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We consider the reliability of some numerical methods in preserving the stability proper-
ties of the linear stochastic functional differential equation dx(t)= (αx(t) +β

∫ t
0 x(s)ds)dt

+ σx(t− τ)dW(t), where α,β,σ ,τ ≥ 0 are real constants, and W(t) is a standard Wiener
process. The areas of the regions of asymptotic stability for the class of methods consid-
ered, indicated by the sufficient conditions for the discrete system, are shown to be equal
in size to each other and we show that an upper bound can be put on the time-step pa-
rameter for the numerical method for which the system is asymptotically mean-square
stable. We illustrate our results by means of numerical experiments and various stability
diagrams. We examine the extent to which the continuous system can tolerate stochastic
perturbations before losing its stability properties and we illustrate how one may accu-
rately choose a numerical method to preserve the stability properties of the original prob-
lem in the numerical solution. Our numerical experiments also indicate that the quality
of the sufficient conditions is very high.

Copyright © 2006 L. E. Shaikhet and J. A. Roberts. This is an open access article distrib-
uted under the Creative Commons Attribution License, which permits unrestricted use,
distribution, and reproduction in any medium, provided the original work is properly
cited.

1. Introduction

Volterra integro-differential equations arise in the modelling of hereditary systems (i.e.,
systems where the past influences the present) such as population growth, pollution, fi-
nancial markets and mechanical systems (see, e.g., [1, 4]). The long-term behaviour and
stability of such systems is an important area for investigation. For example—will a pop-
ulation decline to dangerously low levels? Could a small change in the environmental
conditions have drastic consequences on the long-term survival of the population? There
is a growing body of works devoted to such investigations (see, e.g., [8, 25]). Analyt-
ical solutions to such problems are generally unavailable and numerical methods are
adopted for obtaining approximate solutions. A large number of the numerical meth-
ods are developed from existing numerical methods for systems of ordinary differential
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equations (see [24] for a discussion of some of these methods for ODEs). A natural ques-
tion to ask is “do the numerical solutions preserve the stability properties of the exact
solution?”. We refer the reader to a number of works where the answers to such questions
are investigated: [2, 3, 6, 7, 9, 28].

Many real-world phenomena are subject to random noise or perturbations (e.g., freak
weather conditions may adversely affect the supports of a bridge, possibly changing the
long-term integrity of the structure). It is a natural extension of the deterministic work
carried out by ourselves and others to consider the stability of stochastic systems and
of numerical solutions to such systems. We refer the readers to a number of texts which
discuss the role of stochastic systems inmathematical modelling: [1, 15, 27]. In particular,
stochastic integro-differential equations and its difference analogues are considered in
[5, 11–14, 26].

In this paper we consider the scalar linear test equation

dx(t)=
(

αx(t) +β
∫ t

0
x(s)ds

)

dt+ σx(t− τ)dW(t), (1.1)

x(s)= ϕ0(s), s∈ [−τ,0], (1.2)

where α,β,σ ,τ ≥ 0 are real constants, and W(t) is a standard Wiener process. General
theory of stochastic differential equations type of (1.1) was studied by Gikhman and Sko-
rokhod [10].

The selected test equation (1.1) arises from the deterministic linear test equation of
Brunner and Lambert [2] ẋ(t)= αx(t) + β

∫ t
0 x(s)ds by replacing the parameter α with its

mean-value plus a stochastic perturbations type of the white noise α+ σẆ(t). This leads
to the stochastic differential equation dx(t) = (αx(t) + β

∫ t
0 x(s)ds)dt + σx(t)dW(t). An

addition of delay τ ≥ 0 in the stochastic term of this equation is a quite natural generaliza-
tion and leads to (1.1). The delay τ does not have any influence on the obtained stability
conditions but allows to demonstrate the construction of these conditions more com-
pletely. On the other hand even for τ = 0 the difference analogue of (1.1) is a difference
equation with delay. So, an addition of delay τ does not lead to the essential complication
of the text.

