y() = yo, and z() = zo.
The proposed discretization method has the following steps.
() Let t ∈ [, r), then t

r ∈ [, ). So, we get

Dαx(t) = γ

(
y +



x –



x

)
, t ∈ [, r),

Dαy(t) = x – y + z,

Dαy(t) = –βy,

and the solution of () is given by

x(t) = x + Iα
(

γ

(
y +



x –



x

))

= x +
(

γ

(
y +



x –



x

))∫ t



(t – s)α–

�(α)
ds

= x +
(

γ

(
y +



x –



x

))
tα

�( + α)
,

y(t) = y + Iα(x – y + z)

= y + (x – y + z)
∫ t



(t – s)α–

�(α)
ds

= y + (x – y + z)
tα

�( + α)
,

z(t) = z + Iα(–βy)

= z + (–βy)
∫ t



(t – s)α–

�(α)
ds

= z + (–βy)
tα

�( + α)
.
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() Let t ∈ [r, r), then t
r ∈ [, ). So, we get

Dαx(t) = γ

(
y(r) +



x(r) –



x(r)

)
, t ∈ [r, r),

Dαy(t) = x(r) – y(r) + z(r),

Dαy(t) = –βy(r),

and the solution of () is given by

x(t) = x(r) + Iα
(

γ

(
y(r) +



x(r) –



x(r)

))

= x(r) +
(

γ

(
y(r) +



x(r) –



x(r)

))∫ t



(t – s)α–

�(α)
ds

= x(r) +
(

γ

(
y(r) +



x(r) –



x(r)

))
tα

�( + α)
,

y(t) = y(r) + Iα
(
x(r) – y(r) + z(r)

)

= y(r) +
(
x(r) – y(r) + z(r)

)∫ t



(t – s)α–

�(α)
ds

= y(r) +
(
x(r) – y(r) + z(r)

) tα

�( + α)
,

z(t) = z(r) + Iα
(
–βy(r)

)

= z(r) +
(
–βy(r)

)∫ t



(t – s)α–

�(α)
ds

= z(r) +
(
–βy(r)

) tα

�( + α)
.

Repeating the process, we can easily deduce that the solution of () is given by

xn+(t) = xn(nr) +
(t – nr)α

�( + α)

(
γ

(
yn(nr) +



xn(nr) –



xn(nr)

))
, t ∈ [

nr, (n + )r
)
,

yn+(t) = yn(nr) +
(t – nr)α

�( + α)
(
xn(nr) – yn(nr) + zn(nr)

)
,

zn+(t) = zn(nr) +
(t – nr)α

�( + α)
(
–βyn(nr)

)
.

Let t → (n + )r, we obtain the discretization

xn+
(
(n + )r

)
= xn(nr) +

rα

�( + α)

(
γ

(
yn(nr) +



xn(nr) –



xn(nr)

))
,

yn+
(
(n + )r

)
= yn(nr) +

rα

�( + α)
(
xn(nr) – yn(nr) + zn(nr)

)
,

zn+
(
(n + )r

)
= zn(nr) +

rα

�( + α)
(
–βyn(nr)

)
,
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which can be rewritten as

xn+ = xn +
rα

�( + α)

(
γ

(
yn +



xn –



xn

))
,

yn+ = yn +
rα

�( + α)
(xn – yn + zn),

zn+ = zn +
rα

�( + α)
(–βyn).

()

Remark  It should be noticed that if α →  in (), we deduce the Euler discretization
method of Chua’s system [].

It is worth to mention here that many discretization methods, such as Euler’s method
and predictor-corrector method, have been applied to Chua’s system (). Euler’s method
discretization is an approximation for the derivative while the predictor-correctormethod
is an approximation for the integral. However, our proposed discretization method here
is an approximation for the right-hand side as it is pretty clear from formula ().

Fixed points and their asymptotic stability
Now we study the asymptotic stability of the fixed points of system () which has three
fixed points:
• fix = (, , ),
• fix = ( √

 , ,
–√
 ),

• fix = ( –√
 , ,

√
 ).

By considering a Jacobianmatrix for one of these fixed points and calculating their eigen-
values, we can investigate the stability of each fixed point based on the roots of the system
characteristic equation [].
Linearizing system () about fix yields the following characteristic equation:

P(λ) = λ +
(
s
(
 –



γ

)
– 

)
λ +

(
 – s

(
 –



γ

)
– s

(
β +



γ

))
λ

+
(
– + s

(
 –



γ

)
+ s

(
β +



γ

)
+


βγ s

)
= , ()

where s = rα
�(+α) . Let

a = s
(
 –



γ

)
– ,

a =  – s
(
 –



γ

)
– s

(
β +



γ

)
,

a = – + s
(
 –



γ

)
+ s

(
β +



γ

)
+


βγ s.

