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Abstract

This paper reveals a computational method based using a tau method with Jacobi
polynomials for the solution of fuzzy linear fractional differential equations of order

0 <v< 1. Asuitable representation of the fuzzy solution via Jacobi polynomials
diminishes its numerical results to the solution of a system of algebraic equations. The
main advantage of this method is its high robustness and accuracy gained by a small
number of Jacobi functions. The efficiency and applicability of the proposed method
are proved by several test examples.
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1 Introduction

Recently, the enormous number of applications in the field of fractional calculus and frac-
tional differential equations has been visualized. Fractional differential equations provide
an outstanding instrument to describe the complex phenomena in fields of viscoelastic-
ity, electromagnetic waves, diffusion equations and so on [1-5]. Moreover, the fractional
order models of real systems are more sufficient in comparison with the integer order
cases. Therefore, the field of fractional calculus has motivated the interest of researchers
in various fields like physics, chemistry, engineering and even finance [6-10].

Finding a high accurate and efficient numerical method has become a significant re-
search due to except for a few number of these equations, there exists difficulty to
find the exact solution of fractional differential equations (FDEs). Consequently, various
numerical methods have appeared to approximate reasonably the analytical solutions.
These methods are such as the predictor corrector method [11], Adomian decomposi-
tion method (ADM) [12-15], variational iteration method (VIM) [16, 17] and homotopy
analysis method (HAM) [18, 19].

Orthogonal functions have received noticeable consideration in dealing with various
problems. The main advantage behind the approach using this method is that it reduces
these problems to those of solving a system of algebraic equations leading to simplify the
original problem clearly. Saadatmandi and Dehghan [20] presented a shifted Legendre tau
method with an operational matrix for the numerical solution of a multilinear and nonlin-
ear fractional differential equation. Esmaeili et al. [21] introduced a direct method using
the collocation method and Miintz polynomials for the solution of FDEs. Consequently,
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the operational matrix of the other orthogonal polynomials has been derived for solv-
ing FDEs with boundary conditions and initial conditions, like Chebyshev polynomials
[22, 23], Laguerre series [24], fractional Legendre polynomials [25], generalized hat basis
functions [26] and Jacobi polynomials [27, 28].

The study of fuzzy differential equations (e.g., in this contribution, we consider fuzzy
fractional differential equation) creates a suitable setting for mathematical modeling of
real-world problems in which uncertainties or vagueness penetrate. A comprehensive ap-
proach to this kind of equations has been considered by Seikkala [29] and Kaleva [30].
Despite the vast applications of the H-derivative introduced by them, due to an important
drawback in this kind of derivative, Bede and Gal [31] introduced strongly generalized
differentiability and followed up by the authors in [32, 33]. Actually, strongly generalized
differentiability can be applied for a more enormous class of fuzzy differential equations
than Hukuhara differentiability.

Recently, some attempts have been made for solving fuzzy fractional differential equa-
tions (FFDEs) that Agarwal et al. was a pioneer [34]. They considered the solution
of FFEDs under Riemann-Liouville’s differentiability. Also, Salahshour et al. [35] stud-
ied the existence, uniqueness and approximate solutions of (FFDEs) under Caputo’s
H-differentiability. Afterward, Mazandarani, Vahidian Kamyad [36] applied the frac-
tional Euler method for FFDEs under Caputo-type differentiability and Salahshour et al.
[37] extended fuzzy Laplace transforms for solving FFDEs under the Riemann-Liouville
H-derivative.

Our main motivation for preparing this paper is to generalize shifted Jacobi function op-
erational matrix for solving fuzzy fractional differential equations of order 0 < v <1 under
Caputo’s H-differentiability. We introduce a suitable way to approximate fuzzy solution
of linear fuzzy fractional differential equations by means of shifted Jacobi functions based
on the fuzzy residual of the problem in which the Jacobi operational matrix is introduced
to be applied in the derivation of the proposed method. Another motivation is that the
approximate solution based on the shifted Jacobi polynomials, Pga’ﬂ )(x) (i>0,a,8>-1),
can be obtained in terms of the Jacobi parameters « and 8. Therefore, instead of using
with particular indexes, the solution can be derived generally to extend for other requests.

The paper organized as follows. In Section 2, we present some relevant properties of
fuzzy sets, fuzzy differential equations and Jacobi polynomials with its error bound for
approximate function accompanied by some details of JOM based on shifted Jacobi poly-
nomials in crisp concept. Also, Caputo type derivative definition and its properties in the
crisp sense is considered in this section. Some basic concepts of fuzzy fractional deriva-
tives are explained in Section 3. Section 4 is devoted to the fuzzy approximation function
using shifted Jacobi polynomials. Additionally, the Jacobi operational matrix (JOM) based
on shifted Jacobi polynomials is extended for solving FFDEs in this section. Several ex-
amples are experienced to depict the effectiveness of the proposed method in Section 5.
Finally, some conclusions are drawn in Section 6.

2 Preliminaries
Let us denote by E the class of fuzzy subsets u of the real axis R (i.e. u : R — [0, 1] satisfying
the following properties):

(i) u is upper semicontinuous,

(ii) u is fuzzy convex, i.e., u(Ax + (1 — A)y) > min{u(x), u(y)} for all x,y e R, A € [0,1],
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(iii) # is normal, i.e., 3xg € R for which u(xy) =1,
(iv) suppu = {x € R|u(x) > 0} is the support of the u, and its closure cl(supp u) is
compact.
Then E is called the space of fuzzy real numbers and any # € E is called fuzzy real number
(see, e.g, [38]).
The «-level set of a fuzzy number # € E, 0 < r <1, denoted by [u]’, is defined as
) xeRulx) >r} if0<r<1,
[lr = cl(supp u) ifr=0.

It is clear that the r-level set of a fuzzy number is a closed and bounded interval [, 4" ],
where #” denotes the left-hand endpoint of [#]" and /. denotes the right-hand endpoint
of [u]”. Since each y € R can be regarded as a fuzzy number y defined by

3 1 ift=y,
=1 7
0 ift+y,

R can be embedded in E.
The addition and scaler multiplication of fuzzy number in E are defined as follows:

1) udv=(u_+v_,u, +v_),

- aul, ul), A>0,
@) Gow=] et
(Aul,Au”), A<O.

We can define a matrix D on E (D: E x E — R, U 0) by a distance which is so-called
Hausdorff distance as follows:

u, —v,|}.

D(u,v) = sup max{|ui e
re(0,1]

’

Then the following properties are known (see [38, 39]):
(i) D(z®w,ve®w)=Du,v),Vu,v,w € E,
(i) Dtk © u,k ©V) = |k|D(11,v), Vk € R, i1,V € E,
(i) D v,wde) <D(u,w)+D(,e), Vu,v,w e E,
(iv) D(@ +7,0) < D(u,0) + D(v,0), Vu,v € E,
(v) (E,D) is a complete metric space.

