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Abstract

In this article, sufficient conditions for the existence result of quasilinear multi-delay
integro-differential equations of fractional orders with nonlocal impulsive conditions
in Banach spaces have been presented using fractional calculus, resolvent operators,
and Banach fixed point theorem. As an application that illustrates the abstract results,
a nonlocal impulsive quasilinear multi-delay integro-partial differential system of
fractional order is given.
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Introduction
Many fractional models can be represented by the following system

dαu(t)
dtα

+ A(t, u(t))u(t) = f (t, u(t), u(β(t))) +

t∫
0

g(t, s, u(s), u(γ (s))) ds, (1:1)

u(0) + h(u) = u0, (1:2)

�u(ti) = Ii(u(ti)), (1:3)

in a Banach space X, where 0 <a ≤ 1, t Î [0, a], u0 Î X, i = 1, 2,..., m and 0 <t1 <t2 <

··· <tm <a. We assume that -A(t,.) is a closed linear operator defined on a dense domain

D(A) in X into X such that D(A) is independent of t. It is assumed also that -A(t,.) gen-

erates an evolution operator in the Banach space X. The functions f : J Xr+1 ® X, g : Λ

× Xk+1 ® X, h : PC(J, X) ® X, u(b) = (u(b1),..., u(br)), u(g) = (u(g1),..., u(gk)), and bp, gq
: J ® J are given, where p = 1, 2,..., r and q = 1, 2,..., k. Here J = [0, a] and Λ = {(t, s).

0 ≤ s ≤ t ≤ a}. Let PC (J, X) consist of functions u from J into X, such that u(t) is con-

tinuous at t ≠ ti and left continuous at t = ti and the right limit u(t+i ) exists for i = 1,

2,..., m. Clearly PC(J, X) is a Banach space with the norm ||u||PC = suptÎJ ||u(t)||, and

let �u(ti) = u(t+i ) − u(t−i ) constitutes an impulsive condition. Fractional differential

equations have proved to be valuable tools in the modelling of many phenomena in

various fields of science and engineering. Indeed, we can find numerous applications in

viscoelasticity, electrochemistry, control, porous media, electromagnetic, etc. (see [1-5]).

They involve a wide area of applications by bringing into a broader paradigm concepts

Debbouche Advances in Difference Equations 2011, 2011:5
http://www.advancesindifferenceequations.com/content/2011/1/5

© 2011 Debbouche; licensee Springer. This is an Open Access article distributed under the terms of the Creative Commons Attribution
License (http://creativecommons.org/licenses/by/2.0), which permits unrestricted use, distribution, and reproduction in any medium,
provided the original work is properly cited.

mailto:amar_debbouche@yahoo.fr
http://creativecommons.org/licenses/by/2.0


of physics and mathematics [6-8]. There has been a significant development in frac-

tional differential and partial differential equations in recent years, see Kilbas et al.

[9,10], also in fractional nonlinear systems with delay and fractional variational princi-

ples with delay, see Baleanu et al. [11,12].

The existence results to evolution equations with nonlocal conditions in Banach

space was studied first by Byszewski [13,14], subsequently, many authors were pointed

in the same field, see reference therein. Deng [15] indicated that, using the nonlocal

condition u(0) + h(u) = u0 to describe for instance, the diffusion phenomenon of a

small amount of gas in a transparent tube can give better result than using the usual

local Cauchy problem u(0) = u0. Let us observe also that since Deng’s papers, the func-

tion h is considered

h(u) =
p∑

k=1

cku(tk),

where ck, k = 1, 2,..., p are given constants and 0 ≤ t1 < ··· <tp ≤ a. However, among

the previous research on nonlocal cauchy problems, few are concerned with mild solu-

tions of fractional semilinear differential equations, see Mophou and N’Guérékata [16],

and others with fractional nonlocal boundary value problems, for instance, Ahmad et

al. [17,18].

The theory of impulsive differential equations has been emerging as an important

area of investigation in recent years, because all the structures of its emergence have

deep physical background and realistic mathematical model. The theory of impulsive

differential equations appears as a natural description of several real processes subject

to certain perturbations whose duration is negligible in comparison with the duration

of the process. It has seen considerable development in the last decade, see the mono-

graphs of Bainov and Simeonov [19], Lakshmikantham et al. [20], and Samoilenko and

Perestyuk [21] where numerous properties of their solutions are studied, and detailed

bibliographies are given.

