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We present a new self-contained and rigorous proof of the smoothness of invariant fiber
bundles for dynamic equations on measure chains or time scales. Here, an invariant fiber
bundle is the generalization of an invariant manifold to the nonautonomous case. Our
main result generalizes the “Hadamard-Perron theorem” to the time-dependent, infinite-
dimensional, noninvertible, and parameter-dependent case, where the linear part is not
necessarily hyperbolic with variable growth rates. As a key feature, our proof works with-
out using complicated technical tools.

1. Introduction

The method of invariant manifolds was originally developed by Lyapunov, Hadamard,
and Perron for time-independent diffeomorphisms and ordinary differential equations
at a hyperbolic fixed point. It was then extended from hyperbolic to nonhyperbolic sys-
tems, from time-independent and finite-dimensional to time-dependent and infinite-
dimensional equations, and turned out to be one of the main tools in the contemporary
theory of dynamical systems. It is our objective to unify the difference and ordinary dif-
ferential equations case, and extend them to dynamic equations on measure chains or
time scales (closed subsets of the real line). Such equations additionally allow to describe,
for example, a hybrid behavior with discrete and continuous dynamical features, or allow
an elegant formulation of analytical discretization theory if variable step sizes are present.

This paper can be seen as an immediate continuation of [18], where the existence and
6'-smoothness of invariant fiber bundles for a general class of nonautonomous, nonin-
vertible, and pseudohyperbolic dynamic equations on measure chains have been proved;
moreover we obtained a higher-order smoothness for invariant fiber bundles of stable and
unstable types therein. While the existence and 6!-smoothness result in [18] is a special
case of our main theorem (Theorem 3.5), we additionally prove the differentiability of
the fiber bundles under a sharp gap condition using a direct strategy (cf. Theorem 4.2).
The differentiability of invariant fiber bundles plays a substantial role in their calculation
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using a Taylor series approach, as well as, for example, in the smooth decoupling of dy-
namical systems (cf. [5]). To keep the current paper as short as possible, we reduce its
contents to a quite technical level. Nonetheless, a variety of applications, examples, out-
looks, and further references can be found, for example, in [1, 2, 3, 12].

While in the hyperbolic case the smoothness of the invariant fiber bundles is eas-
ily obtained with the uniform contraction principle, in the nonhyperbolic situation the
smoothness depends on a spectral gap condition and is subtle to prove. For a modern
approach using sophisticated fixed point theorems, see [9, 22, 25, 26]. Another approach
to the smoothness of invariant manifolds is essentially based on a lemma by Henry (cf.,
e.g., [6, Lemma 2.1]) or methods of a more differential topological nature (cf. [11, 23]),
namely the € -section theorem for fiber-contracting maps. In [5, 20, 24] the problem of
higher-order smoothness is tackled directly.

In this spirit we present an accessible “ad hoc” approach to €"”-smoothness of pseu-
dohyperbolic invariant fiber bundles, which is basically derived from [24] (see also [20])
and needs no technical tools beyond the contraction mapping principle, the Neumann se-
ries, and Lebesgue’s dominated convergence theorem, consequently. Our focus is to give
an explicit proof of the higher-order smoothness without sketched induction arguments,
but even in the ¢!-case, the arguments in this paper are different from those in [18]. One
difficulty of the smoothness proof is due to the fact that one has to compute the higher-
order derivatives of compositions of maps, the so-called “derivative tree.” It turned out
to be advantageous to use two different representations of the derivative tree, namely, a
“totally unfolded derivative tree” to show that a fixed point operator is well defined and to
compute explicit global bounds for the higher-order derivatives of the fiber bundles, and
a “partially unfolded derivative tree” to elaborate the induction argument in a recursive
way.

Some contemporary results on the higher-order smoothness of invariant manifolds
for differential equations can be found, for example, in [6, 22, 24, 25, 26], while cor-
responding theorems on difference equations are contained in [7, 12]. The first paper
[7] deals only with autonomous systems (maps) and applies the fiber contraction the-
orem. In [12, Theorem 6.2.8, pages 242-243], the so-called Hadamard-Perron theorem
is proved via a graph transformation technique for a time-dependent family of 6"-
diffeomorphisms on a finite-dimensional space, where higher-order differentiability is
only tackled in a hyperbolic situation. Using a different method of proof, our main re-
sults, Theorems 3.5 and 4.2, generalize the Hadamard-Perron theorem to noninvertible,
infinite-dimensional, and parameter-dependent dynamic equations on measure chains.
This enables one to apply our results, for example, in the discretization theory of 2-
parameter semiflows. So far, besides [18], there are only three other contributions to the
theory of invariant manifolds for dynamic equations on measure chains or time scales.
A rigorous proof of the smoothness of generalized center manifolds for autonomous dy-
namic equations on homogeneous time scales is presented in [9], while [10, Theorem 4.1]
shows the existence of a “center fiber bundle” (in our terminology) for nonautonomous
systems on measure chains. Finally the thesis [13] deals with classical stable, unstable, and
center invariant fiber bundles and their smoothness for dynamic equations on arbitrary
time scales, and contains applications to analytical discretization theory.
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The structure of the present paper is as follows. In Section 2, we will briefly repeat
or collect the notation and basic concepts. In particular, we introduce the elementary
calculus on measure chains, dynamic equations, and a convenient notion describing ex-
ponential growth of solutions of such equations.

Section 3 will be devoted to the ¢!-smoothness of invariant fiber bundles. We will also
state our main assumptions here and prove some preparatory lemmas which will also be
needed later. The 6!-smoothness follows without any gap condition from the main result
of this section, which is Theorem 3.5. Our proof may seem long and intricate and in fact
it would be if we would like to show the ‘6! -smoothness only, but in its structure it already
contains the main idea of the induction argument for the €™ -case and we will profit then
from being rather detailed in the €!-case.

Section 4, finally, contains our main result (Theorem 4.2), stating that under the “gap
condition” m; ©® a <1 b the pseudostable fiber bundle is of class 6™ and, accordingly, the
pseudo-unstable fiber bundle is of class €™, if a < m, © b.

2. Preliminaries

Above all, to keep the present paper self-contained we repeat some notation from [18]: N
denotes the positive integers. The Banach spaces &, Y are all real or complex throughout
this paper and their norms are denoted by || - [, || - [, respectively, or simply by || - |l.
If X and %Y are isometrically isomorphic, we write & =Y. £, (¥;%Y) is the Banach space
of n-linear continuous operators from €" to ¥ for n € N, £o(X;Y) := Y, L(X;Y) :=
L1(X;Y), L(X) := L1 (&;%), and Iy stands for the identity map on &. On the product
space & X %Y, we always use the maximum norm

()

We write DF for the Fréchet derivative of a mapping F, and if F : (x, y) — F(x, y) depends
differentiably on more than one variable, then the partial derivatives are denoted by D, F
and D F, respectively. Now we quote the two versions of the higher-order chain rule for
Fréchet derivatives on which our smoothness proof is based. Thereto let & be a further
Banach space over R or C. With given j,/ € N, we write

:=max {|lxle, [ ylly}. (2.1)
AxY

N,‘ < {1,...,l},N,‘ -7‘/= @ forie {1,...,j},
NyU---UN; = {1,...,1},

NinNy= O fori#k, i,ke {1,...,j},

maxN; < max Ny forie {1,...,j -1}

P;(l):=1 (Ny,...,Nj)

j (2.2)

for the set of ordered partitions of {1,...,1} with length j, and #N for the cardinality of
a finite set N C N. In case N = {ny,...,nx} < {1,...,1} for k € N, k < [, we abbreviate
DFg(x)xy 1= D¥g(x)xp, - - - xpn, for vectors x,x1,...,x € ¥, where g : & — Y is assumed to
be I-times continuously differentiable.
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TueoreM 2.1 (chain rule). Given m € N and two mappings f : Y — %, g: & — Y which
are m-times continuously differentiable, then also the composition f o g: % — % is m-times
continuously differentiable and for | € {1,...,m}, x € &, the derivatives possess the repre-
sentations as a so-called partially unfolded derivative tree

D'(f o g)(x) i ( )D’ [Df(g(x))]- D" g(x) (2.3)

and as a so-called totally unfolded derivative tree

1
D'(f og)(x)x; - - Z > Dif(g(x))D™Mg(x)xy, - - -D™Nig(x)xy, (2.4)

=1 (N1,N))EP5 (1)

forany x1,...,x € %.

Proof. A proof of (2.3) follows by an easy induction argument (cf. [24, B.3 Satz, page
266]), while (2.4) is shown in [21, Theorem 2]. O

We also introduce some notions which are specific to the calculus on measure chains
(cf. [4, 8]). In all the subsequent considerations, we deal with a measure chain (T, <, u)
unbounded above, that is, a conditionally complete totally ordered set (T, <) (see [8, Ax-
iom 2]) with the growth calibration y: T X T — R (see [8, Axiom 3]), such that the set
u(T,7) € R, 7 € T, is unbounded above. In addition, 6 : T — T, o(¢) := inf{s € T : t < s},
defines the forward jump operator and the graininess y* : T — R, u*(t) := u(o(t),t), is
assumed to be bounded from now on. A measure chain is called homogeneous if its grain-
iness is constant and a time scale is the special case of a measure chain, where T is a
canonically ordered closed subset of the reals. For 7,¢ € T, we define

(r,t)r:={seT:t<s<t} T::={seT:7=<s}, T, :={seT:s<1},
(2.5)

and for N = T, set N* := {t € N: t is not a left-scattered maximum of N'}. Following [8,
Section 4.1], €.q(T,£L(X)) and € qR(T,£(X)) and denote the rd-continuous the rd-
continuous regressive functions from T to L(X) (cf. [8, Section 6.1]). Recall that
GHR(T,R) := {c € €qR(T,R) : 1 +pu*(t)a(t) >0 for t € T} forms the so-called regres-
sive module with respect to the algebraic operations

i +ha}(lt)) -1

(a@b)(t):=a(t)+b(t) +u*(t)a(t)b(1), (noa)(t):= pim

(2.6)

for t € T, integers #, and a,b € €, (T, R); then a has the additive inverse (©a)(t) :=
—a(t)/(1+pu*(t)a(t)), t € T. Growth rates are functions a € €5, R(T,R) such that 1 +
infieru* (t)a(t) >0 and sup, .y pu* (t)a(t) < o hold. Moreover, we define the relations

a<1b:<:>0<[b—aJ:zigqg(b(t)—a(t)), a<lb:=0<|b-al, 2.7)
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and e,(t,7) € R, t,7 € T, stands for the real exponential function on T. Many properties
of e,(t,7) used in this paper can be found in [8, Section 7].

Definition 2.2. For a function ¢ € 6}, R(T,R), 7 € T, and an rd-continuous function
¢:T—-&,

(a) ¢ is c*-quasibounded, if || p||% . := sup,-, (1) llec(7,t) < o0,
(b) ¢ is ¢ -quasibounded, if || := sup,., [¢(¢)llec(,t) < oo,
(c) ¢ is c*-quasibounded, if sup, .y |¢(t) llec(T,t) < oo.

Bt (%) and B (¥) denote the sets of all ¢*- and ¢~ -quasibounded functions ¢ : T —
&, respectively, and they are nontrivial Banach spaces with the norms || - I7.and [l - 1I7,
respectively.

Lemma 2.3. For functions ¢,d € €5, R(T,R) with c <d, m € N, and 7 € T, the following
are true:

(a) the Banach spaces BT (L) X B (V) and Bf (X x Y) are isometrically isomorphic,

(b) BT (%) < BT 4(X) Cmd oIl < lIllF, for ¢ € B (%),

(c) with the abbreviations R = B (XX Y), B := BE (L,,(%;%X x Y)), the Ba-
nach spaces B and L(X; BI1) are isometrically isomorphic.

