RESEARCH Open Access

Periodic boundary value problems for nonlinear first-order impulsive dynamic equations on time scales

Da-Bin Wang

Correspondence: wangdb@lut.cn Department of Applied Mathematics, Lanzhou University of Technology, Lanzhou, Gansu 730050, People's Republic of China

Abstract

By using the classical fixed point theorem for operators on cone, in this article, some results of one and two positive solutions to a class of nonlinear first-order periodic boundary value problems of impulsive dynamic equations on time scales are obtained. Two examples are given to illustrate the main results in this article. **Mathematics Subject Classification**: 39A10; 34B15.

Keywords: time scale, periodic boundary value problem, positive solution, fixed point, impulsive dynamic equation

1 Introduction

Let **T** be a time scale, i.e., **T** is a nonempty closed subset of R. Let 0, T be points in **T**, an interval $(0, T)_{\mathbf{T}}$ denoting time scales interval, that is, $(0, T)_{\mathbf{T}} := (0, T) \cap \mathbf{T}$. Other types of intervals are defined similarly.

The theory of impulsive differential equations is emerging as an important area of investigation, since it is a lot richer than the corresponding theory of differential equations without impulse effects. Moreover, such equations may exhibit several real world phenomena in physics, biology, engineering, etc. (see [1-3]). At the same time, the boundary value problems for impulsive differential equations and impulsive difference equations have received much attention [4-18]. On the other hand, recently, the theory of dynamic equations on time scales has become a new important branch (see, for example, [19-21]). Naturally, some authors have focused their attention on the boundary value problems of impulsive dynamic equations on time scales [22-36]. However, to the best of our knowledge, few papers concerning PBVPs of impulsive dynamic equations on time scales with semi-position condition.

In this article, we are concerned with the existence of positive solutions for the following PBVPs of impulsive dynamic equations on time scales with semi-position condition

$$\begin{cases} x^{\Delta}(t) + f(t, x(\sigma(t))) = 0, & t \in J := [0, T]_{T'}, \quad t \neq t_k, \quad k = 1, 2, \dots, m, \\ x(t_k^+) - x(t_k^-) = I_k(x(t_k^-)), \quad k = 1, 2, \dots, m, \\ x(0) = x(\sigma(T)), \end{cases}$$
(1.1)

where **T** is an arbitrary time scale, T > 0 is fixed, 0, $T \in \mathbf{T}$, $f \in C$ ($J \times [0, \infty)$, ($-\infty$, ∞)), $I_k \in C([0, \infty), [0, \infty))$, $t_k \in (0, T)_{\mathbf{T}}$, $0 < t_1 < ... < t_m < T$, and for each k = 1, 2,..., m, $x(t_k^+) = \lim_{h \to 0^+} x(t_k + h)$ and $x(t_k^-) = \lim_{h \to 0^-} x(t_k + h)$ represent the right and left limits of x(t) at $t = t_k$. We always assume the following hypothesis holds (semi-position condition):

(H) There exists a positive number M such that

$$Mx - f(t, x) \ge 0$$
 for $x \in [0, \infty)$, $t \in [0, T]_T$.

By using a fixed point theorem for operators on cone [37], some existence criteria of positive solution to the problem (1.1) are established. We note that for the case $\mathbf{T} = R$ and $I_k(x) \equiv 0$, k = 1, 2,..., m, the problem (1.1) reduces to the problem studied by [38] and for the case $I_k(x) \equiv 0$, k = 1, 2,..., m, the problem (1.1) reduces to the problem (in the one-dimension case) studied by [39].

In the remainder of this section, we state the following fixed point theorem [37].

Theorem 1.1. Let X be a Banach space and $K \subseteq X$ be a cone in X. Assume Ω_1 , Ω_2 are bounded open subsets of X with $0 \in \Omega_1 \subset \bar{\Omega}_1 \subset \Omega_2$ and $\Phi: K \cap (\bar{\Omega}_2 \setminus \Omega_1) \to K$ is a completely continuous operator. If

- (i) There exists $u_0 \in K \setminus \{0\}$ such that $u \Phi u \neq \lambda u_0$, $u \in K \cap \partial \Omega_2$, $\lambda \geq 0$; $\Phi u \neq \tau u$, $u \in K \cap \partial \Omega_1$, $\tau \geq 1$, or
- (ii) There exists $u_0 \in K \setminus \{0\}$ such that $u \Phi u \neq \lambda u_0$, $u \in K \cap \partial \Omega_1$, $\lambda \geq 0$; $\Phi u \neq \tau u$, $u \in K \cap \partial \Omega_2$, $\tau \geq 1$.