Recently, the existence of solutions of fractional abstract differential equations with

nonlocal initial condition was investigated by N’Guérékata [22] and Li [23]. Much

attention has been paid to existence results for the impulsive differential and integro-

differential equations of fractional order in abstract spaces, see Benchohra et al. [2,24].

Several authors have studied the existence of solutions of abstract quasilinear evolution

equations in Banach space [25-27].

Regarding this article, it generalizes previous results concerned the existence of solu-

tions to nonlocal and impulsive integrodifferential equations of quasilinear type with

delays of arbitrary orders. Section “Preliminaries” is devoted to a review of some essen-

tial results. In next section, we state and prove our main results, the last section deals

to giving an example to illustrate the abstract results.

1 Preliminaries
Let X and Y be two Banach spaces such that Y is densely and continuously embedded

in X. For any Banach space Z, the norm of Z is denoted by ||·||Z. The space of all

bounded linear operators from X to Y is denoted by B(X, Y) and B(X, X) is written as

B(X). We recall some definitions in fractional calculus from Gelfand-Shilov [28] and

Podlubny [29], then some known facts of the theory of semigroups from Pazy [30].
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Definition 2.1 The fractional integral of order with the lower limit zero for a func-

tion f Î C([0, ∞)) is defined as

Iαf (t) =
1

�(α)

t∫
0

f (s)

(t − s)1−α
ds, t > 0, 0 < α < 1,

provided the right side is pointwise defined on [0, ∞), where Γ is the gamma func-

tion. Riemann-Liouville derivative of order a with the lower limit zero for a function f

Î C([0, ∞)) can be written as

LDαf (t) =
1

�(1 − α)
d
dt

t∫
0

f (s)
(t − s)α

ds, t > 0, 0 < α < 1.

The Caputo derivative of order for a function f Î C([0, ∞)) can be written as

CDαf (t)=LDα(f (t) − f (0)), t > 0, 0 < α < 1.

Remark 2.1

(1) If f Î C1([0, ∞)), then

CDαf (t) =
1

�(1 − α)

t∫
0

f ′(s)
(t − s)α

ds = I1−αf ′(t), t > 0, 0 < α < 1.

(2) The Caputo derivative of a constant is equal to zero.

(3) If f is an abstract function with values in X, then integrals which appear in Defini-

tion 2.1 are taken in Bochner’s sense.

Definition 2.2 A two parameter family of bounded linear operators U(t, s), 0 ≤ s ≤ t

≤ a, on X is called an evolution system if the following two conditions are satisfied

(i) U(t, t) = I, U(t, r)U(r, s) = U(t, s) for 0 ≤ s ≤ r ≤ t ≤ a,

(ii) (t, s) ® U(t, s) is strongly continuous for 0 ≤ s ≤ t ≤ a.

More detail about evolution system and quasilinear equation of evolution can be

found in [30, Chap. 5 and Sect. 6.4, respectively].

Let E be the Banach space formed from D(A) with the graph norm. Since - A(t) is a

closed operator, it follows that - A(t) is in the set of bounded operators from E to X.

Definition 2.3 [31-33] A resolvent operators for problem (1.1)-(1.3) is a bounded

operators valued function Ru(t, s) Î B(X), 0 ≤ s ≤ t ≤ a, the space of bounded linear

operators on X, having the following properties:

(i) Ru(t, s) is strongly continuous in s and t, Ru(s, s) = I, 0 ≤ s ≤ a, ||Ru(t, s)|| ≤ MeN

(t, s) for some constants M and N.

(ii) Ru(t, s)E ⊂ E, Ru(t, s) is strongly continuous in s and t on E.

(iii) For x Î X, Ru(t, s)x is continuously differentiable in s Î [0, a] and

∂Ru

∂s
(t, s)x = Ru(t, s)A(s, u(s))x.

(iv) For x Î X and s Î [0, a], Ru(t, s)x is continuously differentiable in t Î [s, a]

and

∂Ru

∂t
(t, s)x = −A(t, u(t))Ru(t, s)x,
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with
∂Ru

∂s
(t, s)x and

∂Ru

∂t
(t, s)x are strongly continuous on 0 ≤ s ≤ t ≤ a. Here Ru(t, s)

can be extracted from the evolution operator of the generator - A(t, u). The resolvent

operator is similar to the evolution operator for nonautonomous differential equations

in a Banach space. Let Ω be a subset of X.