Proof. We only show assertion (c) and refer to [17, Lemma 1.4.6, page 77] for (a) and (b).
For that purpose, consider the mapping J : B, — L(X; R D, ((JD)x)(t) := O(t)x, for
t € Tf, x € %. To prove that ] is the wanted norm 1somorphlsm, we choose ® € B and
a vector x € & arbitrarily, and obtain

|D(®)xllg, | ceoexaec(t,t) < || @) lec(r, ), s IxIl < |OIIF Mxll - for t € T7.
(2.8)

Thus the continuity of the evidently linear map J follows from

@l gy = sup )]}, < IDIIF,. (2.9)

lIxl=1

Vice versa, the inverse ] 1 : L(%; B 1) — B, of ] is given by (J~1®)(¢)x := (®x)(¢) for
t € TT and x € %. By the open mapping theorem (cf., e.g., [14, Corollary 1.4, page 388])
J~! is continuous and it remains to show that it is nonexpanding. Thereto we choose
@ € L(A;BM-1), x € X arbitrarily to get

||(]ﬂq_))(t)x||$m,,(9e;%qu)€c(1’,t) = ||((I)x)(t)||§gm,,(9€;9equ)ec(‘f)t) (2.10)

< [|Dxllf, < | Dl g@me x|l .
for t € T}, and this estimate yields [|(J ™' ®)(¢)ll <, @raxw)e(7,t) < |Dll¢@my.1), which
in turn ultimately gives us the desired [|J"!®||f, < || D] gmn.1). Consequently, J is an
isometry. O
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A mapping ¢ : T — & is said to be differentiable (at some t, € T) if there exists a unique
derivative ¢ (ty) € X such that for any € > 0, the estimate

(0 (t0)) — ¢(t) — (o (to), )¢ (o) || < €| u(o(t0),t)| forte U, (2.11)

holds in a T-neighborhood U of t; (see [8, Section 2.4]). We write Ajs: T X & — % for the
partial derivative with respect to the first variable of a mapping s: T X ¥ — Y, provided
it exists. The (Lebesgue) integral of ¢ : T — % is denoted by [ ¢(s)As, provided again it
exists (cf. [16]).

Now let % be a nonempty set, momentarily. For a dynamic equation

x = f(t,x,p) (2.12)

with a right-hand side f : T X ¥ X P — & guaranteeing existence and uniqueness of so-
lutions in forward time (see, e.g., [17, Satz 1.2.17(a), page 38]), let ¢(¢;7,&, p) denote the
general solution, that is, ¢(-;7,&, p) solves (2.12) on T} NI, I is a T-interval, and satis-
fies the initial condition ¢(7;7,&,p) =& forr €[, £ € &, and p € P. As mentioned in
the introduction, invariant fiber bundles are generalizations of invariant manifolds to
nonautonomous equations. In order to be more precise, for fixed parameters p € P, we
call a subset S(p) of the extended state space T X & an invariant fiber bundle of (2.12) if it
is positively invariant, that is, for any pair (7,§) € S(p), one has (t,¢(t;7,&, p)) € S(p) for
all t € TF. At this point it is appropriate to state an existence and uniqueness theorem for
(2.12) which is sufficient for our purposes.

THEOREM 2.4. Assume that f: T XX X P — & satisfies the following conditions:
(i) f(-,p) is rd-continuous for every p € P,
(ii) for each t € T, there exist a compact T-neighborhood Ny and a real Iy(t) = 0 such

that
If(sx,p)— f(s%p)|| <lb(O)lx—xIl fors€NF, x,x€%, peP. (2.13)
Then the following hold:

(a) foreacht €T, ¢ e, peP, the solution ¢(-;7,&, p) is uniquely determined and
exists on a T-interval I such that TT < I and I is a T-neighborhood of T independent

ofEe¥, pe?P;
(b) if & : P — & is bounded and if there exists an rd-continuous mapping l : T — R such
that
I f(t,xp)|| <h@®)lxll  for (t,x,p) € TXX X P, (2.14)

then limy,—.. o(t;7,&(p), p) = E(p) holds uniformly in p € P.

Proof. (a) The existence and uniqueness of ¢(-;7,&, p) on T} are basically shown in [8,
Theorem 5.7] (cf. also [17, Satz 1.2.17(a), page 38]). In a left-scattered 7 € T, we choose
I:=T%, while in a left-dense point 7 € T, the solution ¢(-;7,, p) exists in a whole T-
neighborhood of 7 due to [8, Theorem 5.5]. This neighborhood does not depend on
¢ e X, pePsince (2.13) holds uniformlyinx € &, p € P.
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(b) Let N be a compact T-neighborhood of 7 such that ¢(-;7,&(p), p) existson N U T*.
Then the estimate

o)l < €@+ [ 117590580, p),p)1as
(2.15)
< SUg||f(P)II+J h(s)le(s,7,€(p), p)l|As by (2.14),
pe T

for t € T?, is valid, and with Gronwall’s lemma (cf., e.g., [17, Korollar 1.3.31, page 66]),
we get

llp(t:7,E(p), p)|| < su£||§(p)||ell(t,r) fort € T, (2.16)
pe

On the other hand, if T € T is left-dense, we obtain lim,,, y*(¢) = 0 and consequently
Li(t)u*(t) < 1 holds for t < 7 in a T-neighborhood, without loss of generality, N of 1.
Then —I; is positively regressive, and similar to (2.16), we obtain [lo(¢;7,&(p), p)ll <
SUp g IE(p)lle—y (t,7) for t < 7, t € N. Hence, because of the compactness ofN and
the continuity of e;, (+,7), e_;, (+,7), there exists a C = 0 with [lo(t;7,&(p), p)Il < C for all
teN, p e P, and this implies

lotsnép).p) £l = | [ 117 s plsmépp).plas

t
<[ hOllpsnipuplias] byeiy  @17)
—0
t—1
uniformly in p € P, since the right-hand side is independent of p. O

Finally, given A € €,q(T,¥(X)), the transition operator ®4(t,7) € L(X), 1 X t, of a
linear dynamic equation x* = A(t)x is the solution of the operator-valued initial value
problem X2 = A(t)X, X(7) = Iy in L(X). If A is regressive, then ®4(t,7) is defined for
all r,t € T.
3.%'-smoothness of invariant fiber bundles

We begin this section by stating our frequently used main assumptions.

Hypothesis 3.1. Let P be a locally compact topological space satisfying the first axiom of
countability. Consider the system of parameter-dependent dynamic equations

x® = A(t)x+F(t,x,7,p), y* = B(t)y + G(t,x,,p), (3.1)

where A € €,4(T,L(%)), B € €qR(T,£(Y)), and rd-continuous mappings F : T X ¥ x
YXP-X, G:TXXXYXP — Y, which are m-times rd-continuously differentiable
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with respect to (x, y), such that the partial derivatives Dgy5)(F,G)(t,-), t € T, are contin-
uous for n € {0,...,m} and m € N. Moreover, we assume the following hypotheses.

(1) Hypothesis on linear part. The transition operators @4(t,s) and ®p(t,s), respec-
tively, satisfy for all t,s € T the estimates

|@a(t,5)| o) < Krea(t,s)  fors <t

(3.2)
[|@5(£,5)| 4@ < Kaep(t,s) fort <,
with real constants K;,K, > 1 and growth rates a,b € €}, R(T,R), a < b.
(ii) Hypothesis on perturbation. We have
F(t,0,0,p) =0, G(£,0,0,p)=0 onTxP, (3.3)

the partial derivatives of F and G are globally bounded, that is, for each n €
{1,...,m}, we suppose

|Fly:= sup 1D, 3y F (., )|, e seaney < 05
(t,%,y,p) ETXEXYXP (3 4)
|G, := sup ||D("273)G(t,x,y,p)| 7, @xv) < ©
(£,%,y,p) ET XL XY X P
and additionally, for some real o,x > 0, we require
Umax
max {|Fly,|Gh} < —F—— (3.5)

max {K1, K3}

Finally, we choose a fixed real number 0 € (max{K;,K,} max{|F|1,|Gl1},0max)-

Remark 3.2. (1) Under Hypothesis 3.1, the above dynamic equation (3.1) satisfies the
assumptions of Theorem 2.4 on the Banach space & x % equipped with the norm (2.1),
and therefore its solutions exist and are unique on a T-interval unbounded above.

(2) In [18] we have considered dynamic equations of the type (3.1) without an explicit
parameter-dependence and under the assumption that D{; 5)(F,G) is uniformly contin-
uous in t € T. Anyhow, the results from [18] used below remain applicable since all the
above estimates in Hypothesis 3.1 are uniform in p € % and since the uniform continuity
of D, 5(F,G) is not used to derive them.

LemMA 3.3. Assume Hypothesis 3.1 for m = 1, 0max = | b — al/2, and choose T € T. More-
over, let (v,0),(%,0) : TF — & X Y be solutions of (3.1) such that their difference (v,v) —
(%,0) is ¢t -quasibounded for any ¢ € €5, R(T,R), a+ 0 < ¢ Qb — 0. Then the estimate

[)-()en

holds.

[c—al
<K e —KkIF,

A

ec(t,D)|[v(1) = ¥(1)|ly  forte Ty,

<

AxY
(3.6)
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Proof. Choose arbitrary p € % and 7 € T. First of all, the difference v —v € B (¥) is a
solution of the inhomogeneous dynamic equation

X% = A()x+F(t,(n0)(t), p) — E(t,(3,0)(¢), p), (3.7)

where the inhomogeneity is ¢"-quasibounded:

+
+

||F()(V>U)()>P) _F(:(i))ﬂ)())p)u‘r,c = |F|1 bY (34) (38)

()

by Hypothesis 3.1(ii). Applying [19, Theorem 2(a)] to (3.7) yields

V) %
v
Because of K;|F|i/lc—a] <1 (cf. (3.5)), without loss of generality, we can assume v #

0 from now on. Analogously, the difference v — o € B (V) is a solution of the linear
dynamic equation

T,¢

+

Ki|Fl;
lc—al

lv =%t < K|v(r) = »(1)]| + (3.9)

T, —

<

T,C

y& = B(t)y +G(t,(n,0)(t), p) — G(t,(%,0)(¢), p), (3.10)

()-)

by Hypothesis 3.1(ii). Now using the result [19, Theorem 4(b)] yields

AN v
v
and since we have K;|G|/|b—c] <1 (cf. (3.5)), as well as v # 0, we get the inequality

lo—ollf, <max{llv—2[f,llv—20lf.} by (2.1). Consequently, we obtain [|v —¥[|f =
[l(v,v) — (3, 0)|l7, which leads to

where the inhomogeneity is also ¢*-quasibounded:

+

U

+

||G('3(V)U)(')>P) _G(')(&ao)(')aP)Hrc = |G|1

B

by (3.4)  (3.11)

<

T,C

+

, (3.12)

T,C

_ Kz|Gly
_ +
lv-oll7. < b

<

i +

) - (7 e KUEL [ () _ (¥
H (v) - (v) B < Ki||v(z) = 9(0)]| + Ty <U> - (v> B by (3.9).  (3.13)
This, in turn, immediately implies the estimate (3.6) by Definition 2.2(a). 0

Now we collect some crucial results from the earlier paper [18]. In particular, we can
characterize the quasibounded solutions of the dynamic equation (3.1) easily as fixed
points of an appropriate operator.
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Lemma 3.4 (the operator T ;). Assume Hypothesis 3.1 for m = 1, Omax = | b —al/2, and
choose T € T. Then for arbitrary growth rates c € €} R(T,R), a+0<c<db—o0,and & €
X, p € P, the mapping T : B (X X Y) XXX P — RBE (X xY),

®A(-,1)E+Jw D4(+,0(5))F(s,(v,0)(s),p)As

T:(vu;&,p) = w , (3.14)
~ | @09 G5, (m0)(5), )
has the following properties:
(a) T.(+;&, p) is a uniform contraction in & € &, p € P with Lipschitz constant
L:=wmax{lFll,lGll}<l, (3.15)

(b) the unique fixed point (v,v:)(&, p) € BE (X x V) of T (+;&, p) does not depend on
c€6LR(T,R), a+0 <c<b— g, and is globally Lipschitzian:

' (Zi) (&) - (zj) (&p)

(¢) a function (v,v) € Bf (X X Y) is a solution of the dynamic equation (3.1), with
v(1) =&, if and only if it is a solution of the fixed point equation

<11571LH5—5_||95 for& e, pe?, (3.16)

+
T,C

(f}) = T. (50, p). (3.17)

Proof. See [18, proof of Theorem 4.9] for assertions (a), (b), and [18, Lemma 4.8] for (c).
O

Having all preparatory results at hand, we may now head for our main theorem in the
@!-case.