When considering the stability of a system we must decide on a suitable definition
for stability. There are a number of definitions for the stability of stochastic systems. A
common choice of definition amongst numerical analysts investigating stochastic differ-
ential equations is that of mean square stability and asymptotic mean square stability. We
derive asymptotic mean square stability conditions for the linear test equation (1.1). An
analogous approach is used to derive conditions for asymptotic mean square stability of
a linear stochastic difference equation. It is shown that our choice of numerical methods
are special cases of this particular difference equation, thereby allowing us to produce sta-
bility conditions for the numerical solutions to the original problem. Finally, we present
some stability diagrams and numerical experiments to illustrate our results.
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The main conclusion of our investigation here can be formulated in the following
way: if the trivial solution of the initial functional differential equation is asymptotically
mean square stable then there exists a method and a step of discretization of this equa-
tion so that the trivial solution of the corresponding difference equation is asymptotically
mean square stable too. Moreover, it is possible to find an upper bound for the step of
discretization for which the corresponding discrete analogue preserves the properties of
stability.

The conditions for asymptotic mean square stability are obtained here by virtue of
Kolmanovskii and Shaikhet’s general method of Lyapunov functionals construction ([17–
23, 29, 31–33]) which is applicable for both differential and difference equations, both for
deterministic and stochastic systems with delay.

Let us remind ourselves of some definitions and statements which will be used.
Let {Ω,�,P} be a basic probability space with a family of σ-algebras ft ⊂�, t ≥ 0, and

H be a space of f0-adapted functions ϕ(s), s≤ 0. Let E be the sign for expectation.
Consider a stochastic differential equation with aftereffect

dx(t)= a
(
t,xt

)
dt+ b

(
t,xt

)
dW(t), x0 = ϕ0 ∈H. (1.3)

HenceW(t)∈Rm is an m-dimensional Wiener process, the functionals a(t,ϕ)∈Rn and
b(t,ϕ)∈ Rn×m are defined for t ≥ 0, ϕ∈H , a(t,0)= 0, b(t,0)= 0. xt(s)= x(t + s), s≤ 0,
is a trajectory of the process x(s) for s≤ t.

Definition 1.1. The trivial solution of (1.3) is called
(i) mean square stable if for every ε > 0 there exists a δ = δ(ε) > 0 such that E|x(t)|2 <
ε for all t ≥ 0 if sups≤0E|ϕ(s)|2 < δ;

(ii) asymptotically mean square stable if it is mean square stable and limt→∞E|x(t)|2 =
0 for every initial function ϕ∈H .

Let D be a space of functionals V(t,ϕ), where t ≥ 0, ϕ∈H , for which the function

Vϕ(t,x)=V
(
t,xt

)=V
(
t,x,xt(s), s < 0

)
, x = x(t), ϕ= xt, (1.4)

has one continuous derivative with respect to t and two continuous derivatives with re-
spect to x. For each functional V from D the generator L is defined by the formula

LV(t,ϕ)= ∂

∂t
Vϕ(t,x) + a′(t,ϕ)

∂

∂x
Vϕ(t,x) +

1
2
tr
[
b′(t,ϕ)

∂2

∂x2
Vϕ(t,x)b(t,ϕ)

]
, (1.5)

where the prime symbol ′ denotes transpose.

Theorem 1.2 ([16, 17]). Let there exist a functional V =V(t,ϕ)∈D such that

EV(t,xt)≥ c1E|x(t)|2,
EV(0,ϕ0)≤ c2 sup

s≤0
E
∣
∣ϕ0(s)

∣
∣2,

ELV(t,xt)≤−c3E|x(t)|2,
(1.6)

where ci > 0, i= 1,2,3. Then the trivial solution of (1.3) is asymptotically mean square sta-
ble.
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Let {Ω,�,P} be a basic probability space, fi ∈�, i ∈ Z = {0,1, . . .} be a sequence of
σ-algebras, ξi ∈ Rm, i∈ Z be fi+1-adapted and mutually independent random variables.
Suppose also that Eξi = 0, Eξiξ′i = I , where I is an identity matrix.

