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Abstract
In many recent works, many authors have demonstrated the usefulness of fractional
calculus in the derivation of particular solutions of a significantly large number of
linear ordinary and partial differential equations of the second and higher orders. The
main objective of the present paper is to show how this simple fractional calculus
method to the solutions of some families of fractional differential equations would
lead naturally to several interesting consequences, which include (for example) a
generalization of the classical Frobenius method. The methodology presented here is
based chiefly upon some general theorems on (explicit) particular solutions of some
families of fractional differential equations with the Laplace transform and the
expansion coefficients of binomial series.
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1 Introduction, definitions and preliminaries
In the past two decades, the widely investigated subject of fractional calculus has remark-
ably gained importance and popularity due to its demonstrated applications in numerous
diverse fields of science and engineering. These contributions to the fields of science and
engineering are based on the mathematical analysis. It covers the widely known classical
fields such as Abel’s integral equation and viscoelasticity. Also, including the analysis of
feedback amplifiers, capacitor theory, generalized voltage dividers, fractional-order Chua-
Hartley systems, electrode-electrolyte interfacemodels, electric conductance of biological
systems, fractional-order models of neurons, fitting of experimental data, and the fields of
special functions, etc. (see, for example, [–]).
In this paper, we apply the Laplace of the fractional derivative and the expansion coeffi-

cients of binomial series to derive the explicit solutions to homogeneous fractional differ-
ential equations.
We present some useful definitions and preliminaries as follows.
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Definitions
. The fractional derivative of a causal function f (t) (cf. [, ]) is defined by

dα

dtα
f (t) =

{
f (n)(t) if α = n ∈N,


�(n–α)

∫ t


f (n)(t)
(t–x)α–n+ dt if n –  < α < n,

where the Euler gamma function �(·) is defined by

�(z) =
∫ ∞


tz–e–t dt

(
R(z) > 

)
.

. The Laplace transform of a function f (t), t ∈ (,∞) is defined by

L
[
f (t)

]
(s) = F(s) =

∫ ∞


e–stf (t)dt (s ∈C).

. The Mittag-Leffler function (cf. [, ]) is defined by

Eα,β (z) =
∞∑
k=

zk

�(αk + β)
(
z,α,β ∈C,R(α) > 

)
.

. The simplest Wright function (cf. [, ]) is defined by

φ(α,β ; z) =
∞∑
k=


�(αk + β)

· z
k

k!
(z,α,β ∈ C).

. The general Wright function p�q(z) (cf. [, ]) is defined for z ∈ C, complex
ai,bj ∈ C, and real αi,βj ∈R (i = , . . . ,p; j = , . . . ,q) by the series

p�q(z) = p�q

[
(ai,αi),p
(bj,βj),q

∣∣∣∣z
]
:=

∞∑
k=

∏p
i= �(ai + αik)∏q
j= �(bj + βjk)

· z
k

k!
,

where z,ai,bj ∈ C, αi,βj ∈R, i = , , . . . ,p and j = , , . . . ,q.
. The Riemann-Liouville fractional derivatives Dα

a+y and Dα
b–y of order α ∈C

(�(α)� ) are defined by

(
Dα

a+y
)
(x) =


�(n – α)

(
d
dx

)n ∫ x

a

y(t)dt
(x – t)α–n+

(
n =

[�(α)
]
+ ;x > a

)
(.)

and

(
Dα

b–y
)
(x) =


�(n – α)

(
–
d
dx

)n ∫ b

x

y(t)dt
(t – x)α–n+

(
n =

[�(α)
]
+ ;x < b

)
, (.)

respectively, where [�(α)]means the integral part of �(α).
. The Pochhammer symbol (or the shifted factorial, since ()n = n! for

n ∈N = {, , , . . .}) (cf. []) given by

(λ)n =

{
 (n = ),
λ(λ + ) · · · (λ + n – ) (n ∈N/{}).
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. The binomial coefficients are defined by

(
λ

n

)
=

λ!
λ!(λ – n)!

=
λ(λ – )(λ – n + )

n!
,

where λ and n are integers. Observe that ! = , then

(
λ



)
= ,

(
λ

λ

)
=  and ( – z)–λ =

∞∑
r=

(λ)r
r!

zr =
∞∑
r=

(
λ + r – 

r

)
zr .