THaEOREM 3.5 (6!-smoothness). Assume Hypothesis 3.1 for m = 1, 6max = | b — al/2, and
let ¢ denote the general solution of (3.1). Then the following statements are true.
(a) There exists a uniquely determined mapping s : T X & X P — Y whose graph S(p) :=
{(1,&s(1,8,p)) 7€ T, & € X} can be characterized dynamically for any parameter
p € P and any growth rate c € € ;R(T,R), a+0 <c<db—o0, as

S(p) = {(1,&,n) e TXA XY : 9(-37,&,1,p) € BE (X xVY)}. (3.18)

Furthermore,

(a1) s(1,0,p) =00n T x P,

(a2) s: TX A XP - Y is continuous, rd-continuously differentiable in the first ar-
gument and continuously differentiable in the second argument with globally
bounded derivative

K Ky max {|F|y,|Gl;}
o —max {K}, Ky} max {|F|1,|Gl;}

for (1,&,p) e TXE X P,
(3.19)

ID25(7,&, )| arsan) =
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(a3) the graph S(p), p € P, is an invariant fiber bundle of (3.1). Additionally, s is a
solution of the invariance equation

A1$(T>E,P)
= B(7)s(1,&,p) + G(7,&,5(1,€, p), p)

1
- L Das(o (1), &+ hp* (D) [A(D)E + F(1,&,5(1,&,p),p) ], p)dh
x [A(T)E+F(1,&,5(1,&,p),p) ]

for (1,&,p) e TX % x P.
The graph S(p), p € P, is called the pseudostable fiber bundle of (3.1).

(b) In case T is unbounded below, there exists a uniquely determined mappingr : T X Y X
P — X whose graph R(p) := {(1,r(1,n,p),n): T €T, n € Y} can be characterized
dynamically for any parameter p € P and any growth rate c € €;R(T,R), a+o <
c<db-o,as

(3.20)

R(p) ={(1,&,n) e TXxE XY : 9(+57,&,1,p) € By (X xY)}. (3.21)

Furthermore

(by) r(7,0,p) =00n T X P,

(by) r: TXY X P — & is continuous, rd-continuously differentiable in the first ar-
gument and continuously differentiable in the second argument with globally
bounded derivative

K1 Ky max {|Fly,|Gl1}
o —max {K},K;} max {|F|, |Gl

[Dar (7,1, )| payiaey < ] for (1,1,p) € T XY x P,

(3.22)

(bs) the graph R(p), p € P, is an invariant fiber bundle of (3.1). Additionally, r is a
solution of the invariance equation

Avr(T,1,p)

= A(t)r(t,n,p) + F(7,7 (7,1, p), 1, p)

. (3.23)
- L Dyr(a(1),n+hu™(7)[B(t)n+ G(r,r(t,n,p), 1, p) |) dh

X [B(t)n+G(z,r(7,1,p),1,p) ]

for (t,m,p) € TXY x P.
The graph R(p), p € P, is called the pseudo-unstable fiber bundle of (3.1).

(¢c) In case T is unbounded below, only the zero solution of (3.1) is contained in both
S(p) and R(p), that is, S(p) N R(p) = T x {0} x {0} for p € P, and hence the zero
solution is the only c¢*-quasibounded solution of (3.1) for c € €, R(T,R), a+ o <
cdb-o.

Remark 3.6. Since we did not assume regressivity of the dynamic equation (3.1), one has
to interpret the dynamical characterization (3.21) of the pseudo-unstable fiber bundle
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R(p), p € P, as follows. For fixed p € P,a point (7,&,17) € T X X X Y is contained in R(p)
if and only if there exists a c’—quasibounded solution ¢(+;7,&,7,p) : T — & XY of (3.1)
satisfying the initial condition x(7) = &, y(7) = #. In this case the solution ¢(-;7,&,7,p)
is uniquely determined.

Proof. (a) Our main intention in the current proof is to show the continuity and the par-
tial Frechet differentiability assertion (a,) for the mapping s: T X & X % — Y. Any other
statement from Theorem 3.5(a) follows from [18, proof of Theorem 4.9]. Nevertheless,
we reconsider the main ingredients in our argumentation.

Using just [18, proof of Theorem 4.9], we know that for any triple (7,&,p) € T X
& x P, there exists exactly one s(7,&, p) € Y such that ¢(-;7,&,5(7,&, p), p) € BI (¥ x
) for every c € €;;R(T,R), a+0 < ¢ <b—o. Then the function s(-,p) : Tx & — Y,
p € P, defines the invariant fiber bundle S(p) if we set s(7,&, p) := (v (&, p))(7), where
(ve,0:)(&, p) € B (X X Y) denotes the unique fixed point of the operator T, (-;,p) :
B (X XY) - RBf (X x%Y) introduced in Lemma 3.4 for any E € &, p € P, and c €
CLR(T,R), a+0 < ¢ <b— 0. Here and in the following, one should be aware of the
estimate

{Kl\Fh K|Gly

[C—aJ’Lb—cJ}SL<1 by (3.15). (3.24)

The further proof of part (a,) will be subdivided into several steps. For notational conve-
nience, we introduce the abbreviations v;(&,p) := (v:(&,p))(t) and v (:¢,p) :=
(v (& P))(1).
Step 1. Claim: for every growth rate ¢ € €5R(T,R), a+ 0 < ¢ < b — 0o, the mappings
(Voo 07) 1 XX P — BE (X XY) and (VT,UT)(t DA XP =X XY, t € T, are continuous.
By Hypothesis 3.1, the parameter space P satisfies the first axiom of countability. Con-
sequently, for example, [15, Theorem 1.1(b), page 190] implies that in order to prove the
continuity of the mapping (vr,v:)(&o, ") : P — B (X x V), it suffices to show for arbi-
trary but fixed &, € & and py € P the following limit relation:

lim (U> (&0, p) = (Z) (£,p0) in B (X x V). (3.25)

P—Po

For any parameter p € P, we obtain, by using (3.14) and (3.17),

(@)

< aX{KIJ o (£,0())[|F (s, (ve,0:) (8560, p), p) = F (s, (2, 02) (8560, po)s po) || As,

T

K, fo ev (£,0())||G(s, (ve,01) (5580, ), p)

- G(S’ (vnvr) (5;50>P0),P0) ||AS} fort e T: bY (3.2).
(3.26)
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Subtraction and addition of the expressions [|F(s,(vr,v:)(s;&0, po), p)Il and ||G(s, (v,,
v7) (8380, Po)> ) I, respectively, lead to

() stp = () 60

where (cf. (3.4))

<max{a+p,y+0} forteTy, (3.27)

a:=K; Lt ea(t,0())|[F (s, (vr,vr) (50, po)» p) = F(s, (ve,vr) (8560, po)s po) || As,

(o) stom = (1) (st

y=K Lw ep (t,0())||G(s, (v, vr) (8580, po)s p) = G(s, (ve,01) (5580, po) > po) || As,

(1) tsp) = (1) tanp s

Now and in the further progress of this proof, we often use the elementary relation

[))IZ K1|F|1J ea(t,a(s)) As,

(3.28)

0:= K2|G|1L°O eb(t,O'(S))

max{a+f,y+3} < a+y+maxi{p,d}, (3.29)

which is valid for arbitrary reals o, 3,y,0 = 0, and obtain the estimate

(2w (e

< ae.(7,1) + yec(t,t) (3.30)
+max{Kl|F‘1 K2|G|173’ (Z:) (0, p) - (Z:) (&0> po)

le—al’lb~c]
from [18, Lemma 1.3.29, page 65]. Hence, by passing over to the least upper bound for
t € T, we get (cf. (3.15))

() @n = (7))

with the mapping

(1,1)

]

+

fort € T?,

T,C

+

S%wuu p) by(324) (331
Tt

T,

Ut,p) = ec(r,t)J ea(t,0(s))||F (s, (vr,v) (5580, po), p) —E (s, (ve,v2) (830, Po)> o) || As

+eC(T,t)L ey (t,0(5))||G(s, (1, v7) (5360, po)» p) = G (s, (vr, 01) (55805 po), po)||As.
(3.32)
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Therefore, it turns out to be sufficient to prove

lim supU(t,p) =0 (3.33)

p—po Tt

to show the limit relation (3.25). We proceed indirectly. Assume (3.33) does not hold.
Then there exist an € > 0 and a sequence (p;)ien in & with lim;_« pi = po and sup,-, U(t,
pi) > € for i € N. This implies the existence of a sequence (#;)icry in TF such that

U(ti,p,’) >e¢ forieN (3.34)

From now on, we consider a + ¢ < ¢, choose a fixed growth rate d € € ;R (T,R), a+ 0 <
d < ¢, and remark that the inequality d < ¢ will play an important role below. Because of
Hypothesis 3.1(ii) and the inclusion (v.,v;)(&, p) € B 4(X x V), we get (cf. (3.4))

() p

(1) tp

+

ea(s,7) forseT?, by (3.3)
7,d
+

||F(5’(VT’UT)(-S;fO»PO))P)” <|Fli

eq(s,t) forseT!, by (3.3)
T,d

||G(S)(vT)UT)(S;£0>pO)’p)|| = |G|l

(3.35)
and the triangle inequality leads to
Y ! f
U(t,p) <2|F <UT> (&> po) ec(r,t)J eq(t,0(s))ea(s, )As
T ’L’,d T
) ! «
+2|Gly (UT) (&0, po) ec(r,t)L ep(t,0(s))eq(s,7)As by (3.32)
T T,d
v T 1
T +
<2max{|F|;,|Gh} (w) (&0, po) Td([d—aj+[b—dj)ed96(t’T) fort € T,
(3.36)

where we have evaluated the integrals using [17, Lemma 1.3.29, page 65]. Because of d <1 ¢
and [17, Lemma 1.3.26, page 63], passing over to the limit t — oo yields lim;_.., U(t,p) =0
uniformly in p € P, and taking into account (3.34), the sequence (#;);en in T} has to be
bounded above, that is, there exists a time T € (7, c0)r with t; X T for all i € N. Hence, by
[9, Theorem 7.4(i)], we can deduce

U(ti, pi)

T
< J ec(1,0()||F (s, (v, vr) (8560, po), pi) — F(s, (v, 07) (8560, po)» po) || As
4 (3.37)

+ JTM €c (T’G(S))ebec (T’O-(S)) ||G(S’ (VT) UT) (5; EO)pO)JPi)
= G(s, (v, 07) (5380, po)> po) | |As by (3.32)
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for i € N, where the first finite integral tends to zero for i — oo by the continuity of F. Con-
tinuity of G implies lim;_.co G(s, (v£,07) (8380, po)> pi) = G(s, (v2,v:) (8380, po), po) and with
the Lebesgue’s theorem (here, one has to apply the Lipschitz estimate for the mapping G,
which is implied by (3.4), to see that the function

s ec(5,0(5)) epec(T,0(5)) Gl1 ]| (ve,v) (0, po) |I1. (3.38)

is an integrable majorant) for the integral on T (cf. [16, Nr. 313, page 161]), we get the
convergence of the indefinite integral to zero for i — co. Thus we derived the relation
lim;_« U(t;, pi) = 0, which obviously contradicts (3.34). Up to now we have shown the
continuity of (v;,v:)(&,-) : P — B (X X Y), and Lemma 3.4(b) gives us the Lipschitz

estimate
v, v,
H (w) (f,po) - <UT> (fo)po)

for any £ € &. So, for example, [3, Lemma B.4] implies the desired continuity of the fixed
point mapping (v, v:) : & X P — BT (X x Y). By properties of the evaluation map (see
[18, Lemma 3.4]), this yields also that (v;,v;)(t;-) : X X P — X XY, t € T?, is continu-
ous.