Consider a stochastic difference equation

xi+1 = a
(
i,x−m, . . . ,xi

)
+ b
(
i,x−m, . . . ,xi

)
ξi, i∈ Z. (1.7)

Here a∈Rn, b ∈Rn×m, a(i,0, . . . ,0)= 0, b(i,0, . . . ,0)= 0, xi = ϕi, i∈ [−m,0].

Definition 1.3. The trivial solution of (1.7) is called:
(i) mean square stable if for every ε > 0 there exists δ = δ(ε) > 0 such that E|xi|2 < ε,

i∈ Z, if supi∈[−m,0]E|ϕi|2 < δ;
(ii) asymptotically mean square stable if limi→∞E|xi|2 = 0 for every initial function ϕi.

Theorem 1.4 [20]. Let there exist a nonnegative functional Vi = V(i,x−m, . . . ,xi), which
satisfies the conditions

EV
(
0,x−m, . . . ,x0

)≤ c1 sup
i≤0

E
∣
∣ϕi

∣
∣2,

EΔVi ≤−c2E
∣
∣xi
∣
∣2, i∈ Z,

(1.8)

where c1 > 0, c2 > 0, ΔVi = Vi+1 −Vi. Then the trivial solution of (1.7) is asymptotically
mean square stable.

2. A linear stochastic Volterra integro-differential equation

Consider (1.1). It is well known [16] that for β = 0 the inequality

2α+ σ2 < 0 (2.1)

is the necessary and sufficient condition for the asymptotic mean square stability of the
trivial solution of (1.1).

If σ = 0 then (1.1) reduces to the Brunner and Lambert test equation [2] and also takes
the differential form

ẍ(t)= αẋ(t) +βx(t). (2.2)

In this case the inequalities

α < 0, β < 0, (2.3)

are the necessary and sufficient condition for asymptotic stability of the trivial solution
of (1.1).

We proceed in the following way to obtain asymptoticmean square stability conditions
for the trivial solution of (1.1) via Lyapunov’s secondmethod. Following conditions (2.1),
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(2.3) we will suppose that the conditions

2α+ σ2 < 0, β < 0, (2.4)

hold.
We transform (1.1) in the following way. Let

y1(t)=
∫ t

0
x(s)ds, y2(t)= x(t). (2.5)

Then (1.1) is transformed into the system of equations

dy1(t)= y2(t)dt

dy2(t)=
(
βy1(t) +αy2(t)

)
dt+ σ y2(t− τ)dW(t)

(2.6)

or in the matrix form

dy(t)= Ay(t)dt+By(t− τ)dW(t), (2.7)

where

y =
(
y1
y2

)

, A=
(
0 1
β α

)

, B =
(
0 0
0 σ

)

. (2.8)

Following the general method of Lyapunov functionals construction [17, 18] we will con-
struct a Lyapunov functional for (2.7) in the form V = V1 +V2, where the main part V1

of the functionalV must be chosen as a Lyapunov function for some auxiliary differential
equation without delay (in this case it is (2.7) with B = 0). Let us choose V1 in the form

V1 = y′(t)Py(t) where P =
(
p11 p12
p12 p22

)
is a positive definite matrix. Calculating for (2.7) the

generator L we obtain

ELV1 = Ey′(t)
(
PA+A′P

)
y(t) +Ey′(t− τ)B′PBy(t− τ). (2.9)

Let us choose the additional functional V2 in the form

V2 =
∫ t

t−τ
y′(s)B′PBy(s)ds. (2.10)

Then

ELV2 = Ey′(t)B′PBy(t)−Ey′(t− τ)B′PBy(t− τ) (2.11)

and from (2.9), (2.11) it follows for the functional V =V1 +V2 that

ELV = Ey′(t)
(
PA+A′P +B′PB

)
y(t). (2.12)

