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Abstract

In this article, we study the convergence of iterative sequences of Prešić type
involving new general classes of operators in the setting of metric spaces. As
application, we derive some convergence results for a class of nonlinear matrix
difference equations. Numerical experiments are also presented to illustrate the
convergence algorithms.
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1 Introduction
In 1922, Banach proved the following famous fixed point theorem.

Theorem 1.1 (Banach [1]) Let (X, d) be a complete metric space and f : X ® X be a

contractive mapping, that is, there exists δ Î [0, 1) such that

d(fx, fy) ≤ δd(x, y), for all x, y ∈ X.

Then f has a unique fixed point, that is, there exists a unique x* Î X such that x* =

fx*. Moreover, for any x0 Î X, the iterative sequence xn+1 = fxn converges to x*.

This theorem called the Banach contraction principle is a simple and powerful theo-

rem with a wide range of application, including iterative methods for solving linear,

nonlinear, differential, integral, and difference equations. Many generalizations and

extensions of the Banach contraction principle exist in the literature. For more details,

we refer the reader to [2-28].

Consider the k-th order nonlinear difference equation

xn+1 = f (xn−k+1, . . . , xn), n = k − 1, k, k + 1, . . . (1)

with the initial values x0,..., xk-1 Î X, where k is a positive integer (k ≥ 1) and f : Xk ≤

X. Equation (1) can be studied by means of fixed point theory in view of the fact that

x* Î X is a solution to (1)) if and only if x* is a fixed point of f, that is, x* = f(x*, ...,

x*). One of the most important results in this direction has been obtained by Prešić in

[22] by generalizing the Banach contraction principle in the following way.

Theorem 1.2 (Prešić [22]) Let (X,d) be a complete metric space, k a positive integer

and f : Xk ® X. Suppose that
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d
(
f (x0, . . . , xk−1) , f (x1, . . . , xk)

) ≤
k∑
i=1

δid(xi−1, xi),

for all x0, ..., xk Î X, where δ1, ..., δk are positive constants such that δ1 + ... + δk Î
(0,1). Then f has a unique fixed point x* Î X, that is, there exists a unique x* Î X such

that x* = f(x*, ..., x*). Moreover, for any initial values x0, ..., xk-1 Î X, the iterative

sequence {xn} defined by (1) converges to x*.

It is easy to show that for k = 1, Theorem 1.2 reduces to the Banach contraction

principle. So, Theorem 1.2 is a generalization of the Banach fixed point theorem.

In [13], Ćirić and Prešić generalized Theorem 1.2 as follows.

Theorem 1.3 (Ćirić and Prešić [13]) Let (X,d) be a complete metric space, k a posi-

tive integer and f : Xk ® X. Suppose that

d(f (x0, . . . , xk−1), f (x1, . . . , xk)) ≤ λmax{d(x0, x1), . . . , d(xk−1, xk)},

for all x0, ..., xk Î X, where l Î (0,1) is a constant. Then f has a unique fixed point x*

Î X, that is, there exists a unique x* Î X such that x* = f(x*,..., x*). Moreover, for any

initial values x0, ..., xk-1 Î X, the iterative sequence {xn} defined by (1) converges to x*.

The applicability of the result due to Ćirić and Prešić to the study of global asympto-

tic stability of the equilibrium for the nonlinear difference Equation (1) is revealed, for

example, in the recent article [8].

Other generalizations were obtained by Păcurar in [20,21].

Theorem 1.4 (Păcurar [20]) Let (X, d) be a complete metric space, k a positive inte-

ger and f : Xk ® X. Suppose that

d
(
f (x0, . . . , xk−1) , f (x1, . . . , xk)

) ≤ a
k∑
i=0

d
(
xi, f (xi, . . . , xi)

)
,

for all x0, ..., xk Î X, where a is a constant such that 0 <ak(k + 1) < 1. Then f has a

unique fixed point x* Î X, that is, there exists a unique x* Î X such that x* = f(x*, ...,

x*). Moreover, for any initial values x0, ..., xk-1 Î X, the iterative sequence {xn} defined

by (1) converges to x*.