+

K;
<
1-L

T,¢

1€ =&l by (3.16) (3.39)

Step 2. Claim: the mapping s: T X X X P — Y is continuous.
Let o € T, & € &, and py € P be fixed. From (3.25) and the definition of s, we have

I}i_'n’}os(TO)EO)P) :S(TO>£0)pO)) (340)

and, similarly, (3.39) leads to the estimate

[Is(7,&, p) = s(70, &0, po) ||
(3.41)

< L {Je = &oll+ 151, E0,p) — (0, E0 )|+ 15(z05E0,p) = (0,0 )|

forteT, &eX, and p € P. Therefore, to establish the claim of Step 2, it remains to
show the limit relation

;1_{111 s(1,&,p) = s(10,&,p) uniformlyin p € P. (3.42)

We abbreviate ¢(7, p) := (¢1,¢2)(7, p) := ¢(7;70,&0,5(70, &0, p), p) and by Theorem 2.4(a),
¢ (-, p) exists in a T-neighborhood of 7y independent of p € P. The invariance of S(p),

p € P, implies ¢,(7, p) = s(7,¢1(7, p), p), as well as ¢1 (10, p) = &o, $2(70, p) = (70,0, p)-
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Hence, one obtains

|Is(7,&, p) = s(70, &0, )|
<||S 7 EO’ )_S(TO’¢1(T’P)’P)||+||5(T>¢1(T’P)ap)_5(70350317)”

< Ll (10,p) - i (m ) + 921 p) ~ ha(m )| by 339) G4
s(lli—L+1>||¢(T>p)—¢(To,P)|| forpe® by (2.1),
and, because of (a;), it is

16 (70, p) || < max { ||€o|| [Is (70,80, p) = 5(70,0, p) I} by (2.1)

(3.44)
<max{ }||fo|| forpe P by (3.39).
Consequently, we can apply Theorem 2.4(b) (with £(p) = ¢(79, p)) and get
lim ¢(7,p) = ¢(70,p) uniformlyin p € P, (3.45)

T—T0
which ultimately guarantees (3.42).

Step 3. Letc € €, R(T,R), a+0<c<b—0,& ¥, and p € P be arbitrary. By formal
differentiation of the fixed point equation (cf. (3.14), (3.17))

t
DL, T)E+ I Dy (t,O‘(S))F(S, (Vr>Ur)(S;f>P)>P)AS
( )(tfp— L fort € T?,
—L D5(t,0(5)) G(s, (ve,07) (53€, p), p) As
(3.46)
with respect to & € &, we obtain another fixed point equation
)1

() €p =THOLEpitap) (3.47)

for the formal partial derivative (v},v!) of (vr,v) : % X P — B} (¥ x Y) with respect to
& € &, where the right-hand side of (3.47) is given by

T, v5€,p)
. 1
A(':T) + J; q)A('yg(s))D(Z,S)F(S: (vrr Ur)(ﬁf:P):P) (Zl) (S)AS (348)
[e°] 1 .
—J_ Dp(+,0(5)) D23 G(s, (vr,0:) (€, p), p) (zl) (s)As

Here, (v!,0!) is a mapping from T} to L(¥;% x Y) and in the following we investigate
this operator 7.



C. Potzsche and S. Siegmund 157

Step 4. Claim: for every growth rate ¢ € €, R(T,R), a+ 0o <c <b— o, the operator T :
RBL X EXP — B! is well defined and satisfies the estimate

)

Thereto choose arbitrary functions (v',v') € BL_ and £ € ¥, p € P. Now using (3.2),
(3.4), and [17, Lemma 1.3.29, page 65], it is
)l
(o

As} by (3.48)

+

T 058, p) |7 < Ki+L for o) eBl E€X, peP.  (3.49)

T,C

||9~i(V1>Ul%t»P)(t)||§£(%;9€x@)ec(7’t)

t
< max{KIeceu(T,t) + K |F| 1€c(T,t)I ea(t,0(s)) As,

1
‘ (Zl) (s)

t
< K +e.(7,t) max {Kl |Fl, J eq(t,0(s))ec(s,T)As,

T

[

K2|G|1ec(r,t)J e (£,(5))

t

0 1 +
K2|G|1L eb(t,o(s))ec(s,T)As} ‘(zl) by (3.29)
KI|Fl, KI|G| 1\ ||
1 1 2 1
e (25 | ()]
MY
<Ki+L ‘ (1)1) fort € T: by (3.24),
" (3.50)

and passing over to the least upper bound over t € T} implies our claim T1(»!,v';&,p) €
RB1 ., as well as the estimate (3.49).

Step 5. Claim: for every growth rate c € €;;R(T,R), a+ o < ¢ b — o, the operator T1(+;
&p): Bl — Bl is a uniform contraction in & € X, p € P; moreover, the fixed point
(vLo}) (&, p) € B! does not depend on ¢ € €, R(T,R), a+ 0o I c<b— 0, and satisfies

1
|)er

Let ¢ € & and p € P be arbitrary. Completely analogous to the estimate (3.50), we get

17504058, p) = T3 (5,058 p)

»! | (3.52)
=1 () - ()

for (v',0'), (#',0") € B}, by (3.24).
Taking (3.15) into account, consequently Banach’s fixed point theorem guarantees the
unique existence of a fixed point (vL,v})(&,p) € Bl of TL(-;&,p): Bl — RBL . This

K
1-L

<

forée®, pe . (3.51)

+
T,C

7,0
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fixed point is independent of the growth constant ¢ € € ;R (T,R), a+ 0 <c<b -0,
because with Lemma 2.3(b) and (c) we have the inclusion ®! ,,, < B! and every map-
ping T1(+;&,p) : Bi . — B; . has the same fixed point as the restriction T;(-;&,p) g1, .
Finally the fixed point identity (3.47) and (3.49) leads to the estimate (3.51).

Step 6. Claim: for every growth rate c € €L, R(T,R), a+o <c<db—o0, and p € P, the
mapping (vz,v:)(+, p) : & — B (X X V) is differentiable with derivative

1
D (v’) - (lv){) XD — B (3.53)

Ur T

Let £ € ¥ and p € P be arbitrary. In relation (3.53), as well as in the subsequent consid-
erations, we are using the isomorphism between the spaces B; . and L(%; BT (¥ x Y))
from Lemma 2.3(c) and identify them. To show the claim above, we define the following
four quotients:

Av(s, ) o= EEEH L) —ve(sp) —vi(s & ph

Al (3.54)
‘ B . (e ‘
Bu(s,p) = ST P) vf||(2’|\£’p) nlsh Pl
h
F(S>x+h13}’+h2>P) _F(S’x’yjp) _D(Z’s)F(S’x’y,P) (h;)
AF (s, yhisho) = [, )] ’
h
G(S;x+h1)y+h21p) - G(S)x>y’p) - D(2’3)G(S,x’y)P) (h;>
AG(s,x,y,h1,hy) = [[ (B, ha) || ’
(3.55)

for times s € T and x € &, h,hy € X\ {0}, y € Y, h, € Y\ {0}. Thereby obviously the
inclusion (A»,Av)(-,h) € BT (X x Y) holds. To prove the differentiability we have to
show the limit relation

lim (ﬁf}) (nh) =0 in@B! (X xY). (3.56)

h—0

For this, consider a+ 0 < ¢, a growth rate d € €, R(T,R), a+0 <d < ¢, and from
Lemma 3.3, we obtain

(Zj) (s5E+h,p) - (3:) (s;f,m"

|d—al
ld —al - Ki|Fi

il
Al (3.57)

<K, eq(s,7) forseTr by (3.6).
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Moreover, using the fixed point equations (3.46) for v, and (3.47) for v}, it results (cf.
(3.14), (3.48)) that

1 t
| Av(t, )| = WHJ D (t,0(5))

X [F(s, (ve,v:) (s5E+h, p), p) — E(s, (ve,0:) (838, p), p)

1
_D(2,3)F(S, (anr)(S;f,P),P) (Zi) (S)S,P)h} As

fort e T},

(3.58)

where subtraction and addition of the expression
V¢ Vr
D(2,3)F(S> (vTavT)(S;Eap)Jp) |: (U ) (S)E + h:P) - (U ) (Saf)p):| (359)
in the above brackets imply the estimate

t
HAV(t’h)” = L L qDA(t:U(S)){F(S’(VT,UT)(S;f"'h,P))P) —F(S)(VT,UT)(S;E)P))P)

— D3 E (s, (ve,0:) (5358, p), p)

(oo (G)een]fe

(5))D(23 (5)(V1yvr)(5£p) )

1
-[(Z)<sf+np>—(£)<sap»—(x)<s&pvJAs

t
SJ [|@4 (1,0 () [[||AF (s, (ve,0:) (&, p), (Ve,02) (55E+h, p)— (ve, 02 ) (€, p)) ||

nm”( )“f+hp (T)wap>A
+|F|1J @4 (1,0()) ||H< ) "

<K1J ea(t,0(5))||AF (s, (vr,v:) (€, p), (ve,02) (58 + h, p)—(ve,0:) (€, p)) ||

o (vi) (58 +h,p) - (3?) (&, p)||As
Ay
2)es

As by (3.4)

t

+K1|F|1J ea(t,0(s))

T

As by (3.2)

(3.60)
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for t € T, and together with (3.57), we get

llAv(t B

t

SK1|F|1J ea(t,0(s))

T

Av ld—al - K;|F]

(M) (s,h)HAs+ __Kild-al

'L ea(t,0(s))ea(s, 1) ||AF s, (v, 0r) (83€, P (anf)(ﬁf"'h’p)_ (VT’UT)(5§£>P))||A5
(3.61)

for t € T}. Now we analogously derive a similar estimate for the norm of the second
component ||Av(t, k)]l and obtain

llav(t |

sKﬂG\lfeb(r,a(s))

Ay Kleld—aJ
‘(Av) (S’h)”A” ld—al—K Fl,

-Lw e (t,0(s)) ea(s, D[|AG(s, (vr,v:) (38, p)s (ve,07) (55 +h, p) = (v, 0:) (5:€, p)) || As
(3.62)

for t € T'. Consequently, for the norm [|(Av, Av)(t,h)ll, one gets the inequality

Ay
H (A) <t,h>|| — max ||t W] [do(e )]} by 2.1) .