Suppose that the matrix P is a positive definite solution of the matrix equation

PA+A′P +B′PB =−I , (2.13)
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where I is the identity matrix. Matrix equation (2.13) is equivalent to the system of the
equations

2βp12 =−1,
p11 +αp12 +βp22 = 0,

2p12 +
(
2α+ σ2

)
p22 =−1,

(2.14)

with the solution

p11 = α

2β
− 1−β

2α+ σ2
, p12 =− 1

2β
, p22 = 1−β

β
(
2α+ σ2

) . (2.15)

It is easy to check by conditions (2.4) that p11 > 0, p22 > 0 and p11p22 > p212. There-
fore the matrix P with elements (2.15) is positive definite, as required. From here and
(2.12), (2.13) it follows that there exists a positive definite functional V , for which LV =
−|y(t)|2. Recalling our originally supposed conditions, (2.1) with β = 0, (2.4), and using
[16] we can now state the following result.

Theorem 2.1. The system of inequalities

2α+ σ2 < 0, β ≤ 0, (2.16)

is the necessary and sufficient condition for asymptotic mean square stability of the trivial
solution of (1.1).

3. Stability of difference analogues to the integro-differential equation

Let {Ω,�,P} be a basic probability space, fi ∈�, i ∈ Z = {0,1, . . .} be a sequence of σ-
algebras and E be the sign for expectation. If we quantify equation (1.1) using a numerical
method based on the Euler-Maruyama scheme for the stochastic differential equation
part and a θ method to approximate the integral with a quadrature, then we obtain a
family of numerical methods of the form

x1 = (a+ b)x0 + σ0x−mξ0,

x2 = ax1 + b
(
θx0 + (1− θ)x1

)
+ σ0x1−mξ1,

xi+1 = axi + b

(

θx0 +
i−1∑

j=1
xj + (1− θ)xi

)

+ σ0xi−mξi, i≥ 2,

a= 1+αh, b = βh2, σ0 = σh1/2,

(3.1)

where θ ∈ [0,1], τ = mh, h = ti+1 − ti is a step of quantization, ξi = h−1/2(W(ti+1) −
W(ti)), i ∈ Z, are fi+1-adapted and mutually independent random variables such that
Eξi = 0, Eξ2i = 1.

Note that if b = 0 then the inequality

a2 + σ20 < 1 (3.2)
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is the necessary and sufficient condition for asymptotic mean square stability of the trivial
solution of (3.1) [29].

Suppose that b 	= 0. We transform (3.1) for i≥ 2 in the following way:

xi+1 =
(
a+ b(1− θ)

)
xi + bxi−1 + b

(

θx0 +
i−2∑

j=1
xj

)

+ σ0xi−mξi

= (a+ b(1− θ)
)
xi + bxi−1 + σ0xi−mξi + xi

− (a+ b(1− θ)
)
xi−1− σ0xi−1−mξi−1

= (a+ b(1− θ) + 1
)
xi + (bθ− a)xi−1 + σ0xi−mξi− σ0xi−1−mξi−1.

(3.3)

As a result we obtain (3.1) in the form

xi+1 =Axi +Bxi−1 + σ1xi−mξi + σ2xi−1−mξi−1, i≥ 2, (3.4)

where

A= a+ b(1− θ) + 1, B = bθ− a, σ1 = σ0, σ2 =−σ0. (3.5)

It is known [29] that for σ2 = 0 the necessary and sufficient condition for asymptotic
mean square stability of the trivial solution of (3.4) is

|A| < 1−B, |B| < 1, (3.6)

σ21 <
1+B

1−B

(
(1−B)2−A2). (3.7)

We now obtain a sufficient condition for asymptotic mean square stability of the trivial
solution of (3.4) for arbitrary σ1 and σ2. Let

x(i)=
(
xi−1
xi

)