Preliminaries
. L[φ(α,β ; t)](s) = 

s Eα,β ( s ) (α > –, β ∈ C; R(s) > ).
. The Laplace transform of the generalized Wright function is given by

L
{
p�q

[
(ai,αi),p
(bj,βj),q

∣∣∣∣–t
]}

(s) =

s p+

�q

[
(, ), (ai,αi),p

(bj,βj),q

∣∣∣∣–s
]

(�(s) > 
)
, i = , , . . . ,p and j = , , . . . ,q.

. L[Dαf (t)](s) = sα[Lf (t)](s) –
∑n

k= sα–kf (k–)() (cf. []), where α > , n –  < α ≤ n
(n ∈N), f (t) ∈ Cn(,∞), f (n)(t) ∈ L(,b) for any b > .

Remark . By appropriately appealing to Definition , it is not difficult to prove Prelim-
inary  by the technique of integral transform as follows

L
[
Dαf (t)

]
(s) =

∫ ∞


e–st

[
Dαf (t)

]
dt

=
∫ ∞


e–st · 

�(n – α)

∫ t



f (n)(ζ )
(t – ζ )α–n+

dζ dt

=


�(n – α)

∫ ∞



∫ ∞

ζ

e–st · f (n)(ζ )
(t – ζ )α–n+

dt dζ

=


�(n – α)

∫ ∞


f (n)(ζ )

∫ ∞


e–s(u+ζ )un–α– dudζ

=


�(n – α)

∫ ∞


e–sζ f (n)(ζ )

∫ ∞


e–suun–α– dudζ

=


�(n – α)

∫ ∞


e–sζ f (n)(ζ )

�(n – α)
sn–α

dζ

= sα–n
∫ ∞


e–sζ f (n)(ζ )dζ = sα–nL

[
f (n)(t)

]
(s)

= sα–n
(
snL

[
f (t)

]
– sn–f () – sn–f ′() – · · · – f (n–)()

)
= sαL

[
f (t)

]
– sα–f () – sα–f ′() – · · · – sα–nf (n–)()

= sαL
[
f (t)

]
–

n∑
k=

sα–kf (k–)().

The interchange of the order of integration in the above derivation can be justified by
applying Fubini’s theorem.
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2 Solutions of the fractional differential equations
Throughout this section, we let y(t) be such that for some value of the parameter s, the
Laplace transform L[y] converges.

Theorem . Let  < α <  and a,b ∈R. Then the fractional differential equation

y′′(t) + ay(α)(t) + by(t) =  (.)

with the initial conditions y() = c and y′() = c has its solution given by

y(t) = c
∞∑
k=

(–b)ktk

k!

∞∑
r=

�(r + k + )(–at–α)r

�[( – α)r + k + ]r!

+ c
∞∑
k=

(–b)ktk+

k!

∞∑
r=

�(r + k + )(–at–α)r

�[( – α)r + k + ]r!

+ ac
∞∑
k=

(–b)ktk–α+

k!

∞∑
r=

�(r + k + )(–at–α)r

�[( – α)r + k – α + ]r!

+ ac
∞∑
k=

(–b)ktk–α+

k!

∞∑
r=

�(r + k + )(–at–α)r

�[( – α)r + k – α + ]r!
. (.)

Proof Applying the Laplace transform (see Preliminary ) and taking into account, we
have

sL[y] – cs – c + asαL[y] – acsα– – acsα– + bL[y] = . (.)

Equation (.) yields

L[y] = cs + c + acsα– + acsα–

s + asα + b

= c
∞∑
k=

(–b)k
∞∑
k=

(
k + r
r

)
(–a)rs(α–)r–k–

+ c
∞∑
k=

(–b)k
∞∑
k=

(
k + r
r

)
(–a)rs(α–)r–k–

+ ac
∞∑
k=

(–b)k
∞∑
k=

(
k + r
r

)
(–a)rs(α–)r–k+α–

+ ac
∞∑
k=

(–b)k
∞∑
k=

(
k + r
r

)
(–a)rs(α–)r–k+α–, (.)

since


s + asα + b

=
s–α

s–α + a + bs–α
=

s–α

(s–α + a)( + bs–α

s–α+a )

=
s–α

s–α + a

∞∑
k=

(
–bs–α

s–α + a

)k

=
∞∑
k=

(–b)ks–αk–α

(s–α + a)k+
=

∞∑
k=

(–b)ks–k–

( + asα–)k+
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=
∞∑
k=

(–b)ks–k–
∞∑
r=

(
–asα–

)r(k + r
r

)

=
∞∑
k=

(–b)k
∞∑
r=

(
k + r
r

)
(–a)rs(α–)r–k–. (.)