<max{a+p,y+08} forteT},
with

__ Kfld-al
 ld—al-K|Fl,

As,

t
| ealto)euts AR (s 000058, p)y (00) 58+, p) = (70000) (556, ),
/3:=K1|F|1J eq(t,0(5))

_ KiKy|d—al

Ay
(5
~ |ld—al-K|Fl

-Jt ep(,0(5))ea(s, T)||AG(s, (ve, 1) (5:€, p), (e, v2) (3E+h, p) = (v, v:) (3, p)) || As,

(&l

8:= K |Gl fo ep(t,0(s))

(3.64)
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We are using relation (3.29) again, and obtain the estimate (cf. [17, Lemma 1.3.29, page

65])
A A "
H (AZ) (t1)|lec(1,1) < aec(r,t) + pec(t,£) + L ‘(Az) (h) ) fort €T by (3.24).
’ (3.65)
By passing over to the least upper bound for t € T}, we get (cf. (3.15))
+
Av Kimax {Ki,K,} ld—al
H(Av) () i e KRV (3.66)
with
t
V(t,h) = ec(t, t)J ea(t,0(s))ea(s, 7)||AF (s, (vr,vr) (:€, p)s (ve,0:) (55€ + B, p)
= (v5,07) (858, As
(ve,v2) (38, p)) (3.67)

+ec(7,1) Loo ep(a(s))ea(s, T)||AG(s, (vr,0:) (55€, p), (v, ) (5€ + h, p)
— (v5,00) (s, p)) || As

for t € T}. Thus, to prove the above claim in Step 6, we only have to show the limit
relation

limsup V(t,h) =0, (3.68)

h—0 <t

which will be done indirectly. Suppose (3.68) is not true. Then there exist an € > 0 and
a sequence (h;)ien in & with lim;_« h; = 0 such that sup,_, V(t,h;) > € for i € N. This
implies the existence of a further sequence (#;);en in TF with

V(ti,h,‘) >e forieN. (3.69)

Using the estimates [|AF(s,x, y,hi,hy) || < 2|F|; and [[AG(s,x, y,h1,h2)|l < 2G|y, which
result from (3.4) in connection with [14, Corollary 4.3, page 342], it follows by known
arguments that

V(t,h)

< 2|F|1ec(1,t)J eq(t,0(s))eq(s,7)As+2|Glre.(1,t) Lw ey(t,0(s))eqa(s,7)As by (3.67)

2|F|, 2|Gly
S([d—a] =4

)edec(t,‘r) fort e Tf,
(3.70)
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and the right-hand side of this estimate converges to 0 for t — oo, that is, we have
lim;_« V(t,h) = 0 uniformly in h € &. Because of (3.69), the sequence (t;);cn has to be

bounded in T, that is, there exists a time T' € (7, 00)r with t; X T for any i € N. Now we
obtain

V(tbhi)
T
SL ec(1,0(5))ea(s, D||AF (s, (v, 0. ) (€, p), (v, v) (5:E+hi, p)— (v, 0:) (3, p)) || As

+ Jw ec(1,0(5))epoc (T,0(s))eq(s,T)

NAG(s, (V> v:) (53E, ), (Verv2) (83 +hi, p) — (Vesv:) (536, p))||As fori €N,

(3.71)
by (3.67) and because of Step 1, we have
,hJZ.} <z:> (s;€+hi,p) = (3:) (s;6,p) forseT!, E€X, peP, (3.72)
as well as, using the partial differentiability of F and G,
lim <AF) (s,%,9,h1,h)||=0 forxeX, yed, (3.73)
(h1,h2)—(0,0) || \AG

which leads to the limit relation

lim

i— 00

(21(:;) (8, (v, v0) (836, ), (ve,07) (€ + hyy p) — (vr,vf)(s;f,p))" =0 forseT!.
(3.74)

Therefore the finite integral in (3.71) tends to 0 for i — co. Using Lebesgue’s theorem,
also the indefinite integral in (3.71) converges to 0 for i — oo, and we finally have
lim;_« V(#;,h;) = 0, which contradicts (3.69). Hence the claim in Step 6 is true, where
(3.53) follows by the uniqueness of Fréchet derivatives.

Step 7. Claim: for every growth rate ¢ € €;,R(T,R), a+ 0 < ¢ < b — o, the mapping
Di(ve,v7) : X X P — B is continuous.

With a view to (3.53), it is sufficient to show the continuity of the mapping (v1,v}) :
& x P — B! . To do this, we fix any § € &, po € P and choose & € ¥, p € P arbitrarily.
Using the fixed point equation (3.47) for (v},v}), we obtain the estimate (cf. (3.48))
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() en- () o)

< max{Kl Jtea(t,a(s))

1
X D(2,3)F(5>(VT,UT)(S;E,P),P) (:i) (5;f>p)

1

f) (50, po)

T

— D23y F(s, (v2,07) (5580, po) > po) (:j As by (3.2),

K; L‘” ep(t,0(s))

1
X D(2,3)G(S’ (V1>U1)(S;5>P)>P) (Z;) (S;EMD)

1
= D3 G(s, (vr,vr) (8580, Po) > o) (Z?) (8560, po) As} fort € T},

(3.75)
where subtraction and addition of the expressions
!
D(Z,S)F(Sa (V‘r; l)-r) (S&P%P) <Ul) (S;EO)pO),
Z (3.76)
v}
D(2,3)G(S, (VT)UT) (5§5)P))P) (Ul) (S fO)PO)
respectively, in the corresponding norms and the use of (3.4) lead to
)1 )l
H( 1) (t:&,p) — < i) (t:¢0, po) || < max{a+B,y+0} forteT], (3.77)
with the abbreviations
t A
a::Klj ea(t,O’(S))HF(S,f,P)”H( ) 5>£07P0 A57
t
ﬂ1=K1|F|1J eq(t,0(s)) ‘( ) 56, p ( ) (5380, po)||As,
(3.78)

As,

1
it ateonicenl| () st

1
‘(l;) (S;E’P) - (Z;) (5;50’1)0)

As,

0:= K |G|, Lw eb(t,(T(S))
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F(s,€,p) := D3 F (s, (v, 0:) (556, p), p) — D3y F (s, (ve,v7) (8360, Po) Po)»
G(&f»P) 1=D(2,3)G( (v, 0:) (83€, p)sp ) 23)G(5:(VT:UT)(S;EO,P0)>P0)-

With the aid of relation (3.29), one obtains

H(Zl> (& p) - (Zl) (t:€0, po)
'( i) & p) - (Z;) (€05 po)

We define ¢; := a+ o0 to get (v;,v}) (&, po) € B, . In the integrals & and y, we can esti-
mate the mapping (v}, v})(&, po) using its ¢} -norm, which yields

(3.79)

ec(1,1)

+

< ae.(1,t) +ye(t,t) +L fort € Tf by (3.24).

T,

(3.80)

1 oy
a <K, (vg) - T e.(t,0(s))e, (5,7)||F(s,& p)||As  fort € T,
” i (3.81)
v} o
y <K, (vl) (&0, po) L ep(t,0(s)) e, (5,7)||G(s, &, p)||As  fort € T?.

Now we substitute these expressions into (3.80) and pass over to the supremum over
t € T} to derive

vl ! ' K, Ko} || (v :
H( 1) (&P)‘ (Vl) (fO)PO) =< M ‘( 1) (EO)FO) SuPW(tyf’P)
Uz Uz 7,c 1 L Uz 7,01 Tt
(3.82)
by (3.24) with
t
Wit p)i= | ealto®)eq (s DIFE s
T (3.83)
+ L e (t,0(s)) e, (5,7)||G(s, €, p)|| As.
Therefore it is sufficient to prove the limit relation
lim supW(t,&p)=0 (3.84)

(&,p)—(&o,po) T=t

to show the claim in Step 7. We proceed indirectly and assume (3.84) does not hold. Then
there exist an € > 0 and a sequence ((&, p;))ien in X X P with lim;_« (&, pi) = (&, po) and

supW(t,&,p;)) > forieN, (3.85)

Tt

which moreover leads to the existence of a sequence (t;)ien in T7 such that

W(ti,fi,pi) >¢ forieN. (3.86)



C. Potzsche and S. Siegmund 165

Apart from this, we get (cf. (3.4), (3.79))

(Y]

W(t,f,p)s2|F|1Jtea(t,o(s))ecl(s,T)As+2|G\1J eo(£,0(s))e, (s, 7)As by (3.83)
T t

<< 2|Fy . 21Gh
“\|e—al |b-¢q

J )eclec(t) T)
(3.87)

for t € TY, and since ¢; < ¢, the right-hand side of this estimate converges to 0 for t — o,
which yields lim;—. W(#,&,p) = 0 uniformly in (&, p) € ¥ x P. Because of (3.86), the
sequence (t;)ien in TF has to be bounded above, that is, there exists a time T € (7, 0)7
with t; X T for all i € N, and this is used to obtain

T
W (1 &0 pi) < j ec(7,0(5)) e, (5, 7)|[F(s, £, p)]|As

o (3.88)
+J e.(1,0(5)) epoc (T, 0(s)) e, (5, 7)||G(s,E, p)||As  forie N.
The continuity of (v;,v,)(s, -) from Step 1 gives us the relation
. VY Vr
lim (v ) (&, pi) = (v ) (5;80,p0) forse T, (3.89)

and therefore the finite integral in (3.88) tends to 0 for i — co by (3.79) and the continuity
of D(»,3)F. By the continuity of D(,,3)G, the indefinite integral in (3.88) does the same, and
we can apply Lebesgue’s theorem, which finally implies lim;_... W (#;,&;, p;) = 0. Of course
this contradicts (3.86), and consequently we have shown the above claim in Step 7.

Step 8. We have the identity s(7,&, p) = v.(&,p)(7) fort € T, &£ € &, p € P, and by well-
known properties of the evaluation map (see [18, Lemma 3.4]), it follows that the map-
ping s(7,-) : X X P — Y, v € T, is continuously differentiable with respect to its variable
in ¥. We do not show that Dys: T X ¥ X P — Y is continuous here. This can be seen
by carrying over arguments developed for ordinary differential equations in [24, pages
160-163] to dynamic equations (cf. [17, Lemma 3.1.3(a), page 130]). Thereto one has
to assume that the parameter space % is locally compact. Finally, the existence and rd-
continuity of Ajs: T X & X P — Y result from [17, Lemma 3.1.3(b), page 130] together
with the continuity of D,s.

(b) Since part (b) of the theorem can be proved along the same lines of part (a), we
present only a rough sketch of the proof. Analogously to Lemma 3.4, for initial values
n € Y and parameters p € P, the ¢ -quasibounded solutions of system (3.1) may be
characterized as the fixed points of a mapping T : B (X X Y) X Y X P — B (X X Y),

f ©4 (-, 0(5) (s (3,0)(s), p) As
T (vu3m,p) := - (3.90)

t
CDB(-,T)ﬂ-i-J ®(-,0(5))G(s, (35 0)(s), p) As
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Now, 7 ; can be treated justas I, in (a). In order to prove the counterpart of Lemma 3.3,
the two results [19, Theorems 2(a) and 4(b)] have to be replaced by [19, Theorems 4(a)
and 2(b)]. It follows from assumption (3.5) that also I, is a contraction on B (X xY)
and if (v, v7) (1, p) € B, (X X Y) denotes its unique fixed point, we define the function
r:TXYXP —ZEbyr(r,n,p):=(v:(n,p)) (7). The claimed properties of r can be proved
along the lines of part (a).

(¢) The proof of part (c) has been carried out in [19, Theorem 4.9(c)] and we have
established the proof of Theorem 3.5 completely. O
4. Higher-order smoothness of invariant fiber bundles

In [18] we proved a higher-order smoothness result for the fiber bundle S or R in only a
nearly hyperbolic situation, that is, if the growth rates a, b and the real o from Hypothesis
3.1 satisfy a+ 0 <0 or 0 < b — 0, respectively. Now we weaken this assumption and re-
place it by the so-called gap condition. This, however, needs some technical preparations.