In the particular case k = 1, from Theorem 1.4, we obtain Kannan’s fixed point theo-

rem for discontinuous mappings in [15].

Theorem 1.5 (Păcurar [21]) Let (X, d) be a complete metric space, k a positive inte-

ger and f : Xk ® X. Suppose that

d
(
f (x0, . . . , xk−1) , f (x1, . . . , xk)

) ≤
k∑
i=1

δid(xi−1, xi) +M(x0, xk),

for all x0, ..., xk Î X, where δ1, ..., δk are positive constants such that
k∑
i=1

δi < 1and

M(x0, xk) =

L min
{
d(x0, f (x0, . . . , x0)), d(xk, f (xk, . . . , xk)), d(x0, f (xk, . . . , xk)), d(xk, f (x0, . . . , x0)),

d(xk, f (x0, . . . , xk−1))
} (2)
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with L ≥ 0. Then f has a unique fixed point x* Î X, that is, there exists a unique x* Î
X such that x* = f(x*, ..., x*). Moreover, for any initial values x0,..., xk-1 Î X, the iterative

sequence {xn} defined by (1) converges to x*.

In the particular case k = 1, the contractive condition (2) reduces to strict almost

contraction (see [4-7]).

Note that these approaches are motivated by the currently increasing interest in the

study of nonlinear difference equations which appear in many interesting examples

from system theory, economics, inventory analysis, probability models for learning,

approximate solutions of ordinary and partial differential equations just to mention a

few [29-31]. We refer the reader to [32-34] for a detailed study of the theory of differ-

ence equations.

For other studies in this direction, we refer the reader to [23,25,35,36].

In this article, we study the convergence of the iterative sequence (1) for more gen-

eral classes of operators. Presented theorems extend and generalize many existing

results in the literature including Theorems 1.1, 1.2, 1.4, and 1.5. We present also an

application to a class of nonlinear difference matrix equations and we validate our

results with numerical experiments.

2 Main results
In order to prove our main results we shall need the following lemmas.

Lemma 2.1 Let k be a positive integer and a1, a2, ..., ak ≥ 0 such that∑k
i=1 αi = α < 1 . If { Δn} is a sequence of positive numbers satisfying

�n+k ≤ α1�n + α2�n+1 + · · · + αk�n+k−1, n ≥ 1,

then there exist L ≥ 0 and τ Î (0,1) such that Δ n ≤ Lτn for all n ≥ 1.

Lemma 2.2 Let {an}, {bn} be two sequences of positive real numbers and q Î (0,1)

such that an+1 ≤ qan + bn, n ≥ 0 and bn ® 0 as n ® ∞. Then an ® 0 as n ® ∞.

Let Θ be the set of functions θ : [0, ∞)4 ® [0, ∞) satisfying the following conditions:

(i) θ is continuous,

(ii) for all t1, t2, t3, t4 Î [0, ∞),

θ(t1, t2, t3, t4) = 0 ⇔ t1t2t3t4 = 0.

Example 2.1 The following functions belong to Θ:

(1) θ(t1, t2, t3, t4) = L min{t1, t2, t3, t4}, L > 0 t1, t2, t3, t4 ≥ 0.

(2) θ(t1, t2, t3, t4) = L ln(1 + t1t2t3t4), L > 0 t1,t2,t3,t4 ≥ 0.

(3) θ(t1, t2, t3, t4) = L ln(1 + t1) ln(1 + t2) ln(1 + t3) ln(1 + t4), L > 0 t1,t2,t3,t4 ≥ 0.

(4) θ(t1, t2, t3, t4) = Lt1t2t3t4, L > 0 t1, t2, t3, t4 ≥ 0.

(5) θ(t1, t2, t3, t4) = L(et1t2t3t4 − 1) , L > 0 t1, t2, t3, t4 ≥ 0.

Our first result is the following.