Definition 2.4 (Compare [31] with [7,22,34]) By a mild solution of (1.1)-(1.3) we

mean a function u Î PC(J : X) with values in Ω satisfying the integral equation

u(t) = Ru(t, 0)u0 − Ru(t, 0)h(u)

+
1

�(α)

t∫
0

(t − s)α−1Ru(t, s)[f (s, u(s), u(β(s))) +

s∫
0

g(s, η, u(η), u(γ (η)))dη]ds

+
∑

0<ti<t

Ru(t, ti)Ii(u(ti)), t ∈ J

(2:1)

for all u0 Î X.

Definition 2.5 (Compare [35,36] with [2]) By a classical solution of (1.1)-(1.3) on J,

we mean a function u with values in X such that:

(1) u is continuous function on J \{t1, t2,..., tm} and u(t) Î D(A),

(2)
dαu
dtα

exists and continuous on J0, 0 <a < 1,

(3) u satisfies (1.1) on J0, the nonlocal condition (1.2) and the impulsive condition

(1.3), where J0 = (0, a]\{t1, t2,..., tm}. We assume the following conditions

(H1) h : PC(J : Ω) ® Y is Lipschitz continuous in X and bounded in Y , i.e., there

exist constants k1 > 0 and k2 > 0 such that

||h(u)||Y ≤ k1,
||h(u) − h(v)||Y ≤ k2 max

t∈J
||u − v||PC, u, v ∈ PC(J : X).

For the conditions (H 2 ) and (H 3 ) let Z be taken as both × and Y.

(H2) g : Λ × Zk+1 ® Z is continuous and there exist constants k3 > 0 and k4 > 0 such

that

t∫
0

||g(t, s, u1, . . . , uk+1) − g(t, s, v1, . . . , vk+1)|| Z ds ≤ k3
k+1∑
q=1

||uq − vq||Z, uq, vq ∈ X, q = 1, . . . , k + 1,

k4 = max
{ t∫
0

||g(t, s, 0, . . . , 0)||Z ds : (t, s) ∈ 	

}
.

(H3) f : J × Zr+1 ® Z is continuous and there exist constants k5 > 0 and k6 > 0 such

that

||f (t, u1, . . . , ur+1) − f (t, v1, . . . , vr+1)||Z ≤ k5
r+1∑
p=1

||up − vp||Z, up, vp ∈ X, p = 1, . . . , r + 1,

k6 = max
t∈J

||f (t, 0, . . . , 0)||Z .

(H4) bp, gq : J ® J are bijective absolutely continuous and there exist constants cp > 0

and bq > 0 such that β ′
p(t) ≥ cp and γ ′

q(t) ≥ bq, respectively, for t Î J, p = 1,..., r and q =

1,..., k.

(H5) Ii : X ® X are continuous and there exist constants li > 0, i = 1, 2,..., m such

that

||Ii(u) − Ii(v)|| ≤ li||u − v||, u, v ∈ X.
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Let us take M0 = max ||Ru(t, s)||B(Z), 0 ≤ s ≤ t ≤ a, u Î Ω.

(H6) There exist positive constants δ1, δ2, δ3 Î (0, δ /3] and l1, l2, l3 Î [0,
1
3
) such

that

δ1 = M0||u0||Y +M0k1, δ2 = M0θ , δ3 = M0ξ ,

and

λ1 = Ka||u0||Y + k1Ka +M0k2,

λ2 = Kaθ +M0σ [k5(1 + 1/c1 + · · · + 1/cr) + k3(1 + 1/b1 + · · · + 1/bk)],

λ3 = Kaξ +M0

m∑
i=1

li,

where r = s [k5(1/c1 + ··· +1/cr)+ k3(1/b1 + ··· +1/bk)], θ = sδ (k3 + k5)+ rδ + s (k4 +

k6), σ =
aα

�(1 + α)
and ξ =

m∑
i=1

(liδ + ||Ii(0)||).

Main results
Lemma 3.1 Let Ru(t, s) the resolvent operators for the fractional problem (1.1)-(1.3).

There exists a constant K > 0 such that

||Ru(t, s)ω − Rv(t, s)ω|| ≤ K||ω||Y
t∫

s

||u(τ ) − v(τ )||dτ ,

for every u, v Î PC(J : X) with values in Ω and every ω Î Y , see [30, lemma 4.4, p.

202].