LemMma 4.1. Assume m € N and that a,b € €, R(T,R) are growth rates.

(a) Under the gap condition m ® a <1 b, the mapping p?*[a,b] : T — R,

. 1+ha(t) 1+ha(t)+1+hb(t)
ma,bl(t):= 1 m — =1, 4.1
pilmbl(D):=, lim = (J 1+ ha(t) + (1+ ha()) ) (4.1)
satisfies | pI"[a,b] | > 0.
(b) Under the gap condition a < m © b, the mapping p*[a,b] : T — R,
. 1+hb(t) 1+ha(t)+1+hb(t)
m ,b £) = l 1—m™ | 4.2
pri@bllt):= lim == ( \J1+hb(t)+(1+hb(t)) ) (42)

satisfies | p/*[a,b] | > 0.

Proof. We establish only (a) since statement (b) follows analogously. In the proof, one
has to distinguish the cases y*(¢) = 0, where 'Hospital’s rule yields

i

1+ha(t)<d 1+ha(t)+1+hb(t) ):M, (4.3)

1+ha(t)+ (1 +ha())" 2m

and p* (t) > 0, where the assertion follows by easy estimates from the conditionm©a < b
since a, b are growth rates and since y* is bounded above. O

This leads to the main result of this paper.
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THEOREM 4.2 (€™-smoothness). Assume Hypothesis 3.1. Then the assertions of Theorem
3.5 hold and moreover the mappings s and r satisfy the following statements.

(a) Under the gap condition

ms;©a<b (4.4)

for mg € {1,...,m} and if Omax = min{| b —al/2,| p[a,b] |}, the mapping s(t,-) :
X XP —Y, €T, is ms-times continuously differentiable in the argument & € ¥
with globally bounded derivatives

ID3s(7,& Pl ey < Cu forne {1,...,ms}, (1,6, p) € TX X X P, (4.5)

where in particular C, := 0K,/(0 — max{K; |F|;,K;|Gl:}).
(b) In case T is unbounded below, under the gap condition

a<im,0b (4.6)

for m, € {1,...,m} and if Omax = min{| b —al/2,|p"[a,b] ]}, the mapping r(z,-) :
YXP —X, T, is me-times continuously differentiable in the argument n € Y
with globally bounded derivatives

D3 (2,7, )| ey < Cu - forn e {1,...,m,}, (7,1,p) €T XY X P, (4.7)

where in particular C; := 0Ky/(0 — max{K;|F|;,K;|Gl:}).
(c) The global bounds C,,...,C,, = 0 can be determined recursively using the formula

.....

0= o —max {K;,K;} max {|F|}, |G|}

(4.8)

forne{2,...,m}.

Remark 4.3. In the case of constant growth rates and homogeneous measure chains, that
is, for ordinary differential equations and ordinary difference equations, the above gap
condition (4.4) is sharp, that is, for example, the invariant fiber bundle S from Theorem
3.5(a) is only of class €™ in general, even if the nonlinearities F and G are €*-functions.
This is demonstrated in [20, Example 5.2] for difference equations.

Proof. (a) Since the proof is quite involved, we subdivide it into six steps and use the
conventions and notation from the proof of Theorem 3.5 for brevity. We choose 7 € T.
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StepI. Letc € €,R(T,R),a+0 <c<b-o,andleté € ¥, p € P be arbitrary. By formal
differentiation of the fixed point equation (3.46) with respect to & € &, using the higher-
order chain rule from Theorem 2.1, we obtain another fixed point equation

l
( )(fp) Tl ) (€, p):E, ) (49)

T

for the formal partial derivative (v.,0l) of (v;,v;): % X P — Bt (X xY) of order | €
{2,...,ms}, where the right-hand 51de of (4.9) is given by

T (04,058, p)
)
J (DA )U |:D(23 F(S’(VT)UT)(5;£>p)’p) (vl> (5)+R11(5,E:P):|A5

[ st [pasts st pnp () 6 Rist s
(4.10)

Here, (+,0!) is a mapping from T? to £;(%;% x ¥). The remainder R' = (R}, R}) has the
following two representations:
(1) as a partially unfolded derivative tree,

- ; 1
R(s,§,p) = Z( ; ) aagj [D<z,s>(F,G)(s,(vT,vT)(s;E,p),p)](Zz’ ) (s:6,p) by (2.3),

(4.11)
which is appropriate for the induction in the subsequent step (Step IV),
(2) as a totally unfolded derivative tree,

l .
Rl(sﬂf)P) = Z Z D{2,3)(F>G)(5’ (VT,UT)(S;f)P))P)

1/#Nl ,VﬁNJ
X (viM) (5&p)- - (v#N,) (s&,p) by (2.4),
(4.12)

which enables us to obtain explicit global bounds for the higher-order derivatives in
Step II. For our forthcoming considerations, it is crucial that R’ does not depend on
(vL,01). In the following steps, we will solve the fixed point equation (4.9) for the op-
erator .. As a preparation, we introduce for every | € {1,...,m,} the abbreviations
c = max{a+a lo(a+o)};itis

forteT. (4.13)

a(t)+o, ifa(t)+0 <0,
a(t) = ‘| .
(lIe(a+0))(t), if0<a(t)+o,

Then cy,...,cm, are growth rates because of the gap condition (4.8) and with our choice
of Omax, it is easy to see that one has the inequality a+ o < ¢y,...,¢n, < b — 0, which in
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case a(t) + 0 < 0 follows from ¢ < | b —a]/2 and otherwise essentially results from m; ®
(a+0) < b — 0, which in turn is implied by

(1+h(a(t)+0)™) +1+h(a(t)+0)

m ho " ho
= (1+ha(t)) (1+1+ha(t)> +(1+ha(t))(1+1+ha(t))

<[(1+ha(t)™ +1+ha()] <1+ IJ’:‘;M)m

<l+ha(t)+1+hb(t) forteT,

(4.14)

if 0 < |p"[a,b]] (cf. Lemma 4.1). Now we formulate for # € {1,...,m,} the induction
hypotheses.
A(m) Forany! € {1,...,m} and growth rates c € €}, R(T,R),¢; < ¢ < b — 0, the operator
TL:RBL XX x P — BL_ satisfies the following:
(a) it is well defined,
(b) TL(+;¢, p) is a uniform contraction in £ € &, p € P,
(c) the unique fixed pomt YL ub) (5 p) = (DL, 0D) (&, p) of TL(+;&, p) is globally
bounded in the ¢/ -norm

e

with the constants Cl > ( given in (4.8),
(d) if g <¢, then (VoL ok : ¥ x P — %l . Is continuously partially differentiable
with respect to & € & with derivative

-1 !
D, (le) = (V,’) (X XP — B (4.16)
vT UT

For m = 1, the proof of Theorem 3.5 implies the induction hypothesis A(1) with
= Ki/(1—L) (cf. (3.51)). Now we are assuming that A(m — 1) holds true for an m €
{2,...,ms} and we are going to prove A(#n) in the following five steps.

<Cre,(s,7) forseTiH, EeX, peP, (4.15)

Step II. Claim: for every growth rate ¢ € €, R(T,R), ¢z < ¢ < b — 0, the operator T :
B XE X P — B is well defined and satzsﬁes the estimate

177 (™, 0™58, p) e

(N1,...,N;)EP} () i (N1,...,N;)EP} (m

+

<L

T

for (v, )e%;”c,fe%,pe@’,
(4.17)

that is, A(m)(a) holds.
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Letl € {2,...,m}, E € X, p € P be arbitrary and choose ¢ € €,R(T,R), g <Jc<ab—
0. Using the estimate csn, @ - - - @ e, Ja for any ordered partition (Ny,...,N;) € P]<(l)
of length j € {2,...,1}, from (3.2), (3.4), and A(m — 1)(c), we obtain the inequality

J@Ata s,f,p

*L ©5(1,0(5)) RL(5,&, p)As

t ! J
< max{Klj eq(t,a(s)) Z |Fl; Z HC#N,,eC#Ni (s,7)As,

(N, ,...,Nj)EPj(l) i=1

© I j
KQJ ey (1,0(s)) Z|G|j s HC#NieC#Ni(s,T)As} by (4.12)

(Nps...s Nj)EP-<(l) i=1

¢ )
< max{Klf eq(t,0(s))eq (s, T Z |F|; Z HC#N,AS,

’ (Ny,...Nj) P (1) i=1

[e<] l
sz ep(t,0(s))eq (s, ) Z Gl; Z HC#N,,AS}

(N1,....Nj)€EP; (]) i=1

K <
SmaX{Lcl—MZ'F“ Z HC#N, — J

j=2 (N1,...Nj)€P; (D) i=1

I
x > |Gl; > HC#N,}eC(t,T)
=

(N, ,4..,Nj)er(l) i=1
(4.18)

for t € Tf by [8, Theorem 7.4(i)]. Now, let c € €,R(T,R), ¢y < ¢ < b — 0, be arbitrary
but fixed, and (»",v™) € B . With the aid of the above estimate (4.18), we obtain

(%)

K & J
+712 |Fl; Z HC#Niec(t,T),
lcﬁl - aJ j=2

(Nir..oN})EP5 (1) i=1

()],

T,C

Z HC#N,eC (t,7) } by (4.10)

(N1tsN;)EP (1) i=

[T (v, 0™, p) (1)

+

T

< max{KI |F|1Itea(t,a(s))ec(s,T)As

T,C

K|Gly Lw ep(t,0(s))ec(s, 7)As
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()],

T,C

v\ | K |Gl
() S low St

T,c m j=2 (N1,....Nj €P<(m =

P HC#N}eC 61)

(N1,...Nj)EP} (m) i=1

- Ki|F|y
< max
lc—al

+

SL‘

vrh
vrh
T,¢

K &
+max{l%_ajj%|F|j Z HC#N,

(N1,...,N;)EP; () i=

S T nc#Ni}ec(t,T) forteT! by(3.24),
m ]':2

Ni,..., Nj)eP<(m)1 1

(4.19)

and after multiplying this by e.(7,¢), passing over to the least upper bound over ¢t € T?
implies our claim J7(v",v"™;&, p) € W In particular, the estimate (4.17) is a conse-
quence of (4.19) and the choice of a+ 0 <J¢;; <b —o.

Step 1. Claim: for every growth rate ¢ € €,R(T,R), ¢ < ¢ < b — o, the operator
(:3&p) : B — B is a uniform contraction in & € X, p € P; moreover, the fixed point
™(&,p) e %ffc does not depend on ¢ € €, R(T,R), c;y < ¢ < b — 0, and satisfies

”
|G2)en

that is, A(m)(b) and (c) hold.
Choose ¢ € €}, R(T,R), ¢;s < ¢ < b — o, arbitrarily but fixed, and let (v™,0™), (¥™,0™)
e R, Ee ¥, peP. Keeping in mind that the remainder R™ does not depend on
(v™,0™) or (¥",0™), respectively, from (3.2) and (3.4), we obtain the Lipschitz estimate
||g;h(vﬁ1)vrh;£’p)(t) - gT (q-/nh, Dm;fap)(t)Hec(T, t)

t m
< max {K1|F|1J ea(f,O(S))H (Zm) (s) - ( ) (s)
=Y Vrh 1}m
Kz\GllL eb(t,O(S))H<vm>() ( )(S)

< max{Kl |F|; Jtea(t,o(s))ec(s,r)As,KzlGll Jw eb(t,a(s))ec(s,r)As}
t

+

<Csy forée®, pe®, (4.20)

T,C

QI

As,

Cl

As}ec(r t) by (4.10)

~ec(7,1) (ZZ) - (z:)

T,C
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KilFl, Kx|Gh ym ym
< max e

lc—al’lb—c]
fort € Tf by (3.24),

()~ G2,

and passing over to the least upper bound over ¢ € T; together with (3.15) implies our
claim. Therefore Banach’s fixed point theorem guarantees the unique existence of a fixed
point (v, v")(&, p) € B, of the mapping T7(-;&, p) : B, — %m It can be seen along
the same hnes as in Step 5 in the proof of Theorem 3.5 that ™ (&, p) does not de-
pend on ¢ € €5 R(T,R), c;u < ¢ < b — 0. The fixed point 1dent1ty (4 9) for (v, v)(&, p),
together with (4 17) and (3.15), finally implies (4.20).

