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We investigate the rate of convergence of solutions of some special cases of the equation
xn+1 = (α+βxn + γxn−1)/(A+Bxn +Cxn−1), n = 0,1, . . . , with positive parameters and
nonnegative initial conditions. We give precise results about the rate of convergence of
the solutions that converge to the equilibrium or period-two solution by using Poincaré’s
theorem and an improvement of Perron’s theorem.

1. Introduction and preliminaries

We investigate the rate of convergence of solutions of some special types of the second-
order rational difference equation

xn+1 = α+βxn + γxn−1
A+Bxn +Cxn−1

, n= 0,1, . . . , (1.1)

where the parameters α, β, γ, A, B, and C are positive real numbers and the initial condi-
tions x−1, x0 are arbitrary nonnegative real numbers.

Related nonlinear second-order rational difference equations were investigated in [2,
5, 6, 7, 8, 9, 10]. The study of these equations is quite challenging and is in rapid devel-
opment.

In this paper, we will demonstrate the use of Poincaré’s theorem and an improvement
of Perron’s theorem to determine the precise asymptotics of solutions that converge to
the equilibrium.

We will concentrate on three special cases of (1.1), namely, for n= 0,1, . . . ,

xn+1 = B

xn
+

C

xn−1
, (1.2)

xn+1 = pxn + xn−1
qxn + xn−1

, (1.3)

xn+1 = pxn + xn−1
q+ xn−1

, (1.4)
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where all the parameters are assumed to be positive and the initial conditions x−1, x0 are
arbitrary positive real numbers.

In [7], the second author and Ladas obtained both local and global stability results for
(1.2), (1.3), and (1.4) and found the region in the space of parameters where the equilib-
rium solution is globally asymptotically stable. In this paper, we will precisely determine
the rate of convergence of all solutions in this region by using Poincaré’s theorem and an
improvement of Perron’s theorem.

We will show that the asymptotics of solutions that converge to the equilibrium de-
pends on the character of the roots of the characteristic equation of the linearized equa-
tion evaluated at the equilibrium. The results on asymptotics of (1.2), (1.3), and (1.4) will
show all the complexity of the asymptotics of the general equation (1.1).

Here we give some necessary definitions and results that we will use later.
Let I be an interval of real numbers and let f ∈ C1[I × I ,I]. Let x̄ ∈ I be an equilibrium

point of the difference equation

xn+1 = f
(
xn,xn−1

)
, n= 0,1, . . . , (1.5)

that is, x̄ = f (x̄, x̄).
Let

s= ∂ f

∂u
(x̄, x̄), t = ∂ f

∂v
(x̄, x̄) (1.6)

denote the partial derivatives of f (u,v) evaluated at an equilibrium x̄ of (1.5). Then the
equation

yn+1 = syn + tyn−1, n= 0,1, . . . , (1.7)

is called the linearized equation associated with (1.5) about the equilibrium point x̄.

Theorem 1.1 (linearized stability). (a) If both roots of the quadratic equation

λ2− sλ− t = 0 (1.8)

lie in the open unit disk |λ| < 1, then the equilibrium x̄ of (1.5) is locally asymptotically
stable.

(b) If at least one of the roots of (1.8) has an absolute value greater than one, then the
equilibrium x̄ of (1.5) is unstable.

(c) A necessary and sufficient condition for both roots of (1.8) to lie in the open unit disk
|λ| < 1 is

|s| < 1− t < 2. (1.9)

In this case, the locally asymptotically stable equilibrium x̄ is also called a sink.
(d) A necessary and sufficient condition for both roots of (1.8) to have absolute values

greater than one is

|t| > 1, |s| < |1− t|. (1.10)

In this case, x̄ is called a repeller.
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(e) A necessary and sufficient condition for one root of (1.8) to have an absolute value
greater than one and for the other to have an absolute value less than one is

s2 + 4t > 0, |s| > |1− t|. (1.11)

In this case, the unstable equilibrium x̄ is called a saddle point.