Definition 1 ([40]) Letf and g be the two fuzzy-number-valued functions on the interval
la,b],ie., f,g:[a,b] — E. The uniform distance between fuzzy-number-valued functions
is defined by

D'(f,g):= sup D(f(x),g(x)). 1)

x€la,b]

Remark1 ([39]) Letf :[a,b] — E be fuzzy continuous. Then from property (iv) of Haus-
dorff distance, we can define

, [ﬂ(x) }, Vx € [a,D].

D(f(x),0) = sup max{|f(x)
re(0,1]

Page 3 of 29
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Definition 2 ([30]) Let x,y € E. If there exists z € E such that x = y @ z, then z is called
the H-difference of x and y, and it is denoted by x © y.

In this paper, the sign ‘©’ always stands for H-difference and note that x ® y # x + (-y).
Also, throughout of paper is assumed the Hukuhara difference and generalized Hukuhara
differentiability are existed.

Definition 3 ([41]) The generalized difference (g-difference for short) of two fuzzy num-
bers u,v € E is given by the expression

[u g V]y = [522 min{u; — Vg, Up — VE}’ZgEmaX{uE — Vg, Up — vg}]

Proposition 1 ([41]) For any fuzzy numbers u,v € E the g-difference u O, v exists and it is
a fuzzy number.

In this paper, we consider the definition of fuzzy differentiability presented by Bede and
Gal in [32].

Definition 4 ([32]) Letf:(a,b) — E and x¢ € (a, b). We say that f is strongly generalized
differential at xy. If there exists an element f'(x) € E, such that
(i) forall &> 0 sufficiently small, 3f (xo + &) © f(x0), If (x0) © f (%0 — /1) and the limits
(in the metric d)

) _ fx),

lim flxo + h) © f(x0) ~ lm fxo) ©f(xo —h
h—0t h h—0t h

(ii) for all /2 > 0 sufficiently small, 3f (xo) © f (%0 + /), If (xo — h) © f(x0) and the limits
(in the metric d)

lim fo)ofxo+h) _ lim Sxo = h) © f(x0)
h—0* —h h—0* —h

zf,(xo)r

(ili) for all &> 0 sufficiently small, 3f (xo + /) © f(x0), If (x0 — 1) © f(x0) and the limits
(in the metric d)

lim fxo+h) S f(x0) _ lim S(xo —h) © f(x0)
h—0* h h—0* —h

=f,(x0)r

(iv) for all &1 > 0 sufficiently small, If (x0) © f(x0 + &), If (x0) © f(x0 — /1) and the limits
(in the metric d)

lim S(xo0) ©f (%o + h) - Im f(x0) ©f (w0 — h)
h—0* —h h—>0* h

= f' (o).

Remark 2 f is so-called (1)-differentiable on (a, b), if f is differentiable in the sense (i) of
Definition 4 and also f is (2)-differentiable on (a, b), if f is differentiable in the sense (ii) of
Definition 4.

The following theorem was proved by Chalco-Cano and Romdan-Flores [42] based on
Definition 4.


http://www.advancesindifferenceequations.com/content/2013/1/104

Ahmadian et al. Advances in Difference Equations 2013, 2013:104 Page 5 of 29
http://www.advancesindifferenceequations.com/content/2013/1/104

Theorem 1 (see [42]) Let F: (a,b) — E be a function and denote [F(t)]" = [f,(¢),g-(¢)], for
each r € [0,1]. Then:
(1) IfF is (1)-differentiable, then f,(t) and g.(t) are differentiable functions and

[F©] = [ ©.g0]

(2) IfF is (1)-differentiable, then f,.(t) and g.(t) are differentiable functions and

[F®] = [g®.£®)]

Theorem 2 (see [43]) Let f(x) be a fuzzy-valued function on [a,00) and it is repre-
sented by (f'(x),fI(x)). For any fixed r € [0,1], assume (f'(x) and f](x)) are Riemann-
integrable on [a, b] for every b > a, and assume there are two positive M and M’ such
that fab If"(x)| dx < M" and fab IfI ()| dx < M, for every b > a. Then f(x) is improper fuzzy
Riemann-integrable on [a, 00) and the improper fuzzy Riemann-integral is a fuzzy number.
Furthermore, we have

f:of(x) dx = |:/aoof_r(x) dx,me:(x) dxi|'

Definition 5 ([39]) f(x): [a,b] — E. We say that f fuzzy-Riemann integrable to I € E, if
for any € > 0, there exists § > 0 such that for any division P = {[u, v];§} of [a, D] with the
norms A(P) < §, we have

D(Z*(u— v) Of((),l) <e,
P

where Y~ " means addition with respect to @ in E

b
I:= (FR)/ f(x)dx.
We also call an f as above (FR)-integrable.
Definition 6 ([44]) Consider the # x n linear system of equations:

anxi +dpXxy + -+ dipXy = Y1,

anxy t+axpXxz + -+ dopXy = Y2,

(2)
amX1 + AnaXo + -+ + AppXn = Yn-
The matrix form of the above equations is
AX =Y, 3)

where the coefficient matrix A = (a;), 1 < i,j < n is a crisp #n x n matrix and y; € E,
1 <i < n. This system is called a fuzzy linear system (FLS).
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Definition7 ([44]) A fuzzy number vector (x1,%3,...,%,)" givenbyx; = (x/",%/,),1 <i<n,
0 <r <1is called a solution of the fuzzy linear system (2) if
n r n n r
<Z “M) =Y (agm) =/, (Z a,»,x,) =
j=1 — j=1 j=1

n
Z(“i]‘xj): = yii.
j=1

+

If for a particular k, ay; > 0, 1 <j < n, we simply get

n n
Yagx =yl D aux =y
j=1 J=1
To solve fuzzy linear systems, one can refer to [44, 45].

Now, we review some basic definitions of fractional integral and derivative, especially
Caputo type, with their properties presented in crisp context [6, 46].

Remark 3 The fuzzy fractional derivative, in this paper, is assumed in the Caputo sense.
The reason for adopting the Caputo definition, as pointed by Momani and Noor [47], is as
follows: to solve differential equations (both classical and fractional), we need to specify
additional conditions in order to produce a unique solution. Therefore, for the case of the
fuzzy Caputo fractional differential equations, these additional conditions are just the tra-
ditional conditions, which are akin to those of classical fuzzy differential equations, and
are therefore familiar to us. In contrast, for the fuzzy Riemann-Liouville fractional differ-
ential equations, these additional conditions constitute certain fuzzy fractional derivatives
(and/or integrals) of the unknown solution at the initial point x = 0, which are functions
of x. These fuzzy initial conditions are not physical like in the crisp concept; furthermore,
it is not clear how such quantities are to be measured from experiment, say, so that they
can be appropriately assigned in an analysis. See more details in [35, 37, 48].

Definition 8 ([46]) The Riemann-Liouville fractional integral operator of order v, v> 0

is defined as

o L[S
(ff)(x)—r(v) A (x_t)l—vd

I°f (%) = f (%)

t, v>0,x>0,

Definition 9 ([6]) The Caputo fractional derivatives of order v is defined as

D'f(x) =I""D"f(x) = 1 ) /x (k=" Y"™)dt, m-1<v<mux>0,
0

Fm-v
where D™ is the classical differential operator of order m.