Now, let a = A, a = B, and a = C. From the Jury test, if P() > , P(–) < , and a < ,
|b| > b, c > |c|, where b =  – a, b = a – aa, b = a – aa, c = b – b , and c =
bb – bb, then the roots of P(λ) satisfy λ <  and thus fix is asymptotically stable. This
is not satisfied here since γ and β are positive and so |b| < b. That is, fix is unstable.
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Figure 1 Lyapunov characteristic exponents (LCEs) for system (8).

While linearizing system () about fix or fix yields the following characteristic equa-
tion:

F(λ) = λ +
(
s
(
 +



γ

)
– 

)
λ +

(
 – s

(
 +



γ

)
– s

(
β + γ –



γ

))
λ

+
(
– + s

(
 +



γ

)
+ s

(
β + γ –



γ

)
–


γβs

)
= . ()

We let a = s( + 
γ ) – , a =  – s( + 

γ ) – s(β + γ – 
γ ), and a = – + s( + 

γ ) +
s(β + γ – 

γ ) –

γβs. From the Jury test, if F() > , F(–) < , and a < , |b| > b,

c > |c|, where b = –a, b = a –aa, b = a –aa, c = b –b, and c =
bb – bb, then the roots of F(λ) satisfy λ <  and thus fix or fix is asymptotically
stable. We can check easily that F() < , that is, both fix and fix are unstable.

Attractors, bifurcation and chaos
Since the Lyapunov exponent is a good indicator for existence of chaos, we compute the
Lyapunov characteristic exponents (LCEs) via the householder QR based methods de-
scribed in []. LCEs play a key role in the study of nonlinear dynamical systems and they
are the measure of sensitivity of solutions of a given dynamical system to small changes
in the initial conditions. One feature of chaos is the sensitive dependence on initial con-
ditions; for a chaotic dynamical system, at least one LCE must be positive. Since for non-
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Figure 2 Strange attractor of (8) with α = 0.75, β
= 16, r = 0.01, γ = 29.5.

Figure 3 Attractor of (8) with α = 0.85, β = 16, r
= 0.01, γ = 29.5.

Figure 4 Bifurcation diagram of (8) with α = 0.75, β = 16, r = 0.01.

chaotic systems all LCEs are non-positive, the presence of a positive LCE has often been
used to help determine if a system is chaotic or not. We find that LCE = ., LCE =
–., and LCE = –.. Figure  shows the LCEs for system () for parameter val-
ues r = ., β = 

 , and α = . with initial conditions (x, y, z) = (., ., .).
On the other hand, we show some attractors of system () for different α. The numerical

experiments show that playing with the parameter α away from α = . will not produce

http://www.advancesindifferenceequations.com/content/2013/1/320
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Figure 5 Bifurcation diagram of (8) with α = 0.75, β = 16, r = 0.01.

Figure 6 Bifurcation diagram of (8) with α = 0.75, β = 100
7 , r = 0.0105.

Figure 7 Bifurcation diagram of (8) with α = 0.75, β = 16, r = 0.01.
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Figure 8 Bifurcation diagram of (8) with α = 0.85, β = 16, r = 0.01.

Figure 9 Bifurcation diagram of (8) with α = 0.95, β = 16, r = 0.01.

Figure 10 Bifurcation diagram of (8) with α = 1, β = 16, r = 0.01.
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Figure 11 Bifurcation diagram of (8) with α = 1, β = 16, r = 0.01.

Figure 12 Bifurcation diagram of (8) with α = 1, β = 16, r = 0.01.

Figure 13 Bifurcation diagram of (8) with α = 0.1, β = 16, r = 0.01.
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any bifurcation diagrams. Figures  and  show attractors of system (), while Figures -
show bifurcation diagrams for the same system.

Conclusion
A discretization method is introduced to discretize fractional-order differential equations
and we take Chua’s system with cubic nonlinearity for our purpose. We have noticed that
when α → , the discretization will be Euler’s discretization []. In addition, we carried
out the numerical simulation when α → , we did not get any bifurcation at all. Actually,
this is not surprising sincewe did the same in Rössler’s system in its discrete version.When
we contacted Prof. Dr. Rössler himself about why we were not getting any bifurcation
diagrams, he assured our results. Finally, it is not clear in this situation why the parameter
α takes one value only to produce bifurcation and chaos diagrams.
On the other hand, we show some attractors of system () for different α. The numerical

experiments show that playing with the parameter α away from α = . will not produce
any bifurcation diagrams.
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