The set of points whose orbits converge to an attracting equilibrium point or, periodic
point is called the “basin of attraction,” see [1, page 128].

Definition 1.2. Let T be a map onR2 and let p be an equilibrium point or a periodic point
for T. The basin of attraction of p, denoted by �p, is the set of points x ∈ R2 such that
|Tk(x)−Tk(p)| → 0, as k→∞, that is,

�p =
{
x ∈R

2 :
∣∣Tk(x)−Tk(p)

∣∣−→ 0, as k −→∞}, (1.12)

where | · | denotes any norm in R2.

We now give the definitions of positive and negative semicycles of a solution of (1.5)
relative to an equilibrium point x̄.

A positive semicycle of a solution {xn} of (1.5) consists of a “string” of terms {xl,
xl+1, . . . ,xm}, all greater than or equal to the equilibrium x, with l ≥ −1 and m ≤∞ and
such that either l =−1 or l >−1, xl−1 < x, and either m=∞ or m <∞, xm+1 < x. A neg-
ative semicycle of a solution {xn} of (1.5) consists of a string of terms {xl, xl+1, . . . ,xm},
all less than the equilibrium x, with l ≥−1 and m≤∞ and such that either l =−1 or l >
−1,xl−1 ≥ x, and eitherm=∞ orm<∞,xm+1 ≥ x.

The next theorem is a slight modification of the result obtained in [7, 9].

Theorem 1.3. Assume that

f : [0,∞)× [0,∞)−→ [0,∞) (1.13)

is a continuous function satisfying the following properties:

(a) there exist L and U , 0 < L < U , such that

f (L,L)≥ L, f (U ,U)≤U , (1.14)

and f (x, y) is nondecreasing in x and y in [L,U];
(b) the equation

f (x,x)= x (1.15)

has a unique positive solution in [L,U].

Then (1.5) has a unique equilibrium x ∈ [L,U] and every solution of (1.5) with initial
values x−1,x0 ∈ [L,U] converges to x.
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Proof. Set

m0 = L, M0 =U , (1.16)

and for i= 1,2, . . . , set

Mi = f
(
Mi−1,Mi−1

)
, mi = f

(
mi−1,mi−1

)
. (1.17)

Now observe that for each i≥ 0,

m0 ≤m1 ≤ ··· ≤mi ≤ ··· ≤Mi ≤ ··· ≤M1 ≤M0,

mi ≤ xk ≤Mi for k ≥ 2i+1.
(1.18)

Now the proof follows as the proof of [7, Theorem 1.4.8]. �

The next two theorems give precise information about the asymptotics of linear non-
autonomous difference equations. Consider the scalar kth-order linear difference equa-
tion

x(n+ k) + p1(n)x(n+ k− 1)+ ···+ pk(n)x(n)= 0, (1.19)

where k is a positive integer and pi : Z+→C for i= 1, . . . ,k. Assume that

qi = lim
k→∞

pi(n), i= 1, . . . ,k, (1.20)

exist in C. Consider the limiting equation of (1.19):

x(n+ k) + q1x(n+ k− 1)+ ···+ qkx(n)= 0. (1.21)

Then the following results describe the asymptotics of solutions of (1.19). See [4, 3,
11].

Theorem 1.4 (Poincaré’s theorem). Consider (1.19) subject to condition (1.20). Let λ1, . . . ,
λk be the roots of the characteristic equation

λk + q1λ
k−1 + ···+ qk = 0 (1.22)

of the limiting equation (1.21), and suppose that

∣∣λi∣∣ �= ∣∣λj

∣∣ for i �= j. (1.23)

If x(n) is a solution of (1.19), then either x(n) = 0 for all large n or there exists an index
j ∈ {1, . . . ,k} such that

lim
n→∞

x(n+1)
x(n)

= λj . (1.24)
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The related results were obtained by Perron, and one of Perron’s results was improved
by Pituk, see [11].