For the Caputo derivative, we have:

‘D'C =0 (Cisa constant),

0, for B € Ny and 8 < [v],

cpY B —
¥ Flzléfi{i)v)xﬂ’v, foreNgand 8> [vlorB¢Nand 8> v].
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The ceiling function [v] is used to denote the smallest integer greater than or equal to
v, and the floor function |v| to denote the largest integer less than or equal to v. Also
N={1,2,...}and No = {0,1,2,...}.

Definition 10 ([48]) Similar to the differential equation of integer order, the Caputo’s

fractional differentiation is a linear operation, i.e.,

D’ (Af (%) + ug(x)) = A°D’f (x) + u°D*g(x),
where X and u are constants.
Definition 11 ([49]) A classical (crisp) set is normally defined as a collection of elements
or objects x € X which can be finite, accountable, or overcountable. Each single element
can either belong to or not belong to a set A, A C X while in a fuzzy set (subset) elements

of the set have a degree of membership in the set.

Remark 4 Throughout the paper, we use the crisp context frequently, regarding to Defi-

nition 11.

2.1 Jacobi polynomials
The Jacobi polynomials, denoted by J,; #(2), are orthogonal with Jacobi weight function:
w(z) = (1 - 2)%(1 + z)? over [-1,1], namely [50, 51],

1
/ JEB TP QYw(2) dz = 1 S
|

where §,,,, is the Kronecker function and

2098 M+ + DT (n+ B +1)
u+a+B+)nTm+a+pB+1)

vl =

Also, the Jacobi polynomials can be created by means of the following recurrence formula:

(a+B+2i-D{e?—p2+tla+B+2)(a+B+2i-2)} wp
2ila+ f+ i)t p+2i-2) Ji @
(@+i-1)(B+i-1)(a+ B +2i)

e+ B+ia+B+2i-2)

P (@) =

1P (),

fori=2,3,..., where ]é“’ﬂ)(z) =1, and ]l(“’ﬁ)(z) = %‘mz + # In order to use these poly-
nomials on the interval x € [0, 1], we define the so-called shifted Jacobi polynomials by in-
troducing the change of variable z = 2x — 1. Let the shifted Jacobi polynomials ],5“"3 )(2x -1)
be denoted by Pga‘ﬁ )(x). The shifted Jacobi polynomials are orthogonal with respect to the
weight function w(®#)(x) = (1 — x)4” in the interval [0, 1] with the orthogonality property

1
| Bt e @) ds = 75,0,
0
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at which v2?5,,,, = y# /2%+8+1, The analytic form of the shifted Jacobi polynomials P?’ﬁ (%)
of degree i is acquired by
” ! ix TE+B+D)I(i+k+a+p+1)
PP =3 (1) , e
F'k+B+1D)(i+a+pB+1)(i-k)k!

k=0

T@E+B+1) Ii+o+1)

(e,B) i (,8)

P 0)=0-1)————, P )= ——F-—.

0" (=D (B +1)i! 1o [« +1)i!

Also, the shifted Jacobi polynomial can be stated by the following concise form.

Lemma 1 ([28]) The shifted Jacobi polynomial pt )(x) can be obtained in the form of
PeP(x) =Y " PP,
i=0

in which P" are

P = (-1 (’”"‘fﬁ”) ("”") i=0,1,...,n.
l n-—1

Lemma 2 ([28]) Forv>0
1 j )
/ x"P}“’ﬁ)(x)w(“’ﬂ)(x) dx = ZP;’)B(V +l+B+La+1),
0 1=0
in which B(s, t) is the Beta function and stated as

[(s)I'(2)
C(s+¢)

1
B(s,t) = / vria-v)ldv=
0

Let 2 =(0,1) and {Pl(a’ﬁ )(x)}fﬁo generate the space P"+1# A function f belonging to
L2(S2), can be expanded in P""*1*# by

f@) =" 6P (),

i=0

where the coefficients 6; are gained by

1
b, / PP f W P () dx, i=0,1,....
0

T B
V;

Realistically, only the first (m + 1)-terms shifted Jacobi polynomials are considered. Then
we have

m

F@®) = fu®) =Y 0P () = 0T 0 (), (4)

i=0
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that

@ = [90y9h~~19m]T7

o, o, « T
@) = [Py" (%), PP (), ., PeP ()]

Regarding to P”"*1*# as a finite dimensional vector space, f has a unique best approxima-
tion from P18 say £ (x) € P"*L%F that is,

Vy e PR f() ~ )], < [F0) -y,

So, the following lemma provides the upper bound of approximate function f,,,; (x) using
shifted Jacobi polynomials. This error bound proves that the approximate function f,,(x)

converges to f(x) based on shifted Jacobi polynomials.
Lemma 3 ([28]) Let the function f : [xo,1] — R be m + 1 times continuously differentiable

for xo > 0, f € C"*[xg,1], and PP = Span{PE“’ﬁ)(x)}i”‘zo. Iff,, = ©T d(x) is the best ap-

proximation to f from P V%P then the error bound is presented as follows:

MSWH—l
lf@®) =fu@®)|, < ——=VBl@+1B+1),

Y= (m+1)!

that M = maXye[xo1f " (x) and S = max{1 — xo, %o}

2.2 Operational matrix of Caputo’s derivative of order v

In this section, the Jacobi operational matrix method based on the Caputo-type fractional
derivative with using shifted Jacobi polynomials is explained. Afterward, an upper bound
for the absolute error between the exact and approximate values of Caputo fractional

derivative operator is provided (for more details, see [27, 28]).

Lemma 4 ([27]) Let ®(x) be shifted Jacobi vector defined in Eq. (4) and also let v > 0. Then
D'®(x) ~ DV d(x), (5)

where DY) is (m + 1) x (m + 1) operational matrix of derivatives of order v in the Caputo

sense and is defined by:
0 0 0 0
0 0 o o
por_ [ A0 AL A0 - AWLN) |
MGO AGD  AGD - AGN)
AV(I;}’I, 0) AV(I./H, 1) AV(;n, 2) Av(r;q, m)
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where
i
Aif) =) S
k=[v]

and 8y is given by

DTG+ B+ DTG+ B+ D) (i+k+a+ B +1)
yIlG+k+a+B+DIk+B+ DT (i+a+B+DI(k—v+1)(i-k)!

Sijk =

L (L1 TG+ l+a+ B+ D@+ DI+ k+B—v+1)
XIZ TU+B+ D) U+k+a+B-v+2)(- DUl

Note that in DY), the first [v] rows, are all zeros.