Then Φ has at least one fixed point in $K \cap (\bar{\Omega}_2 \setminus \Omega_1)$.

2 Preliminaries

Throughout the rest of this article, we always assume that the points of impulse t_k are right-dense for each k = 1, 2,...,m.

We define

$$PC = \{x \in [0, \sigma(T)]_T \to R : x_k \in C(J_k, R), k = 0, 1, 2, ..., m \text{ and there exist } x(t_b^+) \text{ and } x(t_b^-) \text{ with } x(t_b^-) = x(t_k), k = 1, 2, ..., m\},$$

where x_k is the restriction of x to $J_k = (t_k, t_{k+1}]_T \subset (0, \sigma(T)]_T$, k = 1, 2,..., m and $J_0 = [0, t_1]_T$, $t_{m+1} = \sigma(T)$.

Let

$$X = \{x : x \in PC, \quad x(0) = x(\sigma(T))\}\$$

with the norm $||x|| = \sup_{t \in [0, \sigma(T)]_T} |x(t)|$, then X is a Banach space.

Lemma 2.1. Suppose M > 0 and $h: [0, T]_T \to R$ is rd-continuous, then x is a solution of

$$x(t) = \int_{0}^{\sigma(T)} G(t,s)h(s)\Delta s + \sum_{k=1}^{m} G(t,t_k)I_k(x(t_k)), \quad t \in [0,\sigma(T)]_{T},$$

where
$$G(t,s) = \begin{cases} \frac{e_M(s,t)e_M(\sigma(T),0)}{e_M(\sigma(T),0)-1}, & 0 \leq s \leq t \leq \sigma(T), \\ \frac{e_M(s,t)}{e_M(\sigma(T),0)-1}, & 0 \leq t < s \leq \sigma(T), \end{cases}$$

if and only if x is a solution of the boundary value problem

$$\begin{cases} x^{\Delta}(t) + Mx(\sigma(t)) = h(t), & t \in J := [0, T]_{T}, \quad t \neq t_{k}, \quad k = 1, 2, \dots, m, \\ x(t_{k}^{+}) - x(t_{k}^{-}) = I_{k}(x(t_{k}^{-})), \quad k = 1, 2, \dots, m, \\ x(0) = x(\sigma(T)). \end{cases}$$

Proof. Since the proof similar to that of [34, Lemma 3.1], we omit it here. **Lemma 2.2.** Let G(t, s) be defined as in Lemma 2.1, then

$$\frac{1}{e_M(\sigma(T),0)-1} \le G(t,s) \le \frac{e_M(\sigma(T),0)}{e_M(\sigma(T),0)-1} \quad \text{for all } t,s \in [0,\sigma(T)]_{\mathbb{T}}.$$

Proof. It is obviously, so we omit it here.

Remark 2.1. Let G(t, s) be defined as in Lemma 2.1, then $\int_0^{\sigma(T)} G(t, s) \Delta s = \frac{1}{M}$

For $u \in X$, we consider the following problem:

$$\begin{cases} x^{\Delta}(t) + Mx(\sigma(t)) = Mu(\sigma(t)) - f(t, u(\sigma(t)), & t \in [0, T]_{T}, & t \neq t_{k}, & k = 1, 2, ..., m, \\ x(t_{k}^{+}) - x(t_{k}^{-}) = I_{k}(x(t_{k}^{-})), & k = 1, 2, ..., m, \\ x(0) = x(\sigma(T)). \end{cases}$$
(2.1)

It follows from Lemma 2.1 that the problem (2.1) has a unique solution:

$$x(t) = \int\limits_0^{\sigma(T)} G(t,s)h_u(s)\Delta s + \sum\limits_{k=1}^m G(t,t_k)I_k(x(t_k)), \quad t \in [0,\sigma(T)]_T,$$

where $h_u(s) = Mu(\sigma(s)) - f(s, u(\sigma(s))), s \in [0, T]_T$.