Theorem 1.5. Suppose that (1.20) holds. If x(n) is a solution of (1.19), then either x(n)= 0
eventually or

limsup
n→∞

(∣∣xj(n)∣∣)1/n = ∣∣λj

∣∣, (1.25)

where λ1, . . . ,λk are the (not necessarily distinct) roots of the characteristic equation (1.22).

2. Rate of convergence of xn+1 = (B/xn) + (C/xn−1)

Equation (1.2) has a unique equilibrium point x =√B+C. The linearized equation asso-
ciated with (1.2) about x is

zn+1 +
B

B+C
zn +

C

B+C
zn−1 = 0, n= 0,1, . . . . (2.1)

This equation was considered in [7], where the method of full limiting sequences was
used to prove that the equilibrium is globally asymptotically stable for all values of param-
eters B and C. Here, we want to establish the rate of this convergence. The characteristic
equation

λ2 +
B

B+C
λ+

C

B+C
= 0, n= 0,1, . . . , (2.2)

that corresponds to (2.1) has roots

λ± = −B±
√
B2− 4C(B+C)
2(B+C)

. (2.3)

Theorem 2.1. All solutions of (1.2) which are eventually different from the equilibrium
satisfy the following.

(i) If the condition

C <
B

2
(
1+
√
2
) (2.4)

holds, then

lim
n→∞

xn+1− x

xn− x
= λ+ or lim

n→∞
xn+1− x

xn− x
= λ−, (2.5)

where λ± are the real roots given by (2.3).
In particular, all solutions of (1.2) oscillate.

(ii) If the condition

C = B

2
(
1+
√
2
) (2.6)
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holds, then

limsup
n→∞

(∣∣xn− x
∣∣)1/n = B

2(B+C)
. (2.7)

(iii) If the condition

C >
B

2
(
1+
√
2
) (2.8)

holds, then

limsup
n→∞

(∣∣xn− x
∣∣)1/n = ∣∣λ±∣∣, (2.9)

where λ± are the complex roots given by (2.3).

Proof. We have

xn+1− x = B

xn
+

C

xn−1
− x =− B

xnx

(
xn− x

)− C

xn−1x
(
xn−1− x

)
. (2.10)

Set en = xn− x. Then we obtain

en+1 + pnen + qnen−1 = 0, (2.11)

where

pn = B

xnx
, qn = C

xn−1x
. (2.12)

Since the equilibrium is a global attractor, we obtain

lim
n→∞ pn = B

B+C
, lim

n→∞qn =
C

B+C
. (2.13)

Thus, the limiting equation of (1.2) is the linearized equation (2.1) whose characteristic
equation is (2.2). The discriminant of this equation is given by

D = B2− 4C(B+C)=
(
B− 2

√
C(B+C)

)(
B+2

√
C(B+C)

)
. (2.14)

Conditions (2.4), (2.6), and (2.8) are the conditions for D > 0, D = 0, and D < 0, respec-
tively.

Now, statement (i) follows as an immediate consequence of Poincaré’s theorem and
statements (ii) and (iii) follow as the consequences of Theorem 1.5. Finally, the statement
on oscillatory solutions follows from the asymptotic estimate (2.5) and the fact that in
the case D > 0 both roots λ± < 0. �
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xn+1 − x

xn − x
= λ±

Figure 2.1. Regions for the different asymptotic behavior of solutions of (1.2).

Figure 2.1 visualizes the regions for the different asymptotic behavior of solutions of
(1.2).

3. Rate of convergence of xn+1 = (pxn + xn−1)/(qxn + xn−1)

Equation (1.3) was studied in detail in [7, 10], where we have found the region of param-
eters for which the equilibrium is globally asymptotically stable and the region where the
equation has a unique period-two solution which is locally asymptotically stable.