Let Sδ = {u : u Î PC(J : X), u(0) + h(u) = u0, Δu(ti) = Ii(u(ti)), ||u|| ≤ δ}, for t Î J, δ >

0, u0 Î X and i = 1,..., m.

Lemma 3.2

||ϕ(t)||Y ≤ θ ,

where

ϕ(t) =
1

�(α)

t∫
0

(t − s)α−1

⎡
⎣f (s, u(s), u(β(s))) +

s∫
0

g(s, τ , u(τ ), u(γ (τ )))dτ

⎤
⎦ ds.

Proof We have

||ϕ(t)||Y

≤ 1
�(α)

t∫
0

(t − s)α−1[|| f (s, u(s), u(β1(s)), . . . , u(βr(s)) − f (s, 0, . . . , 0)|| + || f (s, 0, . . . , 0)||

+

s∫
0

||g(s, τ , u(τ ), u(γ1(τ )), . . . , u(γk(τ )) − g(s, τ , 0, . . . , 0)||dτ +

s∫
0

||g(s, τ , 0, . . . , 0)||dτ

⎤
⎦ds.
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Using H2, H3, and H4, we get

||ϕ(t)||Y

≤ 1
�(α)

t∫
0

(t − s)α−1[k5(||u(s)|| + ||u(β1(s))|| + · · · + ||u(βr(s))||) + k6

+ k3(||u(s)|| + ||u(γ1(s))|| + · · · + ||u(γk(s))||) + k4]ds

≤ 1
�(α)

t∫
0

(t − s)α−1[k5{δ + ||u(β1(s))||(β ′
1(s)/c1) + · · · + ||u(βr(s))||(β ′

r(s)/cr)} + k6

+ k3{δ + ||u(γ1(s))||(γ ′
1(s)/b1) + · · · + ||u(γk(s))||(γ ′

k(s)/bk)} + k4] ds

≤ σδ(k3 + k5) + σ (k4 + k6)

+
k5

c1�(α)

β1(t)∫
β1(0)

(t − β−1
1 (τ ))α−1||u(τ )||dτ + · · · + k5

cr�(α)

βr(t)∫
βr(0)

(t − β−1
r (τ ))α−1||u(τ )||dτ

+
k3

b1�(α)

γ1(t)∫
γ1(0)

(t − γ −1
1 (η))α−1||u(η)||dη + · · · + k3

bk�(α)

γk(t)∫
γk(0)

(t − γ −1
k (η))α−1||u(η)||dη.

Hence the required result.

Theorem 3.3 Suppose that the operator -A(t, u) generates the resolvent operator Ru

(t, s) with ||Ru (t, s)||≤ MeN(t-s). If the hypotheses (H1)-(H6) are satisfied, then the frac-

tional integro-differential equation (1.1) with nonlocal condition (1.2) and impulsive

condition (1.3) has a unique mild solution on J for all u0 Î X.

Proof Consider a mapping P on Sδ defined by

(Pu) (t) = Ru(t, 0)u0 − Ru(t, 0)h(u)

+
1

�(α)

t∫
0

(t − s)α−1Ru(t, s)

⎡
⎣f (s, u(s), u(β(s))) +

s∫
0

g(s, η, u(η), u(γ (η)))dη

⎤
⎦ds

+
∑

0<ti<t

Ru(t, ti)Ii(u(ti)).

We shall show that P : Sδ ® Sδ. For u Î Sδ, we have

||Pu(t)||Y ≤ ||Ru(t, 0)u0|| + ||Ru(t, 0)h(u)||

+

∥∥∥∥∥∥
1

�(α)

t∫
0

(t − s)α−1Ru(t, s)

⎡
⎣f (s, u(s), u(β(s))) +

s∫
0

g(s, η, u(η), u(γ (η)))dη

⎤
⎦ ds

∥∥∥∥∥∥
+

∑
0<ti<t

||Ru(t, ti)||(||Ii(u(ti)) − Ii(0)|| + ||Ii(0)||).

Using H1, Lemma 3.2 and H5, we get

||Pu(t)Y || ≤ M0

{
||u0|| + k1 + θ +

m∑
i=1

(liδ + ||Ii(0)||)
}
.

