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Let α(t) be the limiting ratio of the generalized Fibonacci numbers produced by sum-
ming along lines of slope t through the natural arrayal of Pascal’s triangle. We prove that
α(t)

√
3+t is an even function.

1. Overview

Pascal’s triangle may be arranged in the Euclidean plane by associating the binomial co-

efficient
(
i
j

)
with the point

(
j− 1

2
i,−

√
3
2
i
)
∈R2 (1.1)

for all nonnegative integers i, j such that j ≤ i, as illustrated in Figure 1.1. The points in

R2 associated with
(
i
j

)
,
(
i+1
j

)
, and

(
i+1
j+1

)
form a unit equilateral triangle. This arrayal is

called the natural arrayal of Pascal’s triangle in R2.
For all t ∈ R : −√3 < t <

√
3 and nonnegative integers k, define �k(t) to be the sum

of all binomial coefficients associated with points in R2 which are on the line of slope

t through the point in R2 associated with
(
k
0

)
. It is well known that {�k(

√
3/3)}∞k=0 is

the Fibonacci sequence F0,F1,F2, . . . , and {�k(−
√
3/3)}∞k=0 is the sequence of every other

Fibonacci number F0,F2,F4, . . . , as illustrated in Figure 1.1; for a fixed t, the sequence
{�k(t)}∞k=0 is called the generalized Fibonacci sequence induced by the slope t. Generalized
Fibonacci numbers arise in many ways; for example, for any integers a, b : 1≤ b ≤ a, the
number of ways to distribute a identical objects to any number of distinct recipients such
that each recipient receives at least b objects is

∞∑
l=1

(
l− 1+ a− l · b

l− 1

)
=�a−b

(
b− 1
b+1

√
3
)
. (1.2)
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Figure 1.1. The natural arrayal of Pascal’s triangle and Fibonacci numbers as line sums.

For all t ∈R :−√3 < t <
√
3, we define α(t) to be the limiting ratio of the generalized

Fibonacci sequence induced by the slope t; that is, α(t) := limk→∞�k+1(t)/�k(t). The
following is our main result.

Theorem 1.1. For all t ∈R :−√3 < t <
√
3, it holds that α(t)

√
3+t = α(−t)

√
3−t.

(Theorem 1.1 is easily and directly verified when t =±√3/3, since the rate of growth
of the sequence of every other Fibonacci number is the square of the rate of growth of the
Fibonacci sequence.)

Generalized Fibonacci numbers arising as line sums through Pascal’s triangle were
introduced by Dickinson [2], Harris and Styles [4], and Hochster [6], and have been
presented extensively in the literature (see [1, 5, 7]). The classical setting has been the
left-justified arrayal of Pascal’s triangle, which we define in Section 2. In the setting of
the left-justified arrayal, Harris and Styles (and, effectively, Dickinson) show that gener-
alized Fibonacci numbers satisfy the difference equation (2.5) in Section 2, and thus have
rate of growth as given in (2.6) of Section 2. Ferguson [3] investigated the roots of the
polynomial in (2.6) when q is an integer.

Our contribution is to investigate this rate of growth as a function of the generating
slope, to transfer the setting to the natural arrayal of Pascal’s triangle, and, in Section 3,
to prove Theorem 1.1. In Section 2, we review classical facts and correlate them to the
natural arrayal of Pascal’s triangle.

2. The Left-Justified Arrayal

It is sometimes easier to consider the left-justified arrayal of Pascal’s triangle in R2, in

which the binomial coefficient
(
i
j

)
is associated with the point ( j,−i) ∈ R2 for all non-

negative integers i, j : j ≤ i, as illustrated in Figure 2.1.
Consider any q = n/d > −1 such that n and d are relatively prime integers and d is

positive. For all nonnegative integers k, define Lk(q) to be the sum of all binomial coeffi-
cients associated with points in R2 on the line y = qx− (1/d)k [this choice of y-intercept

is such that every binomial coefficient
(
i
j

)
is included in such a sum for some k]. Now,

define β(q) := limk→∞Lk+1(q)/Lk(q) and also define γ(q) := limk→∞L(k+1)d(q)/Lkd(q); we
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Figure 2.1. The left-justified arrayal of Pascal’s triangle.

see from taking the limit of L(k+1)d(q)/Lkd(q)=
∏d−1

l=0 Lkd+l+1(q)/Lkd+l(q) as k→∞ that

γ(q)= [β(q)]d. (2.1)

Lines of slope q = n/d in our left-justified arrayal correspond to lines of slope

(
√
3/2)n

(1/2)n+d
=
√
3q

q+2
(2.2)

in the natural arrayal, and
(
k
0

)
is a summand of Lkd(q) and thus, for all nonnegative

integers k, Lkd(q)=�k(
√
3q/(q+2)). Hence,

γ(q)= α
(√

3q
q+2

)
. (2.3)

Defining t :=√3q/(q+2) (note that −√3 < t <
√
3), we write q as a function of t, obtain-

ing, by (2.3),

α(t)= γ
(

2t√
3− t

)
. (2.4)

For the moment, suppose that q is positive. Using the identity
(
i
j

)
+
(

i
j+1

)
=
(
i+1
j+1

)
,

there is a correspondence (see Endnote(I)) between the binomial coefficients summed
in Lk(q), those summed in Ln+k(q), and those summed in Ln+d+k(q) yielding the linear
difference equation