Now, the following lemma gives us an upper bound for error estimation of Caputo
derivative operator mentioned in Lemma 4. But initially, we define the error vector E,
as:

E,=D'® -DY® =[Ey,, Eyyr..., Em]”,

where

m
Eiy =D'PEP ) = Y DYPP (), k=0,1,...,m.
j=0

Lemma 5 Ifthe error function of Caputo fractional derivative operator for Jacobi polyno-
mials Ey, : [x9,1] — R is m + 1 times continuously differentiable for 0 < xy < x, x € (0,1].
Also Ey,, € C"™*1[x0,1] and v < m + 1 then the error bound is gained as follows:

x5” k+p
Erpllw < ——— 2 (S)™! Bla+1,8+1). 6
Bl < (o= © ( i )\/ @+1,6+1) (6)
Proof Analogously to the demonstration of Lemma 5 in [28], we can prove this lemma.

O

Therefore, the maximum norm of error vector E, is achieved as

Evlloo =

v i [Mm+1+8
s () 1( )\/B(a+l,ﬂ+1), B=>0,
m(S)MJrI,/B(a + 1 ,B + 1) ﬂ <0.

3 Fuzzy Caputo-type fractional differentiability

The fuzzy fractional differentiability of order 0 < v < 1, particularly Caputo type, is con-

sidered in this section. Some basic definitions and theorems are given and introduced the

necessary notation, which will be used in the rest of paper. See, for example, [34, 35, 37].
At first, some notations are presented which are put to use throughout the remaining

sections. It is easy to find these notations in the crisp sense. See [46, 48].
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¢ LE(a, b),1 <p < o is the set of all fuzzy-valued measurable functions f on [a, b] where

U1 = (o @(f@),0) do)r.

¢ CEla,b] is a space of fuzzy-valued functions, which are continuous on [a, b].

¢ CEla, b] indicates the set of all fuzzy-valued functions, which are continuous up to or-
der n.

¢ ACF[a, b] denotes the set of all fuzzy-valued functions, which are absolutely continuous.

Definition 12 ([37]) Letf € C*NLy, the Riemann-Liouville integral of fuzzy-valued func-
tion f is as follows:

d
N0 [ L5 v %

To specify the fuzzy Riemann-Liouville integral of fuzzy-valued function f based on the
lower and upper functions, the following definition is determined.

Definition 13 ([37]) Letf € C*N Lf, the parametric form of the Riemann-Liouville inte-
gral of fuzzy-valued function f can be expressed by

s [ LT LY R )
(/) (x)_[f‘(l—v) e PTa-n L w-o dt}

in which f"(x) = [f"(x),f/(x)] and 0 < v < 1.

Definition 14 ([35]) Let f : L® N C® be a fuzzy set-value function. Then f is said to be
Caputo’s fuzzy differentiable at x when

Cryv _ /(t
(PN~ 555 [ g ®

where 0 <o < 1.

Definition 15 ([35]) Let f: L N CF and xy € (4,b) and ®(x) = l"(ll—v) f; f(t v dt. We say

that f(x) is fuzzy Caputo fractional differentiable of order 0 < v <1 at xy, 1f there exists an
element (°D. f)(xo) € CE such thatforall0 <r<1,4>0,

N (e o ot h) O Pxo) . Dlxg) © Plxo —h)

e .
or

I . Px)O P th) . Plxo —h) © Pxo)

(i) ("Dgf)(xo) = h]g]& —h N hlgg+ —h ’
or

v (e o Plo+h)© Dlxg) . Plxg —h) © Plxo)

W () 2By St )
or

D(xo) © Plxo + 1) lim D(xo) © Pxo — h)‘

(iv) ( Da*f) (o) = hlil& —h T ot h
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Remark 5 A fuzzy-valued function f is ¢[1 — v]-differentiable, if it is differentiable as in
the Definition 15, case (i), and it is ¢[2 — v]-differentiable, if it is differentiable as in the
Definition 15, case (ii).

Theorem 3 ([35]) Let us assume that f € C*[a, b], then we have the following:
(I.°Dl.f) (%) =f(x) ©f(a), 0<v<l,

when f is °[1 — v]-differentiable and
(LDl f) (%) = ~f(@) © (-f (), O0<v<],

when f is ¢[2 — v]-differentiable.

Lemma 6 ([35]) Let 0 <« <1 and f € AC%(a, b], then the fuzzy Caputo derivative can be
stated using the fuzzy fractional Riemann-Liouville integral operator as follows:

(‘Deef) @) = (I Df )@ 1) = [(1:"Df )" (@), (1" DS ), ()],
when f is [1 - v]-differentiable, and

(“Dif)wsr) = (I Df )i 7) = [(L2"Df )’ (@), (L7 Df ) ()],
when f is [2 — v]-differentiable.

4 Extension of JOM method for FFEDs

In this section, fuzzy approximation function by means of shifted Jacobi polynomials is
derived. Moreover, the Jacobi operational matrix based of fuzzy shifted Jacobi polynomials
is introduced with details and provided the application of the method for solving fuzzy
linear fractional differential equations of order 0 < v < 1. It should be mentioned that this
method is the extension of the researches implemented in the crisp sense by Doha et al.
[27] and Kazem [28].

In [52-54], the authors established the concepts of the best approximation of fuzzy func-
tion and as an application, Lowen introduced fuzzy approximation of fuzzy function by
means of Lagrange interpolation [55]. Firstly, we define the approximate fuzzy function
using shifted Jacobi polynomials.

Definition 16 Fory e L}f [0,1] N CF[0,1] and shifted Jacobi polynomial PS,“”S )(x) areal val-
ued function over [0,1], the fuzzy function is approximated by

+00
W) =00 P (x),
i=0
where the fuzzy coefficients 0; are gained by

1
a,p

i

6; =

1
/ PE“'ﬁ)(x) Oyx) O w P (x)dx, i=0,1,... )
v Jo
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in which W@ (x) = (1 - x)* © x¥, PE“”S )(x) is as the same as the shifted Jacobi polynomials
described in Section 2.1, and _ " means addition with respect to @ in E.

Remark 6 In practice, only the first (m + 1)-terms shifted Jacobi polynomials are taken
into consideration. So, we have

Y®) = (@)= Y GO P (%) = 0L, © Byt (), (10)
i=0

that the fuzzy shifted Jacobi coefficient vector ®Z | and shifted Jacobi function vector
®,,,1(x) are explained by:

Or . =100,62...,0m), (11)

@1 (%) = [PV (), PP (), .., PP ()] (12)

Since 0] = [0]_,0].], for all 0 < r <1, then we can point out the fuzzy approximation
function y,,(x), according to the lower and upper functions as follows.

Definition 17 Let y(x) € LE[O, 1] N C®[0,1], the approximation of fuzzy-valued function

y(x) in the parametric form is

Y () =5, (%) = [Z 0 PP (), > 95+P§u'ﬂ)(x),i|, 0<r<1 (13)
i=0

i=0

Theorem 4 The best approximation of a fuzzy function based on the Jacobi points exists
and is unique.

Proof The proof is an immediate result of Theorem 4.2.1 in [54]. O

Now, in the following theorem, we will achieve the error bound for the fuzzy approxi-
mate function based on shifted Jacobi polynomials. Actually, this error bound depicts that
the approximation converges to the fuzzy function y(x).