Theorem 2.1 Let (X,d) be a complete metric space, k a positive integer and f : Xk ®
X. Suppose that
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d(f (x0, . . . , xk−1), f (x1, . . . , xk)) ≤
k∑
i=1

δid(xi−1, xi) + δk+1

k∑
i=0

d(xi, f (xi, . . . , xi))

+ θ
(
d(x0, f (x0, . . . , x0)), d(xk, f (xk, . . . , xk)), d(x0, f (xk, . . . , xk)), d(xk, f (x0, . . . , x0))

) (3)

for all x0,..., xk Î X, where δ1,..., δk + 1 are positive constants such that 2A + δ Î (0,1)

with A =
k(k + 1)

2
δk+1and δ =

∑k
i=1 δi . Then f has a unique fixed point x* Î X, that is,

there exists a unique x* Î X such that x* = f(x*,..., x*). Moreover, for any z0 Î X, the

iterative sequence {zn} defined by

zn+1 = f (zn, . . . , zn), n ≥ 0

converges to x*.

Proof. Define the mapping F : X ® X by

Fx = f (x, . . . , x), for all x ∈ X.

Using (3), for all x, y Î X, we have

d(Fx, Fy) = d(f (x, . . . , x), f (y, . . . , y))

≤ d(f (x, . . . , x), f (x, . . . , x, y)) + d(f (x, . . . , x, y), f (x, . . . , x, y, y))

+ · · · + d(f (x, y, . . . , y), f (y, . . . , y))

≤ [δkd(x, y) + δk−1d(x, y) + · · · + δ1d(x, y)] + (1 + · · · + k)δk+1[d(x, Fx) + d(y, Fy)]

+ kθ
(
d(x, Fx), d(y, Fy), d(x, Fy), d(y, Fx)

)
.

Thus, we have

d(Fx, Fy) ≤
(

k∑
i=1

δi

)
d(x, y) +

k(k + 1)
2

δk+1[d(x, Fx) + d(y, Fy)] +M(x, y), (4)

where

M(x, y) = kθ
(
d(x, Fx), d(y, Fy), d(x, Fy), d(y, Fx)

)
.

Now, let z0 be an arbitrary element of X. Define the sequence {zn} by

zn = Fzn−1 = f (zn−1, . . . , zn−1), n ≥ 1.

Using (4), we have

d (zn+1, zn) = d(Fzn, Fzn−1) ≤
(

k∑
i=1

δi

)
d(zn, zn−1) +

k(k + 1)
2

δk+1[d(zn, zn+1) + d(zn−1, zn)]

+M(zn, zn−1).

On the other hand, from the property (ii) of the function θ, we have

M(zn, zn−1) = kθ
(
d(zn, zn+1), d(zn−1, zn), 0, d(zn−1, zn+1)

)
= 0.

Then we get

d(zn+1, zn) ≤ δd(zn, zn−1) +
k(k + 1)

2
δk+1[d(zn, zn+1) + d(zn−1, zn)]
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for all n = 1, 2,.... This implies that

d(zn+1, zn) ≤ A + δ

1 − A
d(zn, zn−1)

for all n = 1, 2,.... Since we have 2A + δ Î (0,1), then {zn} is a Cauchy sequence in (X,

d). Now, since (X, d) is complete, there exists x* Î X such that zn ® x* as n ® ∞. We

shall prove that x* is a fixed point of F, that is, x* = Fx*. Using (4), we have

d(x∗, Fx∗) ≤ d(x∗, zn+1) + d(Fzn, Fx∗)

≤ d(x∗, zn+1) +

(
k∑
i=1

δi

)
d(zn, x∗) +

k(k + 1)
2

δk+1[d(zn, zn+1) + d(x∗, Fx∗)] +M(zn, x∗),

where

M(zn, x∗) = kθ
(
d(zn, zn+1), d(x∗, Fx∗), d(zn, Fx∗), d(x∗, zn+1)

)
.

Thus we have

(1 − A)d(x∗, Fx∗) ≤ d(x∗, zn+1) + δd(zn, x∗) + Ad(zn, zn+1) +M(zn, x∗).