From assumption H6, one gets ||(Puμ)(t)||Y ≤ δ. Thus, P maps Sδ into itself. Now for

u, v Î Sδ , we have

||Pu(t) − Pv(t) || ≤ I1 + I2 + I3,

where

I1 = ||Ru(t, 0)u0 − Rv(t, 0)u0|| + ||Ru(t, 0)h(u) − Rv(t, 0)h(v)||,

I2 =
1

�(α)

t∫
0

(t − s)α−1||Ru(t, s)

⎡
⎣f (s, u(s), u(β(s))) +

s∫
0

g(s, η, u(η), u(γ (η)))dη

⎤
⎦

− Rv(t, s)[f (s, v(s), v(β(s))) +

s∫
0

g(s, η, v(η), v(γ (η)))dη]||ds
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and

I3 =
m∑
i=1

||Ru(t, ti)Ii(u(ti)) − Rv(t, ti)Ii(v(ti))||.

Applying Lemma 3.1 and H1, we get

I1 ≤ ||Ru(t, 0)u0 − Rv(t, 0)u0|| + ||Ru(t, 0)h(u) − Rv(t, 0)h(u)||
+ ||Rv(t, 0)h(u) − Rv(t, 0)h(v)||

≤ {Ka||u0||Y + k1Ka +M0k2}max
τ∈J

||u(τ ) − v(τ )||.

Also, we apply Lemmas 3.1,3.2, H2, H3, H4, and H6, we obtain

I2 ≤ 1
�(α)

t∫
0

(t − s)α−1

⎧⎨
⎩

∥∥∥∥∥∥Ru(t, s)

⎡
⎣f (s, u(s), u(β(s))) +

s∫
0

g(s, η, u(η), u(γ (η)))dη

⎤
⎦

− Rv(t, s)

⎡
⎣f (s, u(s), u(β(s))) +

s∫
0

g(s, η, u(η), u(γ (η)))dη

⎤
⎦

∥∥∥∥∥∥
+

∥∥∥∥∥∥Rv(t, s)

⎡
⎣f (s, u(s), u(β(s))) +

s∫
0

g(s, η, u(η), u(γ (η)))dη

⎤
⎦

− Rv(t, s)

⎡
⎣f (s, v(s), v(β(s))) +

s∫
0

g(s, η, v(η), v(γ (η)))dη

⎤
⎦

∥∥∥∥∥∥
⎫⎬
⎭ds

≤ Kaθmax
τ∈J

||u(τ ) − v(τ )||

+M0
1

�(α)

t∫
0

(t − s)α−1

⎧⎨
⎩k5

⎡
⎣||u(s) − v(s)|| +

r∑
p=1

||u(βp(s)) − v(βp(s))||(β ′
p(s)/cp)

⎤
⎦

+ k3

⎡
⎣||u(s) − v(s)|| +

k∑
q=1

||u(γq(s)) − v(γq(s))||(γ ′
q(s)/bq)

⎤
⎦

⎫⎬
⎭ds

≤ Kaθmax
τ∈J

||u(τ ) − v(τ )||
+M0σ [k5(1 + 1/c1 + · · · + 1/cr) + k3(1 + 1/b1 + · · · + 1/bk)]max

τ∈J
||u(τ ) − v(τ )||.

Again, Lemma 3.1, H5 and H6, we have

I3 ≤
m∑
i=1

{||Ru(t, ti)Ii(u(ti)) − Rv(t, ti)Ii(u(ti))|| + ||Rv(t, ti)Ii(u(ti)) − Rv(t, ti)Ii(v(ti))||}

≤
{
K

m∑
i=1

(liδ + ||Ii(0)||) a +M0

m∑
i=1

li

}
max
τ∈J

||u(τ ) − v(τ )||.

It follows from these estimations that

||Pu(t) − Pv(t) || ≤ λmax
τ∈J

||u(τ ) − v(τ )||,

where 0 ≤ l < 1. Thus P is a contraction on Sδ. From the contraction mapping theo-

rem, P has a unique fixed point u Î Sδ which is the mild solution of (1.1)-(1.3) on J.

Theorem 3.4 Assume that

(i) Conditions (H1)-(H6) hold,

(ii) Y is a reflexive Banach space with norm ||·||,

(iii) The functions f and g are uniformly Hölder continuous in t Î J.
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Then the problem (1.1)-(1.3) has a unique classical solution on J.

Proof From (i), applying Theorem 3.3, the problem (1.1)-(1.3) has a unique mild solu-

tion u Î Sδ.. Set

ω(t) = f (t, u(t), u(β(t))) +

t∫
0

g(t, s, u(s), u(γ (s))) ds.