Theorem 5 Counsider the function y(x) : [xo,1] — LE[O, 11 N CE[0,1] is m + 1 times con-
tinuously fuzzy differentiable for xo > 0, y(x) € CE_,[x0,1], and P"**F = Span{P&P)(x),
P;a‘ﬂ '@),...,PEP (x)}. Ify, = OT ®(x) is the best fuzzy approximation to y(x) from P"+1eb
then the error bound is presented as follows:

m+1

VB(a+1,8+1),
(m +1)!

D (y(x), ym(x)) <
that M" = maxXyepe, 1| {M", M} and S = max{l — xp, xo}.
Proof It follows from Definition 1 of D" that

D (y(®), ym(x)) = sup ]D(y(x),ym(x))

sup sup max{ |y£ ) = ¥, - )], [, (%) —yfn,+(x)|}

x€[0,1] r€[0,1]

’
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= sup max{”yi(x)—y;n,_(x)”m ’(x)—y:n&(x)”oo}

re(0,1]
Lemma 3 r m+1 r m+1
<  sup max VB +1,8+1), VB +1,8+1) }
ref0,1] { (m+1)! +1)!
Msmﬂ
< VB +1,B8+1),

(m+1)!

in which M" = max,e[x,11{M", M’} and S = max{1 — x9,%0}. This completes the proof of
theorem. O

4.1 Jacobi operational matrix

This part is devoted to the operational matrix of shifted Jacobi polynomials regarding to
fuzzy Caputo’s derivative. The operational matrix play an important role in solving frac-
tional differential equations by means of orthogonal functions [22, 23, 25, 27, 28]. Our aim
in this section is to generalize this method for solving fuzzy linear fractional differential
equations.

Lemma 7 The fuzzy Caputo fractional derivative of order 0 < v <1 over the shifted Jacobi
functions can be acquired in the form of

i
v T(k+1)
chP(a,ﬂ) _ P’(l) xk—v’
P k2=0: K Tk-v+1)

where P,/((i) =0 for i< [v] and for i > [v], we have P;((i) =
Proof 1t is straightforward from Section 2.1 and the Caputo derivative of xX. O

The fuzzy Caputo operational matrix based on the shifted Jacobi polynomials is ex-
pressed as well as relation (5). So, we have

ED'd(x) ~EDV d(x), (14)

where DV is the (m + 1)-square operational matrix of fuzzy fractional Caputo’s deriva-
tive of shifted Jacobi polynomials and D" ®(x) € CF[a, b]. So, using (10) and (14), we can
approximate the fuzzy fractional Caputo’s derivative as

]EDVy(x) ~ ED(V)j’erl(x) _ Z *ei o JED(V)Pl(a,ﬂ)(x) _ @}7;”1 o ]ED(V)¢W,+1(9C). (15)
i=0

The subsequent property of the product of two fuzzy Jacobi function vectors will also be

utilized
P0'O >0, (16)
that ~© is a m +1 product operational matrix for the vector ®, which its elements {"O}/_,
can be calculated from:
1 m
N®ij = o,B Z "9]( @gijk’ (17)
Vi k=0
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where gy is acquired by

1
ik = f PP )PP () w™ P (x) dx.
0

The error bound of fuzzy Caputo fractional differential operator is taken into consider-
ation in the next theorem for 0 < v < 1. Therefore, we clarify the E, as

]EEV = ]EDVd)(x) - ED(V)(D(x) = [EO,V!EI,IU cee yEm,v] T,

where

m
Egy =ED'PEP () - Y EDYPP (), k=0,1,...,m.
j=0

Theorem 6 Assume that the error function of fuzzy Caputo fractional derivative operator
for shifted Jacobi polynomials Ey, be m + 1 times continuously fuzzy differentiable for 0 <
x0 < x, x € (0,1]. Additionally, Ex,, € C%

a1 %0,1] and 0 < v <1 then the error bound is given
by

D' (*D"®(x),“DY d(x))

%’ ()1 (’” t1+p ) JBa+LA+1). (18)
m

<0
T (m+ DA -v) +1
Proof Again using Definition 1 of D" and Lemma 5, we have

D' (*D"®(x),“DV d(x))

= sup D(“D"®(x), "D @ (x))
x€[0,1]

= sup sup max {}(EDVCD(x))i - (]ED(")CD(x))], {(EDVCI)(x))i - (ED(")CI)(x))iH
x€[0,1] r€[0,1]

= sup sup max{|*D"(®”(x)) - "DV (®” )|, | (“D'®’,(x)) - (“DV @’ (x))|}
x€[0,1] r€[0,1]

= sup max{ ”]ED"(GDC(x)) —]ED(V)(d)i(x)) H
re(0,1]

("D’ ) - (P el W) |}

oo’

= sup max{|“E,_| . |"E}.| .}

re[0,1] e

xy" mel [+ 1+ B
= e ira—n +1( ml )VB(“”’ﬁ“)‘ 0
4.2 Application of the JOM of the fractional Caputo derivative
In this section, the Jacobi operational matrix derived from the previous sections is applied
for solving linear FFDEs of order 0 < v <1 based on the shifted Jacobi polynomials. The
fuzzy residual of the general single-term FFDEs is obtained and then using the orthogonal
property of the Jacobi polynomials, a fuzzy algebraic system is extracted, which is solved
easily to find the unknown fuzzy coefficient of the approximate solution of the problem.
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Let us consider the general linear fuzzy fractional differential equation

(‘Dgy)x) =yx) df(x), 0<v<l,

19
J’(O):J’o E]E) ( )

in which y(x) : L* N C* is a continuous fuzzy-valued function, °D},, denotes the fuzzy
Caputo fractional derivative of order v and f(x) : [0,1] — E.

In the following theorem, we clarify the way to find the fuzzy unknown coefficient of
the fuzzy approximate function y,,,1(x), using the fuzzy residual function of the problem
easily.