We define an operator $\Phi: X \to X$ by

$$\Phi(u)(t) = \int_{0}^{\sigma(T)} G(t,s)h_{u}(s)\Delta s + \sum_{k=1}^{m} G(t,t_{k})I_{k}(u(t_{k})), \quad t \in [0,\sigma(T)]_{T}.$$

It is obvious that fixed points of Φ are solutions of the problem (1.1).

Lemma 2.3. $\Phi: X \to X$ is completely continuous.

Proof. The proof is divided into three steps.

Step 1: To show that $\Phi: X \to X$ is continuous.

Let $\{u_n\}_{n=1}^{\infty}$ be a sequence such that $u_n \to u$ $(n \to \infty)$ in X. Since f(t, u) and $I_k(u)$ are continuous in x, we have

$$|h_{un}(t) - h_u(t)| = |M(u_n - u) - (f(t, u_n) - f(t, u))| \to 0 (n \to \infty),$$

$$|I_k(u_n(t_k)) - I_k(u(t_k))| \to 0 (n \to \infty).$$

So

$$\begin{split} & \left| \Phi(u_n)(t) - \Phi(u)(t) \right| \\ & = \left| \int_0^{\sigma(T)} G(t,s) [h_{u_n}(s) - h_u(s)] \Delta s + \sum_{k=1}^m G(t,t_k) [I_k(u_n(t_k)) - I_k(u(t_k))] \right| \\ & \leq \frac{e_M(\sigma(T),0)}{e_M(\sigma(T),0) - 1} \left[\int_0^{\sigma(T)} \left| h_{u_n}(s) - h_u(s) \right| \Delta s + \sum_{k=1}^m \left| I_k(u_n(t_k)) - I_k(u(t_k)) \right| \right] \to 0 \\ & \to 0 \\ \end{split}$$

which leads to $||\Phi u_n - \Phi u|| \to 0 \ (n \to \infty)$. That is, $\Phi: X \to X$ is continuous.

Step 2: To show that Φ maps bounded sets into bounded sets in X.

Let $B \subset X$ be a bounded set, that is, $\exists r > 0$ such that $\forall u \in B$ we have $||u|| \le r$. Then, for any $u \in B$, in virtue of the continuities of f(t, u) and $I_k(u)$, there exist c > 0, $c_k > 0$ such that

$$|f(t,u)| \le c$$
, $|I_k(u)| \le c_k$, $k = 1, 2, ..., m$.

We get

$$|\Phi(u)(t)| = \left| \int_{0}^{\sigma(T)} G(t,s)h_{u}(s)\Delta s + \sum_{k=1}^{m} G(t,t_{k})I_{k}(u(t_{k})) \right|$$

$$\leq \int_{0}^{\sigma(T)} G(t,s) |h_{u}(s)| \Delta s + \sum_{k=1}^{m} G(t,t_{k}) |I_{k}(u(t_{k}))|$$

$$\leq \frac{e_{M}(\sigma(T),0)}{e_{M}(\sigma(T),0)-1} \left[\sigma(T)(Mr+c) + \sum_{k=1}^{m} c_{k} \right].$$

Then we can conclude that Φu is bounded uniformly, and so $\Phi(B)$ is a bounded set.

Step 3: To show that Φ maps bounded sets into equicontinuous sets of X.

Let
$$t_1, t_2 \in (t_k, t_{k+1}]_T \cap [0, \sigma(T)]_T, u \in B$$
, then

$$\begin{aligned} &|\Phi(u)(t_1) - \Phi(u)(t_2)| \\ &\leq \int_{0}^{\sigma(T)} |G(t_1,s) - G(t_2,s)| |h_u(s)| \Delta s + \sum_{k=1}^{m} |G(t_1,t_k) - G(t_2,t_k)| |I_k(u(t_k))|. \end{aligned}$$

The right-hand side tends to uniformly zero as $|t_1 - t_2| \rightarrow 0$.

Consequently, Steps 1-3 together with the Arzela-Ascoli Theorem shows that $\Phi: X \to X$ is completely continuous.

Let

$$K = \{u \in X : u(t) \ge \delta \|u\|, \quad t \in [0, \sigma(T)]_T\},\$$

where $\delta = \frac{1}{e_M(\sigma(T), 0)} \in (0, 1)$. It is not difficult to verify that K is a cone in X.

From condition (H) and Lemma 2.2, it is easy to obtain following result:

Lemma 2.4. Φ maps K into K.