In order to prove the regularity of the mild solution, we use the further assumptions,

it is easy to conclude that the function ω(t) is also uniformly Hölder continuous in t Î
J. Consider the following fractional differential equation

dαv(t)
dtα

+ A(t, u)u(t) = ω(t), (3:1)

with the nonlocal condition (1.2) and impulsive condition (1.3).

According to Pazy [30], the late problem has a unique solution v on J intoX given by

v(t) = Ru(t, 0)u0 − Ru(t, 0)h(u) +
1

�(α)

t∫
0

(t − s)α−1Ru(t, s)ω(s)ds

+
∑

0<ti<t

Ru(t, ti)Ii(u(ti)).

Noting that, each term on the right-hand side belongs to D(A), using the uniqueness

of v(t), we have that u(t) Î D(A). It follows that u is a unique classical solution of

(1.1)-(1.3) on J.

Application
Consider the nonlinear integro-partial differential equation of fractional order

∂αu(x, t)
∂tα

+
∑

|q|≤2m

aq(x, t)u(x, t)D
q
xu(x, t) = F(x, t, u,w1) +

t∫
0

G(x, t, s, u(x, s),w2(s))ds, (4:1)

u(x, 0) +
p∑

k=1

cku(x, tk) = g(x), (4:2)

�u(x, tk) =
∫
Rn

ρk(y, x)u(y, tk)dy, (4:3)

where 0 <a ≤ 1, 0 ≤ t1 < ··· <tp ≤ a, x Î Rn, Dq
x = Dq1

x1 . . .Dqn
xn, Dxi =

∂

∂xi
, q= (q1,...,qn) is

an n-dimensional multi-index, |q| = q1 + ··· + qn, and wi, i = 1, 2, is given by

wi(x, t) =
∑

|q|≤2m−1

bqi(x, t)D
q
xu(x, sint) +

∫
�

∑
|q|≤2m−1

cqi(x, t)D
q
yu(y, sint)dy.

Let L2(R
n) be the set of all square integrable functions on Rn. We denote by Cm(Rn)

the set of all continuous real-valued functions defined on Rn which have continuous

partial derivatives of order less than or equal to m. By Cm
0 (R

n) we denote the set of all
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functions f Î Cm(Rn) with compact supports. Let Hm(Rn) be the completion of Cm
0 (R

n)

with respect to the norm

||f ||2m =
∑
|q|≤m

∫
Rn

|Dq
xf (x)|2dx.

It is supposed that

(i) The operator A(t, u) = −∑
|q|≤2m aq(x, t)u(x, t)D

q
x is uniformly elliptic on Rn. In

other words, all the coefficients aq, |q| = 2m, are continuous and bounded on Rn and

there is a positive number c such that

(−1)m+1
∑

|q|=2m
aq(x, t)u(x, t)ξ q ≥ c|ξ |2m,

for all x Î Rn and all ξ ≠ 0, ξ Î Rn, ξ q = ξ
q1
1 . . . ξ

q
nn and |ξ |2 = ξ21 + . . . + ξ2n .

(ii) All the coefficients aq, |q| = 2m, satisfy a uniform Hölder condition on Rn. Under

these conditions the operator A with domain of definition D(A) = H2m(Rn) generates

an evolution operator defined on L2(R
n), and it is well known that H2m(Rn) is dense in

X = L2(R
n) and the initial function g(x) is an element in Hilbert space H2m(Rn), see

[14,15,35]. Applying Theorem 3.3, this achieves the proof of the existence of mild solu-

tions of the system (4.1)-(4.3). In addition,

(iii) If the coefficients bq, cq, |q| ≤ 2m - 1 satisfy a uniform Hölder condition on Rn

and the operators F and G satisfy

There are numbers L1, L2 ≥ 0 and l1, l2 Î (0, 1) such that

∑
|q|≤2m−1

∫
Rn

|F(x, t, u,Dq
xw1) − F(x, s, u,Dq

xw
∗
1)|2dx ≤ L1(|t − s|λ1 + |w1 − w∗

1|2dx).

and

∑
|q|≤2m−1

∫
Rn

| G(x, t, η, u,Dq
xw2) − G(x, s, η, u,Dq

xw2)|2dx ≤ L2|t − s|λ2 .

for all t, s Î I, (t, h), (s, h) Î Δ, and all x Î Rn. Applying Theorem 3.4, we deduce

that (4.1)-(4.3) has a unique strong solution.
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