Theorem 7 Lety" € CE[0,1] and 0 < v <1, then
[(D5m)®)]” = [Rn(®) © fiu(®) @ Frn(®)]"”

Proof Letr € [0,1]. At first, from Egs. (14) and (15) we can replace solution y(x) with y,,(x),
[(D5m)@)]" = [(DY5m) " @), (DY5m) . @] [m@]” = @), 5. @),
Then the fuzzy residual function of the problem is expressed by
(DY) () = Ry (x) = Fn(x) = Fon )
hence,

[(DY5,) @] = [(DV5) @, (D'55,) ()]
= [RY. (), RO, ()] = [ @) )] = [on ) o) ]
= [R®@)]” @ [ )] @ [ )] -

Regarding to Definition 3 of g-difference, we have
[Rn]"” = [(D"5)@]" € ()] " & )]
or in the form of fuzzy operator, we can state
[R]® = (I8 °DV)y? £, (20)

Let (-, -)g denotes the fuzzy inner product over Xg = L? z([0,1]). It is required like a typical
tau method in the crisp concept (see [56, 57]) that Rm satisfy

(RO (), PP (x)), =0, i=0,1,...,m=-1rel0,1], (21)

where (R%) (x), PP ()7, = [(R) [} Rp(%) © (%), PP (x) © wP (x) dx] )
From Eq. (21), we gain (m)-fuzzy hnear algebralc equations which are as follows in the
expanded form:

m

Z 9] @ Olﬂ)POt;3> ( 405: Dlﬂ) Zf]‘ @ D‘ﬂ) P(Ot5> (22)

j=0 Jj=0
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fori=0,1,...,m —1. Also the fuzzy coefficients f; are defined as

@) = frn@) =Y FOPP (x) = FL, © @y, (23)

Jj=0

where F,..1 = [fo,fi, ... fin] " is acquired as

1 1
fi= =3 / PEP) 0 f () 0w P () dx, i=0,1,...,m. (24)
v, Jo

i

Subsequently, replacing Eq. (10) in the initial condition of the problem (19)

50)=Y_"6" © P“P(0) = o, (25)

Jj=0

from the above equation with Eq. (22), (m + 1)-fuzzy linear algebraic equations are gener-
ated. It is obvious that the unknown fuzzy coefficients are obtained with solving this fuzzy
system using the method presented for example in [44].

5 Test problems
In this part, different examples are considered to depict the feasibility of the proposed
method for solving FFDEs with a suitable accuracy.

Example 1 Consider the following FFDE:

: (DL y)(x) =2 0yx) B (x+1), 0<v<l, 06)

¥ (0)=[yo",905], O<r<1

Here, suppose that A = —1, then using ¢[2 — v]-differentiability and Theorem 1 we have
the following parametric form:

(D§.y )x) ==y (x) +x+1, O<v<l, o)
y(0)=y", 0<r<l,

and
D4y )r) =y (x) +x+1, O<a<l, o8
¥.(0)=y0(r), O0<r<l,

where »"(0) = [0.5 + 0.5r,1.5 — 0.5r]. The analytical solution of the problem (26) can be
acquired using Egs. (27) and (28) as
Y(x;7) =(0.5+0.5r)E, 1 [x"] + fg (x—t)E, [-x—t)"](x+1)dt, 0<v<l, (29)
Y(x;7) = (1.5 - 0.57)E, 1 [x*] + f(;c x—t)E, [-(x-t)"](x+1)dt, O<r<1.

By applying the technique explained in Section 4, the equation is gained in the matrix
form as

L, [DY +Nd(x) = FL,, _®(x), (30)
eI . [DY +d(x) = FL | d(x),

m+1,+ +1,+
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where the values of vector FT is obtained as Eq. (23). Deriving the fuzzy residual function
and multiplying it by P;a’ﬂ %) © w*b, j=0,1,...,m 1 to generate (m)-fuzzy algebraic
equations

®r€1+1,— [D(V) + I] = Fr£+1,—' (31)
er . [DY +1=FT

m+1,+ m+1,+*

Also for y(0;7) = [yo”, 50, ], one has

(32)
( @1 = (L5 - 0.57).

T
m+1,+

¥ (0)= 0L, @y =(05+0.57),
7,(0)~0

Finally, Eqs. (31) and (32) create (m + 1)-fuzzy linear equations to give us the unknown
fuzzy coefficients 6; after solving this system.
With m =2, =8 =0.5and v = 0.75, we have

0 0 0

DO = 1 A75(1L,0)  Awpzs(L1)  Aprs(1,2)

Aw075)(2,0) Ap75(2,1)  Ap75(2,2)
0 0 0

=1 26929 0.5524 -0.1755],
-1.2429 4.2241 11048

and with the assumption that r-cut = 1,

15
F3=10.25
1

So, considering these two matrices and substituting them into Egs. (30) and (32), we can
obtain the fuzzy coefficients as

©; = [1.1550,0.1384,0.0281].

From Table 1, we can obtain a good approximation with the exact solution by making
use of the proposed method. In this table, the results are gained at x = 1. Also, the method
is tested with different values of «, B which are depicted in Figure 1. The results is more
accurate with o = 0, 8 = 0.5. We may also see from Figure 2, the absolute error is smaller
and smaller when m grows. Finally, the approximate fuzzy solution is illustrated in Figure 3
for different values of v that shows this approach can solve FFDEs of different fractional
order effectively.

Example 2 Consider the inhomogeneous linear fractional relaxation equation in [58] in
the sense of fuzzy context, so we have

Dy, y(x) + y(x) = x* — 1% - F(f_v)x(?"v) + T X (33)

y(0)=[-1+r1-r], 0<v<10<x<],

24 (4-v)
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Table 1 The absolute error of the proposed method for Example 1 with different values of «,

Bandm=5

(e, B) (0,0) (0.5,0) (0,0.5) (0.5,0.5) (0,0) (0.5,0) (0,0.5) (0.5,0.5)
r E(;.75 Eg.75 Eg.75 Eg.75 E;.75 Eg.75 Eg.75 E3.75

0 1.238%-3 6.6971e-4 53528e-4 6.4838e-5 14035e-3 6.2014e-4 6.7068e-4  1.4583e-5
0.1 1.1068e-3  6.0522e-4 4.7498e-4  6.2325e-5 1.2714e-3 55565e-4 6.1038e-4 1.7096e-5
02 9.7471e-4  54073e-4 4.1468e-4 5.9812e-5 1.1393e-3  49115e-4 55008e-4 1.9608e-5
03 8.4258e-4 4.7623e-4 3.5438e-4 5.7299%e-5 1.0072e-3 4.2666e-4 4.8978e-4 2.2121e-5
04 7.1045e-4  41174e-4 29408e-4 54787e-5 8.7507e-4 3.6217e-4 42948e-4  2.4634e-5
05 57832e-4 34725e-4 23379%-4 52274e-5 74295e-4  29767e-4 3.6918e-4 2.7146e-5
0.6 44619e-4 28275e-4 1.7349e-4 49761e-5 6.1082e-4 2.3318e-4 3.0889%e-4 2.9659%e-5
0.7 3.1407e-4  2.1826e-4 1.1319e-4 4.7248e-5 4.7869%-4 1.6869e-4 24859e-4 32172e-5
038 1.8194e-4 1.5377e-4 5.2897e-5 4.4736e-5 34656e-4 1.0419e-4 1.8829e-4 3.4685e-5
0.9 49815e-5 8.9279%-5 74009-6 4.2223e-5 2.1444e-4  39706e-5 1.2799-4 3.7197e-5
1 8.2312e-5 24786e-5 6.7699e-5 3.9710e-5 82312e-5 24786e-5 6.7699e-5 3.9710e-5

107

Absolute Error

Figure 1 The absolute error for different values (&, 8) of Example 1,v=0.85,m=7.