3 Main results

For convenience, we denote

$$f^{0} = \lim_{u \to 0^{+}} \sup \max_{t \in [0,T]_{T}} \frac{f(t,u)}{u}, \quad f^{\infty} = \lim_{u \to \infty} \sup \max_{t \in [0,T]_{T}} \frac{f(t,u)}{u},$$
$$f_{0} = \lim_{u \to 0^{+}} \inf \min_{t \in [0,T]_{T}} \frac{f(t,u)}{u}, \quad f_{\infty} = \lim_{u \to \infty} \inf \min_{t \in [0,T]_{T}} \frac{f(t,u)}{u}.$$

and

$$I_0 = \lim_{u \to 0^+} \frac{I_k(u)}{u}, \quad I_\infty = \lim_{u \to \infty} \frac{I_k(u)}{u}.$$

Now we state our main results.

Theorem 3.1. Suppose that

 $(H_1) f_0 > 0, f^{\infty} < 0, I_0 = 0 \text{ for any } k; \text{ or }$

$$(H_2) f_{\infty} > 0, f^0 < 0, I_{\infty} = 0 \text{ for any } k.$$

Then the problem (1.1) has at least one positive solutions.

Proof. Firstly, we assume (H_1) holds. Then there exist $\varepsilon > 0$ and $\beta > \alpha > 0$ such that

$$f(t,u) \ge \varepsilon u, \quad t \in [0,T]_{\mathbb{T}}, \quad u \in (0,\alpha],$$
 (3.1)

$$I_k(u) \le \frac{[e_m(\sigma(T), 0) - 1]\varepsilon}{2Mme_M(\sigma(T), 0)} u, u \in (0, \alpha], \quad \text{for any } k,$$
(3.2)

and

$$f(t, u) \le -\varepsilon u, \quad t \in [0, T]_{\mathbf{T}}, \quad u \in [\beta, \infty).$$
 (3.3)

Let $\Omega_1 = \{u \in X: ||u|| < r_1\}$, where $r_1 = \alpha$. Then $u \in K \cap \partial \Omega_1$, $0 < \delta \alpha = \delta ||u|| \le u(t) \le \alpha$, in view of (3.1) and (3.2) we have

$$\Phi(u)(t) = \int_{0}^{\sigma(T)} G(t,s)h_{u}(s)\Delta s + \sum_{k=1}^{m} G(t,t_{k})I_{k}(u(t_{k}))$$

$$\leq \int_{0}^{\sigma(T)} G(t,s)(M-\varepsilon)u(\sigma(s))\Delta s + \sum_{k=1}^{m} G(t,t_{k})\frac{[e_{M}(\sigma(T),0)-1]\varepsilon}{2Mme_{M}(\sigma(T),0)}u(t_{k})$$

$$\leq \frac{(M-\varepsilon)}{M} ||u|| + \frac{e_{M}(\sigma(T),0)}{e_{M}(\sigma(T),0)-1} \sum_{k=1}^{m} \frac{[e_{M}(\sigma(T),0)-1]\varepsilon}{2Mme_{M}(\sigma(T),0)} ||u||$$

$$= \frac{(M-\frac{\varepsilon}{2})}{M} ||u||$$

$$\leq ||u||, t \in [0,\sigma(T)]_{T},$$

which yields $||\Phi(u)|| < ||u||$.

Therefore

$$\Phi u \neq \tau u, \quad u \in K \cap \partial \Omega_1, \quad \tau \ge 1.$$
 (3.4)

On the other hand, let $\Omega_2 = \{u \in X: ||u|| < r_2\}$, where $r_2 = \frac{\beta}{\delta}$

Choose $u_0 = 1$, then $u_0 \in K \setminus \{0\}$. We assert that

$$u - \Phi u \neq \lambda u_0, \quad u \in K \cap \partial \Omega_2, \quad \lambda \ge 0.$$
 (3.5)