3.1. Rate of convergence of the equilibrium. Equation (1.3) has a unique equilibrium
point

x = p+1
q+1

. (3.1)

To avoid the trivial case, we assume that p �= q.
The linearized equation associated with (1.3) about x is

zn+1− p− q

(p+1)(q+1)
zn +

p− q

(p+1)(q+1)
zn−1 = 0, n= 0,1, . . . . (3.2)

The characteristic equation

λ2− p− q

(p+1)(q+1)
λ+

p− q

(p+1)(q+1)
= 0 (3.3)
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has the roots

λ± =
p− q±

√
(q− p)(4pq+3p+5q+4)

2(p+1)(q+1)
. (3.4)

This equation was considered in detail in [7, 10], where it was proved that the equilib-
rium is globally asymptotically stable for values of parameters p and q that satisfy

p < q <
3p+1
1− p

(3.5)

or

p− 1
p+3

< q < p. (3.6)

Here, we want to establish the rate of convergence.

Theorem 3.1. All solutions of (1.3) which are eventually different from the equilibrium
satisfy the following.

(i) If condition (3.5) holds, then (2.5) follows, where λ± are given by (3.4).
(ii) If condition (3.6) holds, then

limsup
n→∞

(∣∣xn− x
∣∣)1/n = ∣∣λ±∣∣, (3.7)

where λ± are given by (3.4).

Proof. We have

xn+1− x = pxn + xn−1
qxn + xn−1

− x = p− qx

qxn + xn−1

(
xn− x

)
+

1− x

qxn + xn−1

(
xn−1− x

)
. (3.8)

Set en = xn− x. Then we obtain

en+1− pnen− qnen−1 = 0, (3.9)

where

pn = p− qx

qxn + xn−1
, qn = 1− x

qxn + xn−1
. (3.10)

As the equilibrium is a global attractor, we obtain

lim
n→∞ pn = p− qx

(1+ q)x
= p− q

(p+1)(q+1)
, lim

n→∞qn =
q− p

(p+1)(q+1)
. (3.11)

Thus, the limiting equation of (1.3) is the linearized equation (3.2).
Now, statement (i) follows as an immediate consequence of Poincaré’s theorem and

statement (ii) follows as a consequence of Theorem 1.5. �
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Figure 3.1. Regions for the asymptotic behavior of solutions of (1.3).

Figure 3.1 visualizes the regions for the different asymptotic behavior of solutions of
(1.3).

3.2. Rate of convergence of period-two solutions. Assume that

q > 1+3p+ pq, (3.12)

or equivalently,

p < 1, q >
1+3p
1− p

. (3.13)

Then (1.3) possesses the prime period-two solution . . . ,Φ,Ψ,Φ,Ψ, . . . , see [7, 10].Without
loss of generality, we assume that Φ < Ψ. Let {yn}∞n=−1 be a solution of (1.3). Then the
following identities are true:

yn+1−Ψ= (q− p)
yn−1Φ− ynΨ(

yn−1 + qyn
)
(Ψ+ qΦ)

,

yn+1−Φ= (q− p)
yn−1Ψ− ynΦ(

yn−1 + qyn
)
(Φ+ qΨ)

.
(3.14)

The following lemma is now a direct consequence of (3.14).

Lemma 3.2. Assume that condition (3.12) holds. Let {yn}∞n=−1 be a solution of (1.3). Then
the following statements are true.

(i) If, for some N ≥ 0, yN−1 >Ψ, yN <Φ, then yN+1 >Ψ.
(ii) If, for some N ≥ 0, yN−1 <Φ, yN >Ψ, then yN+1 <Φ.
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(iii) Every solution {yn}∞n=−1 of (1.3) with initial conditions that satisfy

y−1 >Ψ, y0 <Φ or y−1 <Φ, y0 >Ψ (3.15)

oscillates with semicycles of length one. More precisely, such a solution oscillates about
the strip [Φ,Ψ] with semicycles of length one.