Letting n ® ∞ in the above inequality, and using the properties (i) and (ii) of θ, we

obtain

(1 − A)d(x∗, Fx∗) ≤ 0,

which implies (since 1 - A > 0) that x* = Fx* = f(x*, ..., x*).

Now, we shall prove that x* is the unique fixed point of F. Suppose that y* Î X is

another fixed point of F, that is, y* = Fy* = f(y*,..., y*). Using (4), we have

d(x∗, y∗) = d(Fx∗, Fy∗)

≤ δd(x∗, y∗) +
k(k + 1)

2
δk+1[d(x∗, Fx∗) + d(y∗, Fy∗)] +M(x∗, y∗)

= δd(x∗, y∗) +M(x∗, y∗).

On the other hand, we have

M(x∗, y∗) = kθ
(
d(x∗, Fx∗), d(y∗, Fy∗), d(x∗, Fy∗), d(y∗, Fx∗)

)
= kθ

(
0, 0, d(x∗, y∗), d(y∗, x∗)

)
= 0.

Then we get

(1 − δ)d(x∗, y∗) ≤ 0,

which implies (since δ < 1) that x* = y*.

Theorem 2.2 Let (X, d) be a complete metric space, k a positive integer and f : Xk ®
X. Suppose that

d(f (x0, . . . , xk−1), f (x1, . . . , xk)) ≤
k∑
i=1

δid(xi−1, xi)

+ Bmin
{
d(xk, f (x0, . . . , xk−1)), θ

(
d(x0, f (x0, . . . , x0)), d(xk, f (xk, . . . , xk)),

d(x0, f (xk, . . . , xk)), d(xk, f (x0, . . . , x0))
)}

(5)
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for all x0, ..., xk Î X, where δ1, ..., δk are positive constants such that δ Î (0,1) with

δ =
∑k

i=1 δi , and B ≥ 0. Then

(a) there exists a unique x* Î X such that x* = f(x*,..., x*);

(b) the sequence {xn} defined by

xn+1 = f (xn−k+1, . . . , xn), n = k − 1, k, k + 1, . . . (6)

converges to x* for any x0, ..., xk-1 Î X.

Proof. Applying Theorem 2.1 with δk + 1 = 0, and remarking that Bθ Î Θ, we obtain

immediately (a). Now, we shall prove (b). Let x0,..., xk-1 Î X and xn = f(xn-k,..., xn-1), n ≥

k. Then by (5), the property (ii) of θ and since x* = Fx* = f(x*,..., x*), we have

d(xk, x∗) = d(f (x0, . . . , xk−1), f (x∗, . . . , x∗))
≤ d(f (x0, . . . , xk−1), f (x1, . . . , xk−1, x∗))
+ d(f (x1, . . . , xk−1, x∗), f (x2, . . . , xk−1, x∗, x∗))
+ · · ·
+ d(f (xk−1, x∗, . . . , x∗), f (x∗, . . . , x∗))
≤ δ1d(x0, x1) + (δ1 + δ2)d(x1, x2) + · · · + (δ1 + · · · + δk−1)d(xk−2, xk−1) + δd(xk−1, x∗).

Since k is a fixed positive integer, then we may denote

E0 = δ1d(x0, x1) + (δ1 + δ2)d(x1, x2) + · · · + (δ1 + · · · + δk−1)d(xk−2, xk−1).

Then we get

d(xk, x∗) ≤ E0 + δd(xk−1, x∗).

Similarly we get that

d(xk+1, x∗) ≤ δ1d(x1, x2)+(δ1+δ2)d(x2, x3)+· · ·+(δ1+· · ·+δk−1)d(xk−1, xk)+δd(xk, x∗).

Denoting

E1 = δ1d(x1, x2) + (δ1 + δ2)d(x2, x3) + · · · + (δ1 + · · · + δk−1)d(xk−1, xk),

we get

d(xk+1, x∗) ≤ E1 + δd(xk, x∗).