Suppose on the contrary that there exist $\bar{u} \in K \cap \partial \Omega_2$ and $\bar{\lambda} \geq 0$ such that

$$\bar{u} - \Phi \bar{u} = \bar{\lambda} u_0$$

Let $\varsigma = \min_{t \in [0, \sigma(T)]_{\tau}} \bar{u}(t)$, then $\varsigma \ge \delta \|\bar{u}\| = \delta r_2 = \beta$, we have from (3.3) that

$$\begin{split} \bar{u}(t) &= \Phi(\bar{u})(t) + \bar{\lambda} \\ &= \int_{0}^{\sigma(T)} G(t,s) h_{\bar{u}}(s) \Delta s + \sum_{k=1}^{m} G(t,t_{k}) I_{k}(\bar{u}(t_{k})) + \bar{\lambda} \\ &\geq \int_{0}^{\sigma(T)} G(t,s) h_{\bar{u}}(s) \Delta s + \bar{\lambda} \\ &\geq \frac{(M+\varepsilon)}{M} \varsigma + \bar{\lambda}, \quad t \in [0,\sigma(T)]_{T}. \end{split}$$

Therefore,

$$\varsigma = \min_{t \in [0, \sigma(T)]_{T}} \bar{u}(t) \ge \frac{(M + \varepsilon)}{M} \varsigma + \bar{\lambda} > \varsigma,$$

which is a contradiction.

It follows from (3.4), (3.5) and Theorem 1.1 that Φ has a fixed point $u^* \in K \cap (\bar{\Omega}_2 \setminus \Omega_1)$, and u^* is a desired positive solution of the problem (1.1).

Next, suppose that (H_2) holds. Then we can choose $\varepsilon' > 0$ and $\beta' > \alpha' > 0$ such that

$$f(t,u) \ge \varepsilon' u, \quad t \in [0,T]_{\mathsf{T}}, \quad u \in [\beta',\infty),$$
 (3.6)

$$I_k(u) \le \frac{[e_M(\sigma(T), 0) - 1]\varepsilon'}{2Mme_M(\sigma(T), 0)} u, \quad u \in [\beta', \infty) \text{ for any } k,$$
(3.7)

and

$$f(t,u) \le -\varepsilon' u, \quad t \in [0,T]_{\mathbf{T}}, \quad u \in (0,\alpha']. \tag{3.8}$$

Let $\Omega_3 = \{u \in X: ||u|| < r_3\}$, where $r_3 = \alpha'$. Then for any $u \in K \cap \partial \Omega_3$, $0 < \delta ||u|| \le u$ $(t) \le ||u|| = \alpha'$.

It is similar to the proof of (3.5), we have

$$u - \Phi u \neq \lambda u_0, \quad u \in K \cap \partial \Omega_3, \quad \lambda \ge 0.$$
 (3.9)

Let $\Omega_4 = \{u \in X: ||u|| < r_4\}$, where $r_4 = \frac{\beta'}{\delta}$. Then for any $u \in K \cap \partial \Omega_4$, $u(t) \ge \delta ||u|| = \delta r_4 = \beta'$, by (3.6) and (3.7), it is easy to obtain

$$\Phi u \neq \tau u, \quad u \in K \cap \partial \Omega_4, \quad \tau \ge 1.$$
 (3.10)

It follows from (3.9), (3.10) and Theorem 1.1 that Φ has a fixed point $u^* \in K \cap (\bar{\Omega}_4 \setminus \Omega_3)$, and u^* is a desired positive solution of the problem (1.1).

Theorem 3.2. Suppose that

$$(H_3) f^0 < 0, f^\infty < 0;$$

 (H_4) there exists $\rho > 0$ such that

$$\min\{f(t, u) - u | t \in [0, T]_{T}, \quad \delta \rho \le u \le \rho\} > 0;$$
 (3.11)

$$I_k(u) \le \frac{[e_M(\sigma(T), 0) - 1]}{Mme_M(\sigma(T), 0)} u, \quad \delta \rho \le u \le \rho, \quad \text{for any } k.$$
 (3.12)

Then the problem (1.1) has at least two positive solutions.

Proof. By (H₃), from the proof of Theorem 3.1, we should know that there exist $\beta'' > \rho > \alpha'' > 0$ such that

$$u - \Phi u \neq \lambda u_0, \quad u \in K \cap \partial \Omega_5, \quad \lambda \ge 0,$$
 (3.13)

$$u - \Phi u \neq \lambda u_0, \quad u \in K \cap \partial \Omega_6, \quad \lambda > 0,$$
 (3.14)

where $\Omega_5 = \{u \in X: ||u|| < r_5\}, \ \Omega_6 = \{u \in X: ||u|| < r_6\}, \ r_5 = \alpha'', r_6 = \frac{\beta''}{\delta}.$