+

T,C

SL‘

T,¢

(4.21)

Step IV. Claim: for every growth rate ¢ € €R(T,R), ¢;; <c < b—o0, and p € P, the
mapping (V=10 1) (-, p) % — B is dzﬁerentzable with derivative

m—1 1
D, (y’ﬁ“) = (v;) (X P — BT (4.22)
UT UT

Let c€e €5R(T,R), cn < ¢ < b—0,and p € P be fixed. First, we show that (v~ 1,07~ 1)(
p) is dlfferentlable and then we prove that the derivative is given by (v, 0™)(+,p) : &

LA BI) = B (cf. Lemma 2.3(c)). Thereto choose & € & arbitrarily, but ﬁxed.
From now on, for the rest of the proof of Step IV, we suppress the p-dependence of
the mappings under consideration; nevertheless p € % is arbitrary. Using the fixed point
equation (4.9) for (v~ 1,v7"1), we get for h € % the identity

Y1 Y1
(vﬁ”) (t&+h) - (vﬁ“) (t8)
m—1

L Dy (t,0(s)) [D(m)F(s, (ve,v:) (s;€+h)) (Urm_l

) (s;f+h)+Rq"1(s,5+h>] As

m—1

) (I)B(t,O'(S)) |:D(2,3)G(5) (VT,UT)(S;f'i'h)) (v;_l

¢ T

) (ssE+h)+Ry (s, +h)} As

m—1

Ltd)A(t,G(S))[ 23)F (s, (vr,07) (53€)) (: )(SEHR'” 1(s,f)]As

T

m—1

- L‘” D3 (t,0(s)) [D(Z,S)G(5> (vr,0:) (53€)) (:;1) (5;€) +R§"_1(5>f)] As

T

(4.23)
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by (4.10) for t € T}. This leads to

Y-l Y-l
(Urh_l) (t&+h) - (v’h‘1> (t:8)
t yih=1 yih=1
L D (t,0(5)) D3 F (s, (v, v1) (55§ + 1)) [(uml) (s5§+h)— (vm1> (s;f)] As

T T

N o -1 -1
- L @5 (t,0(5)) D23 G(s, (vi,v:) (56 +h)) [(Z;_l) (s5§+h)— (Z;_l) (S;E)} As

JT Dy (t> 0(5)) [D(2,3)F(5’ (VT’UT) (5§£ + h))
m—1

—D(2,3)F (s, (e, 0:) (558)) ] (vT 1) (s;E+h)As

i—
Ug

- [ @s(606) [P Gls, ) (58 +)
-1
—D(23)G(s, (vr,v:) (538)) ] (Z:”‘l) (s;E€+h)As

T

t
j O (6,0(5) [R (5,6 + 1) — RP (5,6)]As
+ ! fort e TF.

-| " D (1,0(5)) [RF(s,E + h) — RI-1(5,6)] As

t

(4.24)
With functions (v"~1,0™"1) € B! and h € &, we define the operators
HeP(B), €L (XRN1), F: % — B! (4.25)
as follows:
,Vm 1
[ L oaCoopas e Gne o) () oas
pm v
f]f( m_1> =
v
J D3 (+,0(5))D2,3)G(s, (vr,07) (538)) ( )
: (4.26)

J @y (+,0(5)) R (s,&)Ash
€h:=

[T es o REGHASH |
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Jd)A (-,0(s { 3 F (s, (v, 00) (€ +h)) =Dy F(s, (v, 1) (558)) ]

< ) (5;6+h) + R 1(s,E+h) — RT‘l(s,f)—R{”(s,f)h}As

—I_w% (+,0(s) {[D(2,3)G(S’ (v,07) (858 + 1)) = D(2,3)G(s, (v1,0:) (53€)) ]

m—1
: (Zj“) (s;f+h)+R§‘l(s,£+h)—R§“l(s,f)—Rgh(s,f)h}As
' (4.27)

In the subsequent lines we will show that K, €, and $ are well defined. Using (3.2) and
(3.4), it is easy to see that K : B7-1 — BT -1 s linear and satisfies the estimate

v Ki|Fl, KIGl, ||| (v -1 ||
"3{< ) Tc<max{[c—aj’[b—cJ}H( ) ‘ (Um—l Ny by (3.24)
(4.28)
which in turn gives us
19Ny <1 by (3.15). (4.29)

Keeping in mind that €h = J7(0;&, p)h (cf. (4.10)), Step II yields the inclusion €h €
RBm-1, while € is obviously linear and continuous, hence € € L(X;B7!). Arguments
similar to those in Step II, together with (4.18), lead to $(h) € B! for any h € %. Be-
cause of (4.24), we obtain

[(Z::l) (E+h) - (Vf: )(E ]

. . (4.30)
v’” yim=
—f‘]f[( >(£+h) ( :n )(f)}z%}w}(h) forhe .

Using the Neumann series (cf., e.g., [14, Theorem 2.1, page 74]) and the estimate (4.29),
the linear mapping Iyt — J € L(RB7' 1) is invertible and this implies

m—1 m—1
(Z;_1>(5+h)— (vjn )(5) [y —H] ' [€h+ F(h)] forhe . (4.31)

T

Consequently, it remains to show limy,_.q($(h)/|[All) = 0 in %T ~!, because then one gets

VT »

.
=0, (4.32)

T,C
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that is, the claim of Step IV follows. Nevertheless the proof of limy o (| $(h) (|1 ./lkl)) =0
needs a certain technical effort. Thereto we use the fact that due to the induction hypoth-
esis A(m — 1)(d), the remainder

il

m—2 : m
Rm-1<s,£>—z(m.2) Y [ Das(FG) (s o) 0] | 7 | (58 by @11)
o\ o0&/ A

(4.33)

is partially differentiable with respect to & € &, where the derivative is given by

1 m—1
DaR"(5,6) =R (5,8) ~ Dy 3, (F, G) (5, (5, 0:) (556)) (Z) (5:8) (Zm) (5) by (4.11).
(4.34)

Using the abbreviation

AR™ (s, &, h)

1

m—1 m—1
Hh|| {R (s,E+h)—R"(s,¢)

- |:R (s f) D(23 (F, G)(S’(ervr)(s 5)) < >(5 5) <Z:" )(Sig)]h}a
N ' (4.35)

we obtain the limit relation limy_o AR™"1(s,&,h) = 0 for s € T. Now we prove estimates
for the components $, and §, of $ = ($1,F2) separately. Here we get

gl(h) = Ir q)A('aO(S)){[DQﬁ)F(S’ (VT’UT)(S;f‘*'h))

m—1
D (s, (9,00) (58))] (”;1) (5E+h)
’ (4.36)

v
2 vy y-l
= D{y 5 E (s, (ve,00) (558)) o) SO i (s6)h

T

+AR’£‘“(s,£,h>||h||}As by (4.27),

where subtraction and addition of the expression

1 m—1
Dé,g)F(s,(vf,u,)s;f))[( )<sf+h ( )(s £)- ( )(sf) ](Z;,l)(s;nh)

(4.37)
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lead to

F1(h)
J Dy (-50(s {[ VE (s, (ve,07) (5;€+ h))

- D(2,3)F(S) (VT) UT)(S;O) - D(22,3)F(5) (VT) Ur)(S;f))

m—1
x ((Zj) (s6+h) - (Zj) <s;s>)] (v; 1) (s +h)

+ D0 5)F (s, (ve,v1) (58))
1 m—1
X [(Z:) (s;E+h) — (ZT) (5:6) - (Z?) (Sf)h} (th1> (s8+h)
l
+ D} 3 F (s, (v2,01) (53€)) (l;) (58)
=1 Yyl
X [( ;_1)(s£+h) ( - 1>(s;£)]h
vz Uz

+AR?1(S>f,h)IIhII}A5 for t € T?.

(4.38)
Using the quotient
AD3) F(s,x,y,h1,hy)
Do3)E(s,x+h1,y+hy) — Do) E(s,x,y) — D(22,3)F(s,x,y) (:;) (4.39)

- [[(h1,h2) |

forseTandx e, y eV, h; € X\ {0}, and h, € Y\ {0}, we obtain the estimate

[($1(h) (1)]|
< L |@4(t,a(s))]| [llADa,s)F(s, (e, 0) (58), (v, 07) (5, + 1) = (v2,0:) (558)) ||

{(WESERWEL (WL

+|[Dg, 5)F (s, (v,0:) (:8)) ||
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{MEERWEEWEL [

+l1DRs Pl () (58 HH( )ua”

H[( )(sf+h (vz_l)(s;f)}hH

+ ||AR{h1(s;f,h)||||h||]As fort € T?.

(4.40)

With Hypothesis 3.1(ii) (cf. (3.2), (3.4)), the abbreviations (3.54), and the induction hy-
pothesis A(m — 1)(c), we therefore get

1(F:1 ()|

sKlLea(to [IIADmF(s,(vnvf)(s;f%(vf,vf)(s;f+h) (v, 07)(558)) ||thl

H( )um (v)m
Av,
()
m—1 m

(zm 1> (5E+h) — (; )M)H

+||AR§”‘1(s,f,h)||}A5||h||

Crhflec,;,,] (S) T)

+1F|, Ca-16c, ,(s,T)

+|F12Cie (s, 7)

(4.41)
for t € T?. Rewriting this estimate and using Lemma 3.3, we obtain
(h) _
10l < K2Cp T V(6 ) + Ky [l sup Vi (8 )
Hh” [C_aJ_Kl|F|l Tt Tt (4 42)

+ K1 |F|,Cysup Va(t,h) + Ky sup Va(t,h) by (3.6)

Tt Tt

with

Vilt,h) = eu(n,1) J ealt,0(5))ecls T)es, - (5,7)
||AD@3 F (s, (v, v:) (538), (v, 00) (58 + B) = (v, 00) (536)) || As,
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Ay

)
m—1 m—1

(vm )<s£+h (v; 1)@5)‘
UT UT

Vit h) := e.(1,1) Itea(t,a(s))HAR};H (s,&,h)||As. (4.43)

Vao(t,h) := ec(t,t) Jtea(t,a(s))egm,l(s,r) As,

Vs(t,h) := ec(1,1) reu(t,o(S))ecl (s,7) As,

Similar to Step 5 in the proof of Theorem 3.5, we get limy_qsup,, Vi(t,h) = 0 for i €
{1,...,4}, proving that limj,_o(l| $1(h)II7/IIkll) = 0. Completely analogously, one shows
limy, o (| $2(M) 11 /IIAll) = 0, and accordingly we have verified the differentiability of the
mapping (v~ 1,071 (-, p) : X — BT for any p € P. Finally, we derive for any param-
eter p € P that the derivative

-1
D, (v:n_l> (p): %X — fﬁ(%;%ffc’l) =Rm (4.44)

Uz

is the fixed point mapping (v, v)(+,p) : & — BT, of T™(-;-,p). From the fixed point
equation (4.9) for (v'~1,v~1), we obtain by partlal differentiation with respect to £ € &
the identity

m—1
D(vfn )(tfp)

t m—1
Jr q)A(t)a(S))D(Z,S)F(S’(VT,UT)(S;E’p))p)DI (V:n )(S E P

m—1

[ oato)Des Gl bovn st (U ) stpias | (44

T

J @4 (t,0(s))RY(s,&, p)A
fort € Tf by (4.10).