Thus, from Equation (.), we derive the following solution by the inverse Laplace trans-
form to Equation (.):

y(t) = c
∞∑
k=

(–b)k

k!

∞∑
r=

(k + r)!(–a)r

�[( – α)r + k + ]
· t

(–α)r+k

r!

+ c
∞∑
k=

(–b)k

k!

∞∑
r=

(k + r)!(–a)r

�[( – α)r + k + ]
· t

(–α)r+k+

r!

+ ac
∞∑
k=

(–b)k

k!

∞∑
r=

(k + r)!(–a)r

�[( – α)r + k – α + ]
· t

(–α)r+k–α+

r!

+ ac
∞∑
k=

(–b)k

k!

∞∑
r=

(k + r)!(–a)r

�[( – α)r + k – α + ]
· t

(–α)r+k–α+

r!

= c
∞∑
k=

(–b)ktk

k!

∞∑
r=

�(r + k + )(–at–α)r

�[( – α)r + k + ]r!

+ c
∞∑
k=

(–b)ktk+

k!

∞∑
r=

�(r + k + )(–at–α)r

�[( – α)r + k + ]r!

+ ac
∞∑
k=

(–b)ktk–α+

k!

∞∑
r=

�(r + k + )(–at–α)r

�[( – α)r + k – α + ]r!

+ ac
∞∑
k=

(–b)ktk–α+

k!

∞∑
r=

�(r + k + )(–at–α)r

�[( – α)r + k – α + ]r!
. �

Example . The fractional differential equation of a generalized viscoelastic free damp-
ing oscillation (cf. [])

y′′(t) + ay(

 )(t) + by(t) =  (.)

with the initial conditions y() = c and y′() = c has its solution given by

y(t) = c
∞∑
k=

(–b)ktk

k!

∞∑
r=

�(r + k + )(–at 
 )r

�[  r + k + ]r!

+ c
∞∑
k=

(–b)ktk+

k!

∞∑
r=

�(r + k + )(–at 
 )r

�[  r + k + ]r!

+ ac
∞∑
k=

(–b)ktk+ 


k!

∞∑
r=

�(r + k + )(–at 
 )r

�[  r + k + 
 ]r!

+ ac
∞∑
k=

(–b)ktk+ 


k!

∞∑
r=

�(r + k + )(–at–α)r

�[( – α)r + k + 
 ]r!

. (.)
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In particular, if a =
√
 and b = , then the equation

y′′(t) +
√
y(


 )(t) + y(t) =  (.)

with the initial conditions y() = c and y′() = c has its solution given by

y(t) = c
∞∑
k=

(–)ktk

k!

∞∑
r=

�(r + k + )(–
√
t 

 )r

�[  r + k + ]r!

+ c
∞∑
k=

(–)ktk+

k!

∞∑
r=

�(r + k + )(–
√
t 

 )r

�[  r + k + ]r!

+
√
c

∞∑
k=

(–)ktk+ 


k!

∞∑
r=

�(r + k + )(–
√
t 

 )r

�[  r + k + 
 ]r!

+
√
c

∞∑
k=

(–)ktk+ 


k!

∞∑
r=

�(r + k + )(–
√
t 

 )r

�[ r + k + 
 ]r!

. (.)

Theorem . Let  < α <  and a,b ∈R. Then the fractional differential equation

y(α)(t) + ay′(t) + by(t) =  (.)

with the initial conditions y() = c and y′() = c has its solution given by

y(t) = c
∞∑
k=

(–b)k

k!

∞∑
r=

�(r + k + )(–a)rt(α–)r+αk

�[(α – )r + αk + ]r!

+ c
∞∑
k=

(–b)k

k!

∞∑
r=

�(r + k + )(–a)rt(α–)r+αk+

�[(α – )r + αk + ]r!

+ ac
∞∑
k=

(–b)k

k!

∞∑
r=

�(r + k + )(–a)rt(α–)r+αk+α–

�[(α – )r + αk + α]r!
. (.)

Proof Applying the Laplace transform (see Preliminary ) and taking into account, we
have

sαL[y] – sα–y() – sα–y′() + asL[y] – ay′() + bL[y] = .

That is,

(
sα + as + b

)
L[y] = csα– + csα– + ac. (.)