By (3.11) of (H₄), we can choose $\varepsilon > 0$ such that

$$f(t,u) \ge (1+\varepsilon)u, \quad t \in [0,T]_{\mathsf{T}}, \quad \delta\rho \le u \le \rho.$$
 (3.15)

Let $\Omega_7 = \{u \in X: ||u|| < \rho\}$, for any $u \in K \cap \partial \Omega_7$, $\delta \rho = \delta ||u|| \le u(t) \le ||u|| = \rho$, from (3.12) and (3.15), it is similar to the proof of (3.4), we have

$$\Phi u \neq \tau u, \quad u \in K \cap \partial \Omega_7, \quad \tau \ge 1.$$
 (3.16)

By Theorem 1.1, we conclude that Φ has two fixed points $u^{**} \in K \cap (\bar{\Omega}_6 \setminus \Omega_7)$ and $u^{***} \in K \cap (\bar{\Omega}_7 \setminus \Omega_5)$, and u^{***} are two positive solution of the problem (1.1).

Similar to Theorem 3.2, we have:

Theorem 3.3. Suppose that

$$(H_4) f_0 > 0, f_\infty > 0, I_0 = 0, I_\infty = 0;$$

(H₅) there exists $\rho > 0$ such that

$$\max\{f(t, u)|t \in [0, T]_{T}, \delta \rho < u < \rho\} < 0.$$

Then the problem (1.1) has at least two positive solutions.

4 Examples

Example 4.1. Let $T = [0, 1] \cup [2,3]$. We consider the following problem on T

$$\begin{cases} x^{\Delta}(t) + f(t, x(\sigma(t))) = 0, & t \in [0, 3]_{T}, \quad t \neq \frac{1}{2}, \\ x\left(\frac{1}{2}^{+}\right) - x\left(\frac{1}{2}^{-}\right) = I\left(x\left(\frac{1}{2}\right)\right), \\ x(0) = x(3), \end{cases}$$
(4.1)

where T = 3, $f(t, x) = x - (t + 1)x^2$, and $I(x) = x^2$

Let M = 1, then, it is easy to see that

$$Mx - f(t, x) = (t + 1)x^2 \ge 0 \text{ for } x \in [0, \infty), \quad t \in [0, 3]_T$$

and

$$f_0 > 1$$
, $f^{\infty} = -\infty$, and $I_0 = 0$.

Therefore, by Theorem 3.1, it follows that the problem (4.1) has at least one positive solution.

Example 4.2. Let $T = [0, 1] \cup [2,3]$. We consider the following problem on T

$$\begin{cases} x^{\Delta}(t) + f(t, x(\sigma(t))) = 0, & t \in [0, 3]_{T}, \quad t \neq \frac{1}{2}, \\ x\left(\frac{1}{2}^{+}\right) - x\left(\frac{1}{2}^{-}\right) = I\left(x\left(\frac{1}{2}\right)\right), \\ x(0) = x(3), \end{cases}$$
(4.2)

where T = 3, $f(t, x) = 4e^{1-4e^2}x - (t+1)x^2e^{-x}$, and $I(x) = x^2e^{-x}$.

Choose M = 1, $\rho = 4e^2$, then $\delta = \frac{1}{2e^2}$, it is easy to see that

$$Mx - f(t, x) = x(1 - 4e^{1 - 4e^2}) + (t + 1)x^2e^{-x} \ge 0 \text{ for } x \in [0, \infty), \quad t \in [0, 3]_T,$$

 $f_0 \ge 4e^{1 - 4e^2} > 0, \quad f_\infty \ge 4e^{1 - 4e^2} > 0, \quad I_0 = 0, \quad I_\infty = 0,$

and

$$\max(f(t,u) \mid t \in [0,T]_{\mathsf{T}}, \delta \rho \leq u \leq \rho\} = \max\{f(t,u) \mid t \in [0,3]_{\mathsf{T}}, 2 \leq u \leq 4e^2\} = 16e^{3-4e^2}(1-e) < 0.$$

Therefore, together with Theorem 3.3, it follows that the problem (4.2) has at least two positive solutions.

Acknowledgements

The author thankful to the anonymous referee for his/her helpful suggestions for the improvement of this article. This work is supported by the Excellent Young Teacher Training Program of Lanzhou University of Technology (Q200907)

Competing interests

The author declares that they have no competing interests.