Proof. (i) The proof follows from

yN+1−Ψ > (q− p)Φ
yN−1−Ψ(

yN−1 + qyN
)
(Ψ+ qΦ)

. (3.16)

(ii) Similarly, the proof is an immediate consequence of

yN+1−Φ < (q− p)Ψ
yN−1−Φ(

yN−1 + qyN
)
(Φ+ qΨ)

. (3.17)

(iii) The proof follows from (i) and (ii). �

Now, we will combine our results for semicycles to identify solutions which converge
to the period-two solution.

Theorem 3.3. Assume that condition (3.12) holds. Then every solution of (1.3) with initial
conditions

y−1 > 1, y0 <
p

q
(3.18)

or

y−1 <
p

q
, y0 > 1 (3.19)

converges to the period-two solution . . . ,Φ,Ψ,Φ,Ψ, . . . , where Φ <Ψ are the roots of

t2− (1− p)t+
p(1− p)
q− 1

= 0. (3.20)

Proof. We will prove the statements in the case (3.18). The proof of the second case is
similar.

It is known that for q > p, which holds in view of (3.12), the interval [p/q,1] is an
invariant and attracting interval for (1.3), and that yn ∈ [p/q,1], n≥ 1, for every solution
{yn} of (1.3), see [7, 10]. In particular, p/q <Φ <Ψ < 1. Then Lemma 3.2 implies that

y2k+1 >Ψ, y2k+2 <Φ, k = 0,1, . . . . (3.21)

Further, by using the identity

yn+1− yn−1 = yn−1
(
1− yn−1

)
+ qyn

(
p/q− yn−1

)
yn−1 + qyn

, (3.22)
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we obtain

y1 < y−1, y2 > y0. (3.23)

Now, by using the monotonic character of the function f (x, y)= (px+ y)/(qx+ y) which
decreases in x and increases in y for q > p, we have

y3 = f
(
y2, y1

)
< f
(
y0, y−1

)= y1, y4 = f
(
y3, y2

)
> f
(
y1, y0

)= y2. (3.24)

By using induction, we obtain

··· < y5 < y3 < y1, y2 < y4 < y6 < ··· . (3.25)

Thus, we conclude that the sequence {y2k+1}∞k=0 is nonincreasing and y2k+1 > Ψ, which
implies that

lim
k→∞

y2k+1 = L≥Ψ. (3.26)

Likewise, the sequence {y2k+2}∞k=0 is nondecreasing and y2k+2 <Φ, which implies that

lim
k→∞

y2k+2 = l ≤Φ. (3.27)

In view of the uniqueness of the prime period-two solution, we have

L=Ψ, l =Φ, (3.28)

which completes the proof of the theorem. �

The last theorem gives us information about the basin of attraction of the prime
period-two solutions, which we denote by B2. We have shown that

{
(x, y) : x > 1, y <

p

q

}
∪
{
(x, y) : x <

p

q
, y > 1

}
⊂ B2. (3.29)

Now, we will combine our results for convergence to period-two solution of (1.3) to
obtain the rate of convergence.

By using identities (3.14) and Theorem 3.3, we obtain

y2k+1−Ψ= (q− p)Φ
Ak

(
y2k−1−Ψ

)− (q− p)Ψ
Ak

(
y2k −Φ

)
, (3.30)

where

Ak = (Ψ+ qΦ)
(
y2k−1 + qy2k

)
(3.31)

and

y2k −Φ= (q− p)Ψ
Bk

(
y2k−2−Φ

)− (q− p)Φ
Bk

(
y2k−1−Ψ

)
, (3.32)
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where

Bk = (Φ+ qΨ)
(
y2k−2 + qy2k−1

)
. (3.33)

By using (3.32), identity (3.30) implies

y2k+2−Φ= (q− p)Φ
Bk

(
Ψ

Φ
+
Bk

Ak
+
(q− p)Ψ

Ak

)(
y2k −Φ

)− (q− p)2ΦΨ

AkBk

(
y2k−2−Φ

)
.