Continuing this process, for n ≥ k, we obtain

d(xn, x∗) ≤ δ1d(xn−k, xn−k+1) + (δ1 + δ2)d(xn−k+1, xn−k+2) + · · · + (δ1 + · · · + δk−1)d(xn−2, xn−1)

+ δd(xn−1, x∗).

Denoting

En−k = δ1d(xn−k, xn−k+1)+(δ1+δ2)d(xn−k+1, xn−k+2)+ · · ·+(δ1 + · · ·+δk−1)d(xn−2, xn−1),

the above inequality becomes

d(xn, x∗) ≤ δd(xn−1, x∗) + En−k, n ≥ k. (7)

Now, we shall prove that the sequence {En} given by

En = δ1d(xn, xn+1) + (δ1 + δ2)d(xn+1, xn+2) + · · · + (δ1 + · · · + δk−1)d(xn+k−2, xn+k−1),
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converges to 0 as n ® ∞.

For n ≥ k, from (5), we have

d(xn, xn+1) = d(f (xn−k, . . . , xn−1), f (xn−k+1, . . . , xn))

≤ δ1d(xn−k, xn−k+1) + δ2d(xn−k+1, xn−k+2) + . . . + δkd(xn−1, xn)

+ Bmin
{
d(xn, f (xn−k, . . . , xn−1), θ

(
d(xn−k, F(xn−k)), d(xn, Fxn), d(xn−k, Fxn), d(xn, Fxn−k)

)}
.

As d(xn, f(xn-k,..., xn-1) = 0, the above inequality leads to

d(xn, xn+1) ≤ δ1d(xn−k, xn−k+1) + δ2d(xn−k+1, xn−k+2) + · · · + δkd(xn−1, xn).

According to Lemma 2.1, this implies the existence of τ Î (0,1) and L ≥ 0 such that

d(xn, xn+1) ≤ Lτ n, for all n ≥ 1.

Now, En is a finite sum of sequences converging to 0, so it is convergent to 0.

Finally, using (7) and applying Lemma 2.2 with an = d(xn, x*) and bn = En + 1-k, we

get that d(xn, x*) ® 0 as n ® ∞, that is, the iterative sequence {xn} converges to the

unique fixed point of f

Remark 2.1 In the particular case θ(t1, t2, t3, t4) = min{t1, t2, t3, t4}, from Theorem

2.2 we obtain Păcurar’s result (see Theorem 1.5).

Now, we shall prove the following result.

Theorem 2.3 Let (X, d) be a complete metric space, k a positive integer and f : Xk ®
X.

Suppose that

d(f (x0, . . . , xk−1), f (x1, . . . , xk)) ≤ a
k∑
i=0

d(xi, f (xi, . . . , xi))

+ θ
(
d(x0, f (x0, . . . , x0)), d(xk, f (xk, . . . , xk)), d(x0, f (xk, . . . , xk)), d(xk, f (x0, . . . , x0))

) (8)

for all x0, ..., xk Î X, where a is a positive constant such that A Î (0, 1/2) with

A =
k(k + 1)

2
a . Then

(a) there exists a unique x* Î X such that x* = f(x*, ..., x*);

(b) the sequence {xn} defined by

xn+1 = f (xn−k+1, . . . , xn), n = k − 1, k, k + 1 . . . (9)

converges to x* for any x0, ..., xk-1 Î X, with a rate estimated by

d
(
xn+1, x∗) ≤ aL

1 − A
Mτ n, n ≥ k, (10)

where L ≥ 0, τ Î (0, 1) and M = τ1-k + 2τ2-k + ... + k.

Proof. (a) follows immediately from Theorem 2.1 with δ = 0 and δk+1 = a. Now, we

shall prove (b). Let x0, ..., xk-1 Î X and xn = f(xn-k, ..., xn-1), n ≥ k. Then by (8), the

property (ii) of θ and since x* = Fx* = f(x*,..., x*), we have
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d(xk, x∗) = d
(
f (x0, ..., xk−1) , f

(
x∗, ..., x∗))

≤ d
(
f (x0, ..., xk−1) , f

(
x1, ..., xk−1, x∗))

+ d
(
f
(
x1, ..., xk−1, x∗) , f (

x2, ..., xk−1, x∗, x∗))
+ · · ·
+ d

(
f
(
xk−1, x∗, ..., x∗) , f (

x∗, ..., x∗))
≤ ad (x0, Fx0) + 2ad (x1, Fx1) + · · · + kad (xk−1, Fxk−1) .