Received: 23 August 2011 Accepted: 15 February 2012 Published: 15 February 2012

References

- Bainov, DD, Simeonov, PS: Impulsive Differential Equations: Periodic Solutions and Applications. Longman Scientific and Technical, Harlow (1993)
- Benchohra, M, Henderson, J, Ntouyas, SK: Impulsive Differential Equations and Inclusions. Hindawi Publishing Corporation, New York2 (2006)
- 3. Samoilenko, AM, Perestyuk, NA: Impulsive Differential Equations. World Scientific, Singapore (1995)
- Agarwal, RP, O'Regan, D: Multiple nonnegative solutions for second order impulsive differential equations. Appl Math Comput. 114, 51–59 (2000). doi:10.1016/S0096-3003(99)00074-0
- Feng, M, Du, B, Ge, W: Impulsive boundary value problems with integral boundary conditions and one-dimensional p-Laplacian. Nonlinear Anal. 70, 3119–3126 (2009). doi:10.1016/j.na.2008.04.015
- Feng, M, Xie, D: Multiple positive solutions of multi-point boundary value problem for second-order impulsive differential equations. J Comput Appl Math. 223, 438–448 (2009). doi:10.1016/j.cam.2008.01.024
- He, Z, Zhang, X: Monotone iteative technique for first order impulsive differential equations with peroidic boundary conditions. Appl Math Comput. 156, 605–620 (2004). doi:10.1016/j.amc.2003.08.013
- Li, JL, Nieto, JJ, Shen, J: Impulsive periodic boundary value problems of first-order differential equastions. J Math Anal Appl. 325, 226–236 (2007). doi:10.1016/j.jmaa.2005.04.005
- 9. Li, JL, Shen, JH: Positive solutions for first-order difference equation with impulses. Int J Diff Equ. 2, 225–239 (2006)
- Nieto, JJ: Periodic boundary value problems for first-order impulsive ordinary diffeer-ential equations. Nonlinear Anal. 51, 1223–1232 (2002). doi:10.1016/S0362-546X(01)00889-6
- Nieto, JJ, O'Regan, D: Variational approach to impulsive differential equations. Nonlinear Anal Real World Appl. 10, 680–690 (2009). doi:10.1016/j.nonrwa.2007.10.022
- Nieto, JJ, Rodriguez-Lopez, R: Periodic boundary value problem for non-Lipschitzian impulsive functional differential equations. J Math Anal Appl. 318, 593–610 (2006). doi:10.1016/j.jmaa.2005.06.014
- Sun, J, Chen, H, Nieto, JJ, Otero-Novoa, M: The multiplicity of solutions for perturbed second-order Hamiltonian systems with impulsive effects. Nonlinear Anal. 72, 4575–4586 (2010). doi:10.1016/j.na.2010.02.034
- Tian, Y, Ge, W: Applications of variational methods to boundary-value problem for impulsive differential equations. Proceedings of the Edinburgh Mathematical Society. 51, 509–527 (2008)
- Xiao, J, Nieto, JJ: Variational approach to some damped Dirichlet nonlinear impulsive differential equations. J Frankl Inst. 348, 369–377 (2011). doi:10.1016/j.jfranklin.2010.12.003
- 16. Zhou, J, Li, Y: Existence and multiplicity of solutions for some Dirichlet problems with impulsive effects. Nonlinear Anal. 71, 2856–2865 (2009). doi:10.1016/j.na.2009.01.140
- 17. Zhang, H, Li, Z: Variational approach to impulsive differential equations with periodic boundary conditions. Nonlinear Anal Real World Appl. 11, 67–78 (2010). doi:10.1016/j.nonrwa.2008.10.016