10°H —%— Alpha=0, Beta=0 E
—+— Alpha=0.5,Beta=0
Alpha=0, Beta=0.5
Alpha=0.5,Beta=0.5
10_7 | | | | | | | | |
0 0.1 0.2 0.3 0.4 0.5 0.6 0.7 0.8 0.9 1
r—cuts

in which y(x) : L¥[0,1] N CE[0,1] is a continuous fuzzy function and °Dy. indicates the

fuzzy Caputo fractional derivative of order v.

Now, utilizing the definition of [1 — v]-differentiability and Theorem 1, we have

(“Dg, ")) + ¥ (%) = &" = 3% = F(iy)x(iv) + %x(‘*"’),
¥y (0)=-1+r, 0<v<1,0<x<1,

and
DRI+ 100 =~ 8 ) 2,

¥ (0)=1-r, 0<v=<10<x<1

(34)

(35)

Page 19 of 29
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—*— m=3

107

o413 enjosqy

10

0.5 0.6 0.7 0.8 0.9

0.2 0.3 0.4
r—cuts

0.1

=B=o.

0.85,

Figure 2 The absolute error for different values m of Example 1, v

0.75

\%

0.5

V:

uonnjos arewixoiddy

r—cuts

r—cuts

0.95

\%

0.85

\%

uonn|os arewixolddy

r—cuts

r—cuts

=B=0,

Figure 3 The fuzzy approximate solution of Example 1, for different fractional orders v, o

m=17.
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Solving Eqs. (34)-(35) causes to specify the solution of FFDE (33) as follows:

Y (%) = (<1 + 1E [-2] + [ (¢ = )" Ey[~(x — 1)"]

x (x* - 1x° - r(f_v)x(s‘v) + Fé‘fv)x(““’))dt, 0<r<l,
Yo () = A= nE, [+ + [f (k= )" "E, [-(x — 1)']
x (x* — %x3 - I‘(f—v) 2B 4 1‘(25:) 24 Ndt, 0<r<l.

Now, if we apply the technique explained in Section 4 in Egs. (34) and (35) with m = 2 and
v = 0.85, then the 3 unknown fuzzy coefficients with the choices of « = 0.5 and g = 0 are
as

0 0 0
DO = | 292377 0.4433 -0.2028 |,
~0.9457 4.6250 0.9395

so if we consider r-cut = 0 then the approximate fuzzy function is obtained as

99 (x) = -1 + 0.7681x + 0.9454x2,
y%(x) =1 —1.5531x + 1.3842x2.

The absolute error for some various «, 8 at x = 1 are shown in Table 2 and Figure 4. From
Table 2, it can be seen that with the few number of Jacobi polynomials, the approximate
solution with high accuracy is achievable. Furthermore, Figure 5 shows that the error with
increasing the number of Jacobi terms changes slowly. The approximate fuzzy solution
has been derived for v =0.5,0.75,0.85,0.95 in Figure 6, which shows the feasibility of the
proposed method for this kind of problems.

Remark 7 Figure 2 depicts that the approximate solution has a little bit oscillation when
the number of Jacobi functions assumed m = 3,4. Actually, it is related to the oscillatory
behavior of fuzzy exact solution. Although the approximate solution using the proposed
method has a smooth behavior, it can not respond appropriately to match the exact so-
lution, especially when the r-cuts tend to 1. This has lead to the growing of the absolute
error which is not significant. This defect is removed with the increasing of the number
of Jacobi functions which is obvious according to Figures 1 and 2.

Table 2 The absolute error of the proposed method for Example 2 with different values of «,

Bandm=7

(o, B) (0,0) (0.5,0) (0,0.5) (0.5,0.5) (0,0) (0.5,0) (0,0.5) (0.5,0.5)

r E(“).85 Eg.ss E(3).85 Eg.85 E3.85 E(2).85 Eg.SS E3.85

0 2.1261e-4  7.7483e-4 1.6513e-4 4.38%4e-4 21261e-4  7.7483e-4 1.6513e-4 4.38%e-4

0.1 19135e-4  6.9735e-4 1.4862e-4 3.9505e-4 19135e-4  69735e-4 14862e-4 3.9505e-4
1

0.2 1.7009e-4  6.1986e-4 1.3210e-4 3.5115e-4 1.7009e-4  6.1986e-4 1.3210e-4 35115e-4
0.3 14883e-4  54238e-4 1.1559e-4 3.0726e-4 14883e-4  54238e-4 1.1559e-4 3.0726e-4
04 1.2757e-4  4.6490e-4 9.9081e-5 2.6336e-4 1.2757e-4  46490e-4 9.9081e-5 2.6336e-4
0.5 1.0630e-4  3.8741e-4 82568e-5 2.1947e-4 1.0630e-4  3.8741e-4 82568e-5 2.1947e-4
0.6 8.5046e-5  3.0993e-4 6.6054e-5 1.7557e-4 8.5046e-5  3.0993e-4 6.6054e-5 1.7557e-4
0.7 6.3785e-5  23245e-4 4.9540e-5 1.3168e-4 6.3785e-5  23245e-4 4.9540e-5 13168e-4
0.8 4.2523e-5  2.0864e-4 33027e-5 8778%-5 42523e-5  2.0864e-4 33027e-5 8.7789e-5
0.9 2.1260e-5  7.7483e-5 1.6513e-5 4.38%e-5 21260e-5  7.7483e-5 1.6513e-5 4.389%4e-5
1 8.1051e-12  2.233%-9 1.7246e-9 4.9312e-9 79941e-12 2.2338e-9 1.7245e-9 49312e-9
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Figure 4 The absolute error for different values (&, 8) of Example 2, v =0.75, m=5.
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Figure 5 The absolute error for different values m of Example 2, v=0.75, « = 0.5, 8 = 0.
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Figure 6 The fuzzy approximate solution of Example 2, for different fractional orders v, « = 0.5, § =0,
m=>5.

On the other hand, taking into account Figures 4 and 5. The approximate of lower fuzzy
function using JOM method for r-cut =1 at x = 1 is as follow with m = 5:

YL (x) = (~2.3015e-16) + (~1.3147e—13)x + (1.3644e—12)x>

—0.52% + x* — (2.04119e-12)x°,

as it can be seen, the approximate solution for lower bound has the negotiable coefficients
for x, x%, x° terms and constant value. Therefore, in this condition, the approximate solu-
tion, with initial value y(0) = 0, approaches the analytical fuzzy solution rapidly with the
increasing the number of Jacobi functions.

Example 3 Let us consider the fractional oscillation equation [59] with fuzzy initial con-
ditions as

°Dg,yx) + y(x) = xe™, 36)
y(0)=[-1+r1-r], 0<v<10<x<],

where y(x) : LE[0,1] N C*[0,1] is a continuous fuzzy set-value function and °Dj. points

out the fuzzy fractional derivative order of Caputo type.