(11)

Using (4), for all i = 0,1,..., k - 1, we get

d (xi, Fxi) ≤ d
(
xi, x∗) + d (Fxi)

≤ d
(
xi, x∗) + Ad (xi, Fxi) + kθ

(
0, d (xi, Fxi) , d

(
x∗, Fxi

)
, d

(
xi, Fx∗))

= d
(
x∗, xi

)
+ Ad (xi, Fxi) .

This implies that

d (xi, Fxi) ≤ 1
1 − A

d
(
xi, x∗) , i = 0, 1, ..., k − 1. (12)

Now, combining (12) with (11), we obtain

d
(
xk, x∗) ≤ a

1 − A
d
(
x0, x∗) + 2a

1 − A
d
(
x1, x∗) + · · · + ka

1 − A
d
(
xk−1, x∗) .

Similarly, one can show that

d
(
xn, x∗) ≤ a

1 − A
d
(
xn−k, x∗) + 2a

1 − A
d
(
xn−k+1, x∗) + · · · + ka

1 − A
d
(
xn−1, x∗) , n ≥ k. (13)

This implies that

d
(
xp+k, x∗) ≤ a

1 − A
d
(
xp, x∗) + 2a

1 − A
d
(
xp+1, x∗) + · · · + ka

1 − A
d
(
xp+k−1, x∗) , p ≥ 0.

Define the sequence { Δp} by

�p = d
(
xp, x∗) , for all p ≥ 0.

We get that

�p+k ≤ a
1 − A

�p +
2a

1 − A
�p+1 + · · · + ka

1 − A
�p+k−1, p ≥ 0.

Since
∑k

i=1
ia

1 − A
=

A
1 − A

∈ (0, 1) , we can apply Lemma 2.1 to deduce that there

exist L ≥ 0 and τ Î (0,1) such that

�p ≤ Lτ p, p ≥ 1. (14)

This implies that Δp ® 0 as p ® ∞, that is, xp ® x* as p ® ∞. Finally, (10) follows

from (14) and (13).

Remark 2.2 Many results can be derived from our Theorems 2.1, 2.2 and 2.3 with

respect to particular choices of θ (see Example 2.1).

Remark 2.3 Clearly, Theorem 1.4 of Păcurar is a particular case of our Theorem 2.3.
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3 Application: convergence of the recursive matrix sequence

Xn+1 = Q + A∗Xα
n−1A + B∗Xβ

nB

In the last few years there has been a constantly increasing interest in developing the

theory and numerical approaches for Hermitian positive definite (HPD) solutions to

different classes of nonlinear matrix equations (see [37-41]). In this section, basing on

Theorem 1.3 of Ćirić and Prešić, we shall study the nonlinear matrix difference equa-

tion

Xn+1 = Q + A∗Xα
n−1A + B∗Xβ

nB, (15)

where Q is an N × N positive definite matrix, A and B are arbitrary N × N matrices,

a and b are real numbers. Here, A* denotes the conjugate transpose of the matrix A.

We first review the Thompson metric on the open convex cone P(N) (N ≥ 2), the set

of all N × N Hermitian positive definite matrices. We endow P(N) with the Thompson

metric defined by

d (A,B) = max
{
logM

(
A/B

)
, logM

(
B/A

)}
,

where M(A/B) = inf{l > 0 : A ≤ lB} = l+(B-1/2AB-1/2), the maximal eigenvalue of B-1/

2AB-1/2. Here, X ≤ Y means that Y - X is positive semi-definite and X < Y means that Y