(3.34)

Set

ek = y2k −Φ. (3.35)

Then (3.34) becomes

ek+1 = ckek +dkek−1, (3.36)

where

ck = (q− p)Φ
Bk

(
Ψ

Φ
+
Bk

Ak
+
(q− p)Ψ

Ak

)
, dk =− (q− p)2ΦΨ

AkBk
, (3.37)

with

lim
k→∞

ck = (1+2p+ pq)(q− 1)(1− p) + p(q− p)
(1− p)(q− p)(q− 1)

,

lim
n→∞dk =−

p

(q− 1)(1− p)
.

(3.38)

Thus, the limiting equation of (3.36) is

ek+1− (1+2p+ pq)(q− 1)(1− p) + p(q− p)
(1− p)(q− p)(q− 1)

ek +
p

(q− 1)(1− p)
ek−1 = 0. (3.39)

The characteristic equation of (3.39) is

λ2− (1+2p+ pq)(q− 1)(1− p) + p(q− p)
(1− p)(q− p)(q− 1)

λ+
p

(q− 1)(1− p)
= 0. (3.40)

Note that (3.40) is the characteristic equation of second iterate of the map that corre-
sponds to (1.3), evaluated at the period-two solution, see [7, page 115].
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The discriminant of (3.40) is

D =
(
(1+2p− pq)(q− 1)(1− p) + p(q− p)

(p− 1)(q− p)(q− 1)

)2

− 4
p

(1− p)(q− 1)
. (3.41)

If condition (3.12) holds, then D can be greater or less than zero.
By using (3.32), we obtain

ek+1− akek + bkek−1 = 0, k = 0,1, . . . , (3.42)

where

ek = y2k−1−Ψ,

ak = (q− p)Ψ
Ak

(
Φ

Ψ
+
(q− p)Φ

Bk
+
Ak−1
Bk

)
,

bk = (q− p)2ΦΨ

AkBk
,

(3.43)

with

lim
n→∞an = lim

n→∞cn, lim
n→∞bn = lim

n→∞dn. (3.44)

Thus, the limiting equation of (3.42) is (3.39). Using Poincaré’s theorem and Theorem
1.5, we obtain the following result which describes the precise asymptotics of convergence
to a period-two solution.

Theorem 3.4. Assume that condition (3.13) holds. Then every solution {xn}∞n=−1 of (1.3),
which is eventually different from a period-two solution, that converges to a period-two so-
lution satisfies one of the following two asymptotic relations:

(a)

lim
n→∞

x2n+1−Ψ

x2n−1−Ψ
= λ+ or lim

n→∞
x2n+1−Ψ

x2n−1−Ψ
= λ−,

lim
n→∞

x2n+2−Φ

x2n−Φ
= λ+ or lim

n→∞
x2n+2−Φ

x2n−Φ
= λ−,

(3.45)

when D > 0;
(b)

limsup
n→∞

(∣∣x2n+1−Ψ
∣∣)1/(2n+1) = limsup

n→∞

(∣∣x2n−Φ
∣∣)1/2n = ∣∣λ±∣∣ (3.46)

when D ≤ 0, where λ± are solutions of (3.40). Here, D is given by (3.41).
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4. Rate of convergence of xn+1 = (pxn + xn−1)/(q+ xn−1)

Equation (1.4) was investigated in detail in [7, 9]. Here, we assume that p and q are
positive parameters.

Equation (1.4) has two equilibrium points x = 0 and x = p+1− q if p+1 > q.
The linearized equation of (1.4) at the zero equilibrium is

zn+1− p

q
zn− 1

q
zn−1 = 0, (4.1)

with characteristic equation

λ2− p

q
λ− 1

q
= 0. (4.2)

The solutions of (4.2) are

λ± =
p±

√
p2 + 4q

2q
. (4.3)

The linearized equation of (1.4) at the positive equilibrium x is

zn+1− p

p+1
zn− q− p

p+1
zn−1 = 0, (4.4)

with characteristic equation

λ2− p

p+1
λ− q− p

p+1
= 0. (4.5)

The solutions of (4.5) are

λ± = 1
2(p+1)

(
p±

√(
4q(p+1)− p(3p+4)

))
. (4.6)

Now, we give two results that describe precisely the asymptotics of the solutions that
converge to either zero or the positive equilibrium.