Again, regarding to the case (i) of Definition 15 and Theorem 1, one can determine the
parametric form of (36) as

(37)

(“Dg,y") (%) + ¥ (x) = xe™%,
¥y (0)=-1+r, 0<v<1,0<x<],
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and

("D, 7)) + ¥, (x) = xe™,
¥y (0)=1-r, 0<v<1,0<x<1,

with the exact solution as

Y (x) = (-1+r)E,[-«"] + fox (x—t)E, [-(x—t)"]xe*dt, 0<r
Yo%) = A=nE[-21+ [§ 0= )" Ey[-(x - )"Jxe™dt, 0<r<

With exploiting of the presented method in Section 5, we can obtain following fuzzy equa-

tions system:

z,o, [A (6)) + 1P () = 70 1 PP (),
Y7007, [A) +11P,"‘"(x) > ,;P,(“”(x),

then multiplying this system by PE“"S ) (x) fori=0,1,...,m—1using the fuzzy inner product
and orthogonal property explained in Section 5, give us (m)-fuzzy linear algebraic equa-

tions:

m-1

1
Y0P o {(FR) / DYPEP ()PP () © (1 - x)x” dt
0

j=0

1
+(FR) / PP PP (x) © (1 - x)"x” dt}
0

1
=Y o ER) /O PP )PP () © (1 - x)"4” dt, (39)

in which f; = ﬂfo PP (x) © xe™* © WP (x) dt.
Afterward, substltutmg Eq. (10) in the initial condition of Eq. (36) yields

m

y(0)=[-1+r1-r] Ze, © PP 0). (40)
j=0

Ultimately, from Eqs. (39) and (40), (m +1)-fuzzy linear equations are produced which lead
to discover the unknown fuzzy coefficients of the fuzzy approximate solution of problem
(36), instantaneously.

Taking m =2,v=0.95,a =0, 8 = 0.5 and applying the method, we can get

0 0 0
DO = 124852 0.1137 -0.0478 |,
0.3655 5.8573 0.2754
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Table 3 The absolute error of the proposed method for Example 3 with different values of «,

Bandm=9

(e, B) (0,0) (0.5,0) (0,0.5) (0.5,0.5) (0,0) (0.5,0) (0,0.5) (0.5,0.5)
1 2 3 4 1 2 3 4

r E0.95 E0.95 E0.95 E0.95 E0.95 E0.95 E0.95 E0.95

0 54570e-6  1.1057e-4 7.6066e-5 1.0236e-4 55968e-6 1.1264e-4 7.7085e-5 1.0411e-4

0.1 49043e-6 9.9417e-5 6.8409e-5 9.2044e-5 5.0441e-6 1.0148e-4 6.9428e-5 9.3793e-5

0.2 43516e-6 8.8256e-5 6.0751e-5 8.1720e-5 44914e-6  9.0325e-5 6.1770e-5 83469e-5
0.3 3.798%-6 7.7094e-5 53093e-5 7.1396e-5 3.9387e-6 79164e-5 54112e-5 7.3144e-5
04 3.2462e-6  65933e-5 4.5436e-5 6.1071e-5 3.3860e-6 6.8002e-5 4.6455e-5 6.2820e-5
0.5 26935e-6 54772e-5 3.7778e-5 50747e-5 2.8333e-6 5.6841e-5 3.8797e-5 52496e-5
06 2.1408e-6 43610e-5 3.0120e-5 4.0423e-5 2.2806e-6 45679e-5 3.1140e-5 4.2171e-5
0.7 1.5882e-6 32449 -5 22463e-5 3.0098e-5 1.7279e-6 34518e-5 23482e-5 3.1847e-5
0.8 1.0355e-6  2.1288e-5 1.4805e-5 1.9774e-5 1.1752e-6  23357e-5 15824e-5 2.1523e-5
0.9 4.8280e-7 1.0126e-5 7.1480e-6 9.449%e-6 6.2258e-7 1.2195e-5 8.1671e-5 1.1198e-5
1 6.9888e-8 1.0345e-6 5.0957e-7 8.7434e-7 6.9888e-8 1.0345e-6 5.0957e-7 8.7434e-7

if we take into account problem (36) with r-cut = 0.5, then the shifted Jacobi polynomials

are as follows:

1,
PP (x) = 1 _3/2 +5/2x,
15/8 — 35/4x + 63/8x2,

eventually, putting D®> and PEO"B )(x) in Egs. (39) and (40), one can get the fuzzy unknown
coefficients as

O3, =[-0.1783,0.1947,-0.0158],

®3,, =[0.3806,-0.0385,0.0329].

A comparison between the absolute errors of Example 3 for different values of «, B is
explained at x = 1 in Table 3. From Table 3, it is obvious that the proposed method is
achieved better accuracy with a = B = 0, which actually with this assumption the method
is in agreement with the Legendre tau method proposed in [20]. These results are con-
firmed again from Figure 7. Although the problem is a fuzzy fractional oscillation equa-
tion, this method is successful to attain suitable approximation that its preciseness is risen
progressively with the increasing of the number of Jacobi functions in Figure 8. Addition-
ally, the approximate fuzzy solution is described in Figure 9 for different fractional order
v. Ultimately, the CPU time is estimated in Table 4 using MATLAB verion 7.6 (R2008a).
From Table 4, one can conclude that the time consumption and number of Jacobi polyno-

mials are increased simultaneously.

6 Conclusion

This article adopted the operational Jacobi operational matrix based on the fuzzy Caputo
fractional derivative using shifted Jacobi polynomials. The clear advantage of the usage of
this method is that the matrix operators have the main role to find the approximate fuzzy
solution of FFDEs instead of considering the methods required the complicated fractional
derivatives and their calculations, which consume more time and cost in comparison with
this method.
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Figure 7 The absolute error for different values (&, 8) of Example 3, v =0.95, m=9.
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Figure 8 The absolute error for different values m of Example 3, v =0.95, @ = 0.5, 8 = 0.5.
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Approximate solution
Approximate solution

Approximate solution
Approximate solution

X 0o r—cuts

Figure 9 The fuzzy approximate solution of Example 3, for different fractional orders v, « = 0.5,
B=05m=09.

Table 4 CPU time (in seconds) on MATLAB-7.6 (R2008a) for all of the examples, with different

mand v =0.75
m Example 1 Example 2 Example 3
3 1.9843 23125 2.5781
5 3.0625 3.5312 3.8437
7 4.9062 56718 6.2656
9 74218 8.2656 9.1718

Theorems 5 and 6 were proved to demonstrate the error bound of the fuzzy approximate
solution and fuzzy fractional Caputo derivative of order 0 < v < 1. Also, various kinds of
problems are solved to illustrate the effectiveness and strength of the method, which can be
reached to the suitable accuracy with a lower number of Jacobi functions. In addition, the
problems were tested for different values of « and B to show that the method is adaptable
in dealing with the various issues.

For future researches, we will try to extend this method for solving multilinear and non-
linear problems as well as solving FFDEs of the order 1 < v < 2. Furthermore, the gener-
alization of the other orthogonal polynomials for solving FFDEs is the another scope of
our attempts. Finally, we will attempt to expand the proposed method under other kinds

of fuzzy derivatives like Riemann-Liouville differentiability.
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