- Zhang, Z, Yuan, R: An application of variational methods to Dirichlet boundary value problem with impulses. Nonlinear Anal Real World Appl. 11, 155–162 (2010). doi:10.1016/j.nonrwa.2008.10.044
- Bohner, M, Peterson, A: Dynamic Equations on Time Scales: An Introduction with Applications. Birkhauser, Boston. (2001)
- 20. Bohner, M, Peterson, A: Advances in Dynamic Equations on Time Scales. Birkhauser, Boston (2003)
- Hilger, S: Analysis on measure chains-a unified approach to continuous and discrete calculus. Results Math. 18, 18–56 (1990)
- Benchohra, M, Henderson, J, Ntouyas, SK, Ouahab, A: On first order impulsive dynamic equations on time scales. J Diff Equ Appl. 6, 541–548 (2004)
- Benchohra, M, Ntouyas, SK, Ouahab, A: Existence results for second-order bounary value problem of impulsive dynamic equations on time scales. J Math Anal Appl. 296, 65–73 (2004). doi:10.1016/j.jmaa.2004.02.057
- 24. Benchohra, M, Ntouyas, SK, Ouahab, A: Extremal solutions of second order impulsive dynamic equations on time scales. J Math Anal Appl. 324, 425–434 (2006). doi:10.1016/j.jmaa.2005.12.028
- Chen, HB, Wang, HH: Triple positive solutions of boundary value problems for p-Laplacian impulsive dynamic equations on time scales. Math Comput Model. 47, 917–924 (2008). doi:10.1016/j.mcm.2007.06.012
- Geng, F, Zhu, D, Lu, Q: A new existence result for impulsive dynamic equations on time scales. Appl Math Lett. 20, 206–212 (2007). doi:10.1016/j.aml.2006.03.013
- Geng, F, Xu, Y, Zhu, D: Periodic boundary value problems for first-order impulsive dynamic equations on time scales. Nonlinear Anal. 69, 4074–4087 (2008). doi:10.1016/j.na.2007.10.038
- Graef, JR, Ouahab, A: Extremal solutions for nonresonance impulsive functional dynamic equations on time scales. Appl Math Comput. 196, 333–339 (2008). doi:10.1016/j.amc.2007.05.056
- Henderson, J: Double solutions of impulsive dynamic boundary value problems on time scale. J Diff Equ Appl. 8, 345–356 (2002). doi:10.1080/1026190290017405
- Li, JL, Shen, JH: Existence results for second-order impulsive boundary value problems on time scales. Nonlinear Anal. 70, 1648–1655 (2009). doi:10.1016/i.na.2008.02.047
- 31. Li, YK, Shu, JY: Multiple positive solutions for first-order impulsive integral boundary value problems on time scales. Boundary Value Probl. 2011, 12 (2011). doi:10.1186/1687-2770-2011-12
- 32. Liu, HB, Xiang, X: A class of the first order impulsive dynamic equations on time scales. Nonlinear Anal. 69, 2803–2811 (2008). doi:10.1016/j.na.2007.08.052
- 33. Wang, C, Li, YK, Fei, Y: Three positive periodic solutions to nonlinear neutral functional differential equations with impulses and parameters on time scales. Math Com-put Model. 52, 1451–1462 (2010). doi:10.1016/j.mcm.2010.06.009
- 34. Wang, DB: Positive solutions for nonlinear first-order periodic boundary value problems of impulsive dynamic equations on time scales. Comput Math Appl. **56**, 1496–1504 (2008). doi:10.1016/j.camwa.2008.02.038
- Wang, ZY, Weng, PX: Existence of solutions for first order PBVPs with impulses on time scales. Comput Math Appl. 56, 2010–2018 (2008). doi:10.1016/j.camwa.2008.04.012
- Zhang, HT, Li, YK: Existence of positive periodic solutions for functional differential equations with impulse effects on time scales. Commun Nonlinear Sci Numer Simul. 14, 19–26 (2009). doi:10.1016/j.cnsns.2007.08.006
- 37. Guo, D, Lakshmikantham, V: Nonlinear Problems in Abstract Cones. Academic Press, New York (1988)
- Peng, S: Positive solutions for first order periodic boundary value problem. Appl Math Comput. 158, 345–351 (2004). doi:10.1016/j.amc.2003.08.090
- Sun, JP, Li, WT: Positive solution for system of nonlinear first-order PBVPs on time scales. Nonlinear Anal. 62, 131–139 (2005). doi:10.1016/j.na.2005.03.016

doi:10.1186/1687-1847-2012-12

Cite this article as: Wang: Periodic boundary value problems for nonlinear first-order impulsive dynamic equations on time scales. Advances in Difference Equations 2012 2012:12.

Submit your manuscript to a SpringerOpen journal and benefit from:

- ► Convenient online submission
- ► Rigorous peer review
- ▶ Immediate publication on acceptance
- ► Open access: articles freely available online
- ► High visibility within the field
- ► Retaining the copyright to your article

Submit your next manuscript at ▶ springeropen.com