Theorem 4.1. Assume that p+1≤ q. Then the zero equilibrium of (1.4) is globally asymp-
totically stable and

lim
n→∞

xn+1
xn

= λ+ or lim
n→∞

xn+1
xn

= λ−, (4.7)

for every solution xn of (1.4) which is eventually different from the zero equilibrium. Here,
λ± are given by (4.6).

Proof. Global asymptotic stability was established in [7, 9].
Now, we can represent (1.4) in the form

xn+1 = pxn + xn−1
q+ xn−1

= anxn + bnxn−1, (4.8)
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where

an = p

q+ xn−1
, bn = 1

q+ xn−1
, (4.9)

with

lim
n→∞an =

p

q
, lim

n→∞bn =
1
q
. (4.10)

Thus, the limiting equation is exactly the linearized equation (4.1), and an application of
Poincaré’s theorem completes the proof of the theorem. �

Now, we assume that p+1 > q.

Theorem 4.2. Assume that p + 1 > q and x−1 + x0 > 0. Then the positive equilibrium of
(1.4) is globally asymptotically stable and the solutions exhibit one of the following two types
of asymptotic behavior.

(i) Suppose that the condition

q >
p(3p+4)
4(p+1)

(4.11)

is satisfied. Then every solution {xn} of (1.4) which is eventually different from the
equilibrium satisfies one of the following two limit relations:

lim
n→∞

xn+1− x

xn− x
= λ+ or lim

n→∞
xn+1− x

xn− x
= λ−, (4.12)

where λ± are the real roots given by (4.6).
If p = q, then every solution {xn} of (1.4) which is eventually different from the

equilibrium satisfies one of the following two limit relations:

lim
n→∞

xn+1− x

xn− x
= λ±, (4.13)

where λ± is either 0 or p/(p+1).
(ii) Suppose that the condition

q ≤ p(3p+4)
4(p+1)

(4.14)

is satisfied. Then every solution {xn} of (1.4) which is eventually different from the
equilibrium satisfies

limsup
n→∞

∣∣xn− x
∣∣1/n = ∣∣λ±∣∣, (4.15)

where λ± are the complex roots given by (4.6).
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Proof. The proof of global asymptotic stability was given in [7, 9]. Here, we want to cor-
rect the proof in the case where p < q. As we have shown in [7, 9], in this case, the interval
(0,1) is invariant and attracting in the sense that every positive solution eventually enters
and remains in the interval (0,1). Now, in the interval (0,1), the function

f (u,v)= pu+ v

q+ v
(4.16)

is increasing in both arguments and it has a unique equilibrium. Now, we check condi-
tion (a) of Theorem 1.3. We try to determine L, U , 0 < L < p+1− q < U , that satisfy the
conditions f (L,L)≥ L and f (U ,U)≤U . We obtain

(p+1)L
q+L

≥ L,
(p+1)U
q+U

≤U , (4.17)

which are always satisfied for 0 < L < p + 1− q < U . By Theorem 1.3, every solution of
(1.4) converges to the positive equilibrium, and since this equilibrium is locally asymp-
totically stable, it is also globally asymptotically stable.