J Dp(t,0(s)) Ry (s, &, p)As

Hence the derivative Dy (v"~1, 0™ 1)(&,p) € L(X; B 1) = B (cf. Lemma 2.3(c)) is a
fixed point of I7(-;&, p) which in turn is unique by Step III, and consequently (4.22)
holds.

Step V. Claim: for every growth rate c € 6%, R(T,R), c¢;; < ¢ < b — o, the mapping D} (v,
vr) 1 X X P — BM_is continuous, that is, A(m)(d) holds.

Because of (4.22), it suffices to prove the continuity of the mapping (v7*,v7) : & X P —
R Letc € CHR(T,R), cp <c < b—0,and & € &, po € P be arbitrary but fixed. From
the fixed point equation (4.9) for (v,v™) and (3.2), (3.4), one gets for{ e X and p € P
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the estimate

(2o (2) e

< max{Klj eq.(t,0(s))

T

X D(Z,S)F(S) (VT,UT)(5§5,P),P) (z;) (5§E)P) +R§h(5>£:P)

m

— D3 E (s, (v, 07) (5380, po), po) (Z;) (5580, po) — R (5,60, po) | |As

T

i

Zfﬂ) (58, p)+RY(s,€,p)

T

K> J:O ep(t,0(s))

D(2,3)G(S’ (VT: Ur) (55£’P)’p) (

Z;) (555031?0)

T

- D(2,3)G(5: (anr) (S;EO,PO)J?O) (

— RY(s,&0, po) As} fort € T by (4.10).
(4.46)
Addition and subtraction of the expressions
DisyF(s Oer)s6p0p) (1) s
:n (4.47)
D Gl (v )spp) () (5
respectively, in the corresponding norms lead to
(me) (t:&,p) - (v’”) (t:80, po)|| < max{a+pB,y+d} (4.48)

with the abbreviations

o _KIJ ea(t,0(s)) [I!F s&p ||H( ) (560, po) +||R’f1(s,f>P)—RT(&fo)Po)H}AS»

‘(v@ (s;¢,p) — (:j::) (5580, po) ||As

Y= KZ Loo eb(t>a(s)) |:||G(S>5’P)||H (ZZ) (S;fmpo) + ||R£h(s)£’p) _RT (S)fO>p0)||:|AS

(3:) (s6p) - (z::) (50, p0) || As

t
B:= K1|F|1J eq(t,0(5))

8:=K|Gl Lw ep(t,0(s))

(4.49)
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and F, G given by (3.79). Using again relation (3.29), we obtain

H (ZZ) (:8,p) - (ﬁ) (8580, po) ||ec(r, )
' " . i , (4.50)
< ae(1,1) +yec(t,t) + L ‘(Zm) (E.p) - (zm) (Epo)|| by (3.24)

T,C

for t € T?. Passing over to the least upper bound over t € T} yields (cf. (3.15))

Y Y
(U?) (f)P) - <U§"> (fO,PO)

Witp) = [ a(toetsn| s pl| (7))

+

Ky, K
PRLLLSESTELCT SR (451)
1-L Tt

T,C

with

IR E.p) —RT(s,fo,pw@As

. (4.52)
+L ey (t,0(s))e.(s,T [HG s, ( ) (580, po)
+ ||R;2h(5)£)p) - REH(SJ£0)p0)||:|AS
Using the two limit relations
lim (F) (s,& )H—O lim  ||R™(s,& p)—R™(s,&, po)||=0, forseT;
&p)~ foPo) G op ’ (&,p)—(&,po) P >50- Po ’ i
(4.53)

where the first one follows by the continuity of (v;,v.)(¢;-) : & X P - X XY, t € T, (cf.
Step 1 in the proof of Theorem 3.5) and D(,3)(F,G), and the latter one by our induc-
tion hypothesis A( — 1)(d), we finally obtain, similar to the proof of (3.84), the desired
limg p)— (&, p0) SUP,<; W (£,€, p) = 0. This yields our claim in Step V, and summarizing, we
have verified A(m).

Step VI. In the preceding five steps we have shown that (v;,v;) : X X P — B} (X x P) is
ms-times continuously partially differentiable with respect to its first argument. With the
identity s(7,&, p) = v.(&, p)(7), the claim follows from properties of the evaluation map
(see [18, Lemma 3.4]) and the global bound for the derivatives can be obtained using the
fact

IDs(r, & p)|| = |IDIve (& p) (D)l < [V (€, p)ll; < Cu foré €%, peP by (4.20),
(4.54)

and n € {1,...,m;,}. Hereby the expression for C; is a consequence of (3.51).
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(b) The smoothness proof of the mapping r: T X Y x P — & is dual to the above
considerations for s. A formal differentiation of the identity (3.90) with respect to € Y
gives us a fixed point equation (v}, v1)(, p) = TL((W4,v4) (1, p); 7, p) with the right-hand
side

TL(\v5m,p)
. !
I_ q)A("U(S))|:D(2,3)F(5)(vr)vr)(S;ﬂ’P)ap) (Z:) (S)+R§(S,H)P)}As (4.55)

= ] ]
L D3(-,0(s)) |:D(2,3)G(S) (ve UT)(53’7>p)>P) <zl) (s) +R12(5» 7’],]7):|AS

for t € T; and parameters p € P, where the remainder R! = (R!,R}) allows representa-
tions analogous to (4.11) and (4.12). We omit the further details.

(c) The recursion for the global bounds C, > 0, n € {2,...,m}, of |[Dys(7,&,p)ll in
(4.8) is an obvious consequence of the estimate (4.19) from Step II of part (a) in the
present proof. A dual argument shows that the solution of the fixed point equation for
(4.55) is globally bounded by C, as well, and an estimate analogous to (4.54) gives us the
global bounds for the partial derivatives of r. Hence, we have shown assertion (c) and the
proof of Theorem 4.2 is finished. g

Acknowledgment

This research was supported by the “Graduiertenkolleg: Nichtlineare Probleme in Analy-
sis, Geometrie und Physik” (GRK 283) financed by the Deutsche Forschungsgemeinschaft
and the State of Bavaria.

References

[1] B. Aulbach, The fundamental existence theorem on invariant fiber bundles, ]. Differ. Equations
Appl. 3 (1998), no. 5-6, 501-537.

[2]  B. Aulbach, C. Pétzsche, and S. Siegmund, A smoothness theorem for invariant fiber bundles, J.
Dynam. Differential Equations 14 (2002), no. 3, 519-547.

[3] B. Aulbach and T. Wanner, Integral manifolds for Carathéodory type differential equations in Ba-
nach spaces, Six Lectures on Dynamical Systems (Augsburg, 1994) (B. Aulbach and F. Colo-
nius, eds.), World Scientific, New Jersey, 1996, pp. 45-119.

[4] M. Bohner and A. Peterson, Dynamic Equations on Time Scales. An Introduction with Applica-
tions, Birkhduser Boston, Massachusetts, 2001.

[5] N. Castafieda and R. Rosa, Optimal estimates for the uncoupling of differential equations, J. Dy-
nam. Differential Equations 8 (1996), no. 1, 103—139.

[6] S.-N. Chow and K. Lu, C* centre unstable manifolds, Proc. Roy. Soc. Edinburgh Sect. A 108
(1988), no. 3-4, 303-320.

[7] M. S. ElBialy, On pseudo-stable and pseudo-unstable manifolds for maps, J. Math. Anal. Appl.
232 (1999), no. 2, 229-258.

[8] S. Hilger, Analysis on measure chains—a unified approach to continuous and discrete calculus,
Results Math. 18 (1990), no. 1-2, 18-56.

, Smoothness of invariant manifolds, ]. Funct. Anal. 106 (1992), no. 1, 95-129.




182  “6™-smoothness of invariant fiber bundles

, Generalized theorem of Hartman-Grobman on measure chains, J. Austral. Math. Soc.
Ser. A 60 (1996), no. 2, 157-191.

[11] M. W. Hirsch, C. C. Pugh, and M. Shub, Invariant Manifolds, Lecture Notes in Mathematics,
vol. 583, Springer-Verlag, Berlin, 1977.

[12]  A.Katok and B. Hasselblatt, Introduction to the Modern Theory of Dynamical Systems, Encyclo-
pedia of Mathematics and Its Applications, vol. 54, Cambridge University Press, Cambridge,
1995.

[13]  S.Keller, Asymptotisches Verhalten invarianter Faserbiindel bei Diskretisierung und Mittelwertbil-
dung im Rahmen der Analysis auf Zeitskalen, Ph.D. thesis, Universitit Augsburg, Augsburg,
1999.

[14] S. Lang, Real and Functional Analysis, 3rd ed., Graduate Texts in Mathematics, vol. 142,
Springer-Verlag, New York, 1993.

[15] J. R. Munkres, Topology: a First Course, Prentice-Hall, New Jersey, 1975.

[16] L. Neidhart, Integration i Rahmen des MafSkettenkalkiils, Diploma thesis, Universitdt Augs-
burg, Augsburg, 2001.

[17]  C. Potzsche, Langsame Faserbiindel dynamischer Gleichungen auf Mafketten, Ph.D. thesis, Uni-
versitdt Augsburg, Augsburg, 2002.

[18] , Pseudo-stable and pseudo-unstable fiber bundles for dynamic equations on measure
chains, J. Difference Equ. Appl. 9 (2003), no. 10, 947-968.
[19] , Two perturbation results for semi-linear dynamic equations on measure chains, New

Progress in Difference Equations (B. Aulbach, S. Elaydi, and G. Ladas, eds.), CRC Press,
Boca Raton, 2004.

[20] C. Potzsche and S. Siegmund, €™ -smoothness of invariant fiber bundles, to appear in Topol.
Methods Nonlinear Anal.

[21] K. P. Rybakowski, Formulas for higher-order Fréchet derivatives of composite maps, implicitly
defined maps and solutions of differential equations, Nonlinear Anal. 16 (1991), no. 6, 517—
532.

, An abstract approach to smoothness of invariant manifolds, Appl. Anal. 49 (1993), no. 1-
2, 119-150.

[23] M. Shub, Global Stability of Dynamical Systems, Springer-Verlag, New York, 1987.

[24] S. Siegmund, Spektraltheorie, glatte Faserungen und Normalformen fiir Differentialgleichungen
vom Carathéodory-Typ, Ph.D. thesis, Universitit Augsburg, Augsburg, 1999.

[25] A. Vanderbauwhede, Centre manifolds, normal forms and elementary bifurcations, Dynamics
Reported, Vol. 2, Dynam. Report. Ser. Dynam. Systems Appl., vol. 2, Wiley, Chichester,
1989, pp. 89-169.

[26] A. Vanderbauwhede and S. A. van Gils, Center manifolds and contractions on a scale of Banach
spaces, J. Funct. Anal. 72 (1987), no. 2, 209-224.

Christian Pétzsche: Department of Mathematics, University of Augsburg, 86135 Augsburg,
Germany
E-mail address: poetzsche@math.uni-augsburg.de

Stefan Siegmund: Department of Mathematics, J. W. Goethe University, Robert-Mayer-Strafie 10,
60325 Frankfurt, Germany
E-mail address: siegmund@math.uni-frankfurt.de


mailto:poetzsche@math.uni-augsburg.de
mailto:siegmund@math.uni-frankfurt.de

	1. Introduction
	2. Preliminaries
	3. l1-smoothness of invariant fiber bundles
	4. Higher-order smoothness of invariant fiber bundles