Ln+d+k(q)−Ln+k(q)−Lk(q)= 0 for k = 0,1,2, . . . . (2.5)

It is not hard to verify that the associated auxiliary polynomial xn+d − xn− 1 has distinct
roots, say λ1,λ2, . . . ,λn+d, and the initial conditions ensure nonzero constants c1,c2, . . . ,
cn+d ∈ R in the expansion Lk(q) =

∑n+d
l=1 clλ

k
l , k = 0,1,2, . . . (these constants cl are given

explicitly in [2]). Among these roots, λ1,λ2, . . . ,λn+d, there is a unique positive root, and
this root is also the root ofmaximummodulus (see Endnote(II)). Thus, β(q) is the unique
positive root of xn+d − xn− 1 and, substituting (2.1) into this,

γ(q) is the unique positive root of xq+1− xq− 1. (2.6)
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If, instead, −1 < q ≤ 0 (i.e., d >−n ≥ 0), then similar analysis yields the linear differ-
ence equation

Ld+k(q)−L−n+k(q)−Lk(q)= 0 for k = 0,1,2, . . . , (2.7)

and β(q) is the unique positive root of the auxiliary polynomial xd − x−n− 1. Multiplying
the equation xd − x−n− 1= 0 by xn yields that β(q) is the unique positive root of the (now
nonpolynomial) xn+d − xn − 1 and thus, by (2.1), statement (2.6) holds for nonpositive
q’s as well.

3. Proof of Theorem 1.1

Let
√
3Q(−1,1) denote the set {t ∈ (−√3,√3) : t/√3 is rational}, where (−√3,√3) is the

open interval of real numbers from −√3 to √3.
Proposition 3.1. The function α(t) is continuous on the set

√
3Q(−1,1). The function α(t)

is identically 1 on the set (−√3,√3)\√3Q(−1,1).

Proof. As noted before, the slope t ∈ (−√3,√3) in the natural arrayal corresponds to the
slope q = 2t/(

√
3− t) >−1 in the left-justified arrayal, and such q is rational if and only

if t/
√
3 is rational. If such q is not rational, {�k(t)}∞k=0 is just the sequence

{(k
0

)}∞
k=0, and

α(t)= 1.
On the other hand, for q ∈ Q : q > −1, (2.6) may be solved to yield that q =

−ln(γ(q)− 1)/ln(γ(q)); the continuity of the inverse function of γ implies the continuity
of γ. By (2.4) and for t such that q = 2t/(

√
3− t) is rational, α is the composition of γ and

another continuous function, thus α is continuous on
√
3Q(−1,1). �

Lemma 3.2. For any rational number q >−1, γ(q)q+1 = γ(−q/(q+1)).

Proof. Suppose q = n/d > −1 such that n and d are relatively prime integers and d is
positive. Note that −n/(n+ d) >−1 and observe that β(n/d) and β(−n/(n+ d)) are each
the unique positive root of xn+d − xn − 1, which is also the unique positive root of xd −
x−n− 1 and so, in particular,

β
(
n

d

)
= β

( −n
n+d

)
. (3.1)

Thus, by (2.1) and (3.1), we have

γ
(
n

d

)n+d
= β

(
n

d

)d(n+d)
= β

( −n
n+d

)d(n+d)
= γ
( −n
n+d

)d
. (3.2)

Taking the dth root of (3.2) and simplifying yields the desired result. �

We next prove our main result, Theorem 1.1, which states that for all t ∈R such that
−√3 < t <

√
3 we have α(t)

√
3+t = α(−t)

√
3−t.
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Proof of Theorem 1.1. For all t �∈ √3Q(−1,1), we have, by Proposition 3.1, α(t) = 1, in
which case the result is trivial. For all t ∈ √3Q(−1,1), we have that 2t/(

√
3− t) is ratio-

nal and greater than −1. Thus,

α(t)
√
3+t = γ

(
2t√
3− t

)√3+t (
by (2.4)

)

=
([

γ
(

2t√
3− t

)]2t/(√3−t)+1)√3−t

= γ
(
− 2t/(

√
3− t)

2t/(
√
3− t) + 1

)√3−t
(by Lemma 3.2)

= γ
(

2(−t)√
3− (−t)

)√3−t

= α(−t)
√
3−t (

by (2.4)
)
.

(3.3)

�

Endnotes. (I) Since consecutive line sums in the sequence of line sums differ in y-inter-

cept by 1/d, the line sum including
(

i
j+1

)
and the line sum including

(
i+1
j+1

)
, which have

y-intercepts that differ by 1, must be d line sums apart. Symmetric reasoning dictates that

the line sum including
(
i
j

)
and the line sum including

(
i

j+1

)
are n line sums apart in the

sequence of line sums.
(II) To sketch some details, the nonzero roots of (d/dx)(xn+d − xn− 1) are the dth roots

of n/(n+d), exactly one of which is positive and none of which are roots of xn+d − xn− 1,
hence the roots of xn+d − xn− 1 are distinct and (considering a few basic features of this
polynomial on the positive real line) exactly one is positive, call it λ. If λ̃ is any other root
of xn+d − xn− 1 besides λ, then 1= |λ̃n+d − λ̃n| ≥ |λ̃|n+d −|λ̃|n and, because equality does
not hold in this triangle inequality, we have |λ̃|n+d −|λ̃|n− 1 < 0, implying |λ̃| < λ.
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