Now, we will establish results on the rate of convergence to the positive equilibrium.
We have

xn+1− x = pxn + xn−1
q+ xn−1

− x = p

q+ xn−1

(
xn− x

)
+

q− p

q+ xn−1

(
xn−1− x

)
,

en+1− pnen− qnen−1 = 0,
(4.18)

where

en = xn− x, pn = p

q+ xn−1
, qn = q− p

q+ xn−1
. (4.19)

As the positive equilibrium is a global attractor, we obtain

lim
n→∞ pn = p

p+1
, lim

n→∞qn =
q− p

p+1
. (4.20)

Thus, the limiting equation of (1.4) is the linearized equation (4.4).
Now, statement (i) follows as an immediate consequence of Poincaré’s theorem and

statement (ii) follows as a consequence of Theorem 1.5. Conditions (4.11) and (4.14) are
actually conditions for the characteristic equation (4.5) to have two real distinct roots and
to have double or complex conjugate roots, respectively. �

Figure 4.1 visualizes the regions for the different asymptotic behavior of solutions of
(1.4).
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p

2

4

6

8

10 q

q = p(3p + 4)
4(p + 1)

q = p + 1 D ≤ 0
|λ±| < 1

lim sup
n→∞

|xn − x|1/n = |λ±|

D > 0
λ+ ∈ (0, 1), λ− ∈ (−1, 0)
lim
n→∞

xn+1 − x

xn − x
= λ±

Figure 4.1. Regions for the asymptotic behavior of solutions of (1.4).

5. Rate of convergence of (1.1)

Consider (1.1) where the parameters α, β, γ, A, B, and C are nonnegative real numbers
and the initial conditions x−1 and x−2 are arbitrary nonnegative real numbers such that

A+Bxn +Cxn−1 > 0 ∀n≥ 0. (5.1)

The equilibrium point of (1.1) is

x̄ = α+ x̄(β+ γ)
A+ x̄(B+C)

. (5.2)

Then we have

xn+1− x̄ = an
(
xn− x̄

)
+ bn

(
xn−1− x̄

)
, n= 0,1, . . . , (5.3)

where

an = βA−αB+ x(βC− γB)(
A+Bxn +Cxn−1

)(
A+ x̄(B+C)

) ,
bn = γA−αC+ x(γB−βC)(

A+Bxn +Cxn−1
)(
A+ x̄(B+C)

) .
(5.4)

Set xn− x̄ = en. Then (5.3) becomes

en+1− anen− bnen−1 = 0, n= 0,1, . . . , (5.5)



138 Rate of convergence of rational difference equation

where

an −→ βA−αB+ x(βC− γB)(
A+ x̄(B+C)

)2 , bn −→ γA−αC+ x(γB−βC)(
A+ x̄(B+C)

)2 , n−→∞. (5.6)

The limiting equation associated with (5.5) is

en+1− βA−αB+ x(βC− γB)(
A+ x̄(B+C)

)2 en− γA−αC+ x(γB−βC)(
A+ x̄(B+C)

)2 en−1 = 0, n= 0,1, . . . . (5.7)

The characteristic equation of (5.7) is

λ2− βA−αB+ x(βC− γB)(
A+ x̄(B+C)

)2 λ− γA−αC+ x(γB−βC)(
A+ x̄(B+C)

)2 = 0 (5.8)

which is exactly the characteristic equation of the linearized equation of (1.1) evaluated
at the positive equilibrium x̄.

Using Poincaré’s theorem and Theorem 1.5, we obtain the following result which de-
scribes the precise asymptotic behavior of solutions converging to the positive equilib-
rium.

Theorem 5.1. (i) If the discriminant of (5.8) is positive, then every solution {xn} of (1.1)
which is eventually different from the equilibrium satisfies one of the two limit relations in
(4.12), where λ± are the real roots of (5.8).

In particular, (1.1) has all oscillatory solutions if both roots λ± are negative, and has all
solutions nonoscillatory if both roots λ± are positive.

(ii) If the discriminant of (5.8) is nonpositive, then every solution {xn} of (1.1) which is
eventually different from the equilibrium satisfies (3.7), where λ± are the complex roots of
(5.8).
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[11] M. Pituk, More on Poincaré’s and Perron’s theorems for difference equations, J. Difference Equ.

Appl. 8 (2002), no. 3, 201–216.
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