- X is positive definite. Thompson [42] has proved that P(n) is a complete metric space

with respect to the Thompson metric d and d(A, B) = |log( A-1/2BA-1/2)|, where |⋅|
stands for the spectral norm. The Thompson metric exists on any open normal convex

cones of real Banach spaces; in particular, the open convex cone of positive definite

operators of a Hilbert space. It is invariant under the matrix inversion and congruence

transformations, that is,

d (A,B) = d
(
A−1,B−1) = d

(
MAM∗,MBM∗) (16)

for any nonsingular matrix M. The other useful result is the nonpositive curvature

property of the Thompson metric, that is,

d
(
Xr ,Yr) ≤ r d (X,Y) , r ∈ [0, 1]. (17)

By the invariant properties of the metric, we then have

d
(
MXrM∗,MYrM∗) ≤ |r| d(X,Y), r ∈ [−1, 1] (18)

for any X, Y Î P(N) and nonsingular matrix M.

Lemma 3.1 [40]For all A, B, C, D Î P(N), we have

d (A + B,C +D) ≤ max {d (A,C) , d (B,D)} .

In particular,

d (A + B,A + C) ≤ d(B,C).

3.1 A convergence result

We shall prove the following convergence result.
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Theorem 3.1 Suppose that l = max{|a|, |b|} Î (0,1). Then

(i) Equation (15) has a unique equilibrium point in P(N), that is, there exists a

unique U Î P(N) such that

U = Q + A∗UαA + B∗UβB;

(ii) for any X0, X1 > 0, the iterative sequence {Xn} defined by (15) converges to U.

Proof. Define the mapping f : P(N) × P(N) ® P(N) by

f (X,Y) = Q + A∗XαA + B∗YβB, X,Y ∈ P(N).

Using Lemma 3.1 and properties (16)-(18), for all X, Y, Z Î P(N), we have

d
(
f (X,Y), f (Y,Z)

)
= d

(
Q + A∗XαA + B∗YβB,Q + A∗YαA + B∗ZβB

)
≤ d

(
A∗XαA + B∗YβB,A∗YαA + B∗ZβB

)
≤ max

{
d
(
A∗XαA,A∗YαA

)
, d

(
B∗YβB,B∗ZβB

)}
≤ max

{|α| d(X,Y), |β| d(Y,Z)}
≤ max {|α| , |β|}max

{
d(x,Y), d(Y,Z)

}
= λmax

{
d(x,Y), d(Y,Z)

}
.

Thus we proved that

d
(
f (X,Y), f (Y,Z)

) ≤ λmax {d (X,Y) , d (Y,Z)}

for all X, Y, Z Î P(N). Since l Î (0, 1), (i) and (ii) follow immediately from Theorem

1.3.

3.2 Numerical experiments
All programs are written in MATLAB version 7.1.

We consider the iterative sequence {Xn} defined by

Xn+1 = Q + A∗X1/2
n−1A + B∗X1/3

n B, X0,X1 > 0, (19)

where

A =

⎛
⎝ 0.306 0.6894 0.6093
0.2514 0.4285 0.7642
0.0222 0.0987 0.8519

⎞
⎠ , B =

⎛
⎝0.9529 0.645 0.4801

0.441 0.1993 0.9823
0.9712 0.0052 0.92

⎞
⎠

and

X0 =

⎛
⎝1 0 0
0 1 0
0 0 1

⎞
⎠ , X1 = Q =

⎛
⎝ 10 3.85 −3.85

3.85 10 3.92
−3.85 3.92 10

⎞
⎠ .
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It is clear that from our Theorem 3.1, Eq.(19) has a unique equilibrium point U Î P

(3). We denote by Rm (m ≥ 1) the residual error at the iteration m, that is,

Rm =
∥∥∥Xm+1 −

(
Q + A∗X1/2

m+1A + B∗X1/3
m+1B

)∥∥∥ ,
where |⋅| is the spectral norm.

After 40 iterations, we obtain

U � X40 =

⎛
⎝17.22 7.559 4.429
7.559 14.55 10.38
4.429 10.38 26.56

⎞
⎠

with residual error

R40 = 1.624 × 10−14.

The convergence history of the algorithm (19) is given by Figure 1.
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