Equation (.) yields

L[y] = csα– + csα– + ac
sα + as + b

= c
∞∑
k=

(–b)k
∞∑
k=

(
k + r
r

)
(–a)rsr–αr–αk–
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+ c
∞∑
k=

(–b)k
∞∑
k=

(
k + r
r

)
(–a)rsr–αr–αk–

+ ac
∞∑
k=

(–b)k
∞∑
k=

(
k + r
r

)
(–a)rsr–αr–αk–α , (.)

since


sα + as + b

=
s–

sα– + a + bs–
=

s–

(sα– + a)( + bs–
sα–+a )

=
s–

sα– + a

∞∑
k=

(–)k
(

bs–

sα– + a

)k

=
∞∑
k=

(–b)ks–k–

(sα– + a)k+
=

∞∑
k=

(–b)ks–αk–α

( + as–α)k+

=
∞∑
k=

(–b)ks–αk–α

∞∑
r=

(
k + r
r

)(
–as–α

)r

=
∞∑
k=

(–b)k
∞∑
r=

(
k + r
r

)
(–a)rsr–αr–αk–α . (.)

Thus, from Equation (.), we derive the following solution by the inverse Laplace trans-
form to Equation (.):

y(t) = c
∞∑
k=

(–b)k

k!

∞∑
r=

�(r + k + )(–a)r

�[(α – )r + αk + ]
· t

(α–)r+αk

r!

+ c
∞∑
k=

(–b)k

k!

∞∑
r=

�(r + k + )(–a)r

�[(α – )r + αk + ]
· t

(α–)r+αk+

r!

+ ac
∞∑
k=

(–b)k

k!

∞∑
r=

�(r + k + )(–a)r

�[(α – )r + αk + α]
· t

(α–)r+αk+α–

r!
.

This solution can be expressed by the Wright function as

y(t) = c
∞∑
k=

(–b)ktαk

k! �

[
(k + , )

(αk + ,α – )

∣∣∣∣–atα–
]

+ c
∞∑
k=

(–b)ktαk+

k! �

[
(k + , )

(αk + ,α – )

∣∣∣∣–atα–
]

+ ac
∞∑
k=

(–b)ktαk+α–

k! �

[
(k + , )

(αk + α,α – )

∣∣∣∣–atα–
]
. �

Example . If we let α = 
 , a = – and b = – in Theorem ., then the equation

y(

 )(t) – y′(t) – y(t) = 

http://www.advancesindifferenceequations.com/content/2013/1/137
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has a solution

y(t) = c
∞∑
k=

k

k!

∞∑
r=

�(r + k + )t r
 +


 k

�( r +

k + )r!

+ c
∞∑
k=

k

k!

∞∑
r=

�(r + k + )t r
 +


 k+

�( r +

k + )r!

– c
∞∑
k=

k

k!

∞∑
r=

�(r + k + )t r
 +


 k+




�( r +

k +


 )r!

.

Theorem . Let  < α <  and b ∈R. Then the equation

y(α)(t) – by(t) =  (.)

with the initial condition y() = c has its solution given by

y(t) = c
∞∑
k=

(btα)k

�(αk + )

= cEα,
(
btα

)
. (.)

Proof Applying the Laplace transform to Equation (.), that is,

sαL[y] – csα– – bL[y] = ,

we have

L[y] = csα–

sα – b
=

cs–

 – bs–α
= cs–

∞∑
k=

(
bs–α

)k = c
∞∑
k=

bks–αk–,

y(t) = c
∞∑
k=

(btα)k

�(αk + )
= cEα,

(
btα

)
. �

Remark . If a =  in Equation (.), then the equation

yα(t) + by(t) = ,  < α ≤  (.)

with the initial conditions y() = c and y′() = c has its solution given by

y(t) = c
∞∑
k=

(–btα)k

�(αk + )
+ ct

∞∑
k=

(–btα)k

�(αk + )

= cEα,
(
–btα

)
+ ctEα,

(
–btα

)
. (.)

Theorem . A nearly simple harmonic vibration equation (cf. [])

yα(t) +wy(t) = ,  < α ≤  (.)

http://www.advancesindifferenceequations.com/content/2013/1/137
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with the initial conditions y() = c and y′() = c has its solution given by

y(t) = cEα,
(
–wtα

)
+ ctEα,

(
–wtα

)
. (.)

Proof We complete this proof by putting b = w in Equation (.). �

In fact, by applying the Laplace transform to a linear fractional differential equationwith
the initial conditions, we can easily derive its solutions as the previous forms in this paper.
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