, A1 =
(
0 1
B A

)

, Bk =
(
0
σk

)

, k = 1,2. (3.8)

Then (3.4) takes the following matrix form:

x(i+1)=A1x(i) +B1xi−mξi +B2xi−1−mξi−1. (3.9)

Using the general method of Lyapunov functionals construction [20] let us construct a
Lyapunov functional Vi for (3.9). This method consists of four steps. On the first step of
the method we have to consider some simple auxiliary difference equation. In the case of
(3.9) the auxiliary difference equation is the equation without delay x(i+1)= A1x(i) (i.e.,
(3.9) with B1 = B2 = 0). On the second step we have to construct a Lyapunov function vi
for this auxiliary difference equation. Let

vi = x′(i)Dx(i), D =
(
d11 d12
d12 d22

)

, (3.10)
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and suppose that the matrix D is a positive semi-definite solution of the matrix equation

A′1DA1−D =−U , U =
(
0 0
0 1

)

, (3.11)

with d22 > 0. It is easy to check that the function vi is a Lyapunov function for the equation
x(i+ 1) = A1x(i) since Δvi = −x2i . On the third step we will construct the functional Vi

for (3.9) in the form Vi = V1i +V2i, where the main part V1i = vi and the additional part
V2i will be chosen below. Calculating EΔV1i = E(V1,i+1 −V1i), by virtue of (3.10), (3.9)
we obtain

EΔV1i = E
(
x′(i+1)Dx(i+1)− x′(i)Dx(i)

)

= E
(
(A1x(i) +B1xi−mξi +B2xi−1−mξi−1)′

×D(A1x(i) +B1xi−mξi +B2xi−1−mξi−1)− x′(i)Dx(i)
)

= E
(
x′(i)

(
A′1DA1−D

)
x(i) +B′1DB1x

2
i−mξ

2
i

+B′2DB2x
2
i−1−mξ

2
i−1 + 2B′1DA1x(i)xi−mξi

+2B′2DA1x(i)xi−1−mξi−1 + 2B′1DB2xi−mxi−1−mξiξi−1
)
.

(3.12)

From (3.11) it follows that

Ex′(i)
(
A′1DA1−D

)
x(i)=−Ex2i . (3.13)

From (3.8), (3.10) and the properties of ξi, we obtain

Ex2i−mξ
2
i = Ex2i−m,

Ex(i)xi−mξi = 0,

Exi−mxi−1−mξiξi−1 = 0,

B′2DA1 =
(
σ2Bd22,σ2

(
d12 +Ad22

))
,

B′kDBk = σ2k d22, k = 1,2,

Ex(i)xi−1−mξi−1 =
(
0,Exixi−1−mξi−1

)′
.

(3.14)

Using (3.4), we have

Exixi−1−mξi−1 = E
(
Axi−1 +Bxi−2 + σ1xi−1−mξi−1 + σ2xi−2−mξi−2

)
xi−1−mξi−1

= σ1Ex2i−1−m.
(3.15)

From (3.12) to (3.15) we obtain

EΔV1i =−Ex2i + σ21d22Ex
2
i−m +

(
σ22d22 + 2σ1σ2

(
d12 +Ad22

))
Ex2i−1−m. (3.16)

Using (3.8), (3.10) we have

A′1DA1 =
(

B2d22 B
(
d12 +Ad22

)

B
(
d12 +Ad22

)
d11 + 2Ad12 +A2d22

)

. (3.17)
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Using (3.17) one can transform matrix equation (3.11) into the system of equations

B2d22−d11 = 0,

B
(
d12 +Ad22

)−d12 = 0,

d11 + 2Ad12 +A2d22−d22 =−1.
(3.18)

The solution of system (3.18) has the form

d11 = B2d22,

d12 = AB

1−B
d22,

d22 =
(
1+B

1−B

(
(1−B)2−A2)

)−1
.

(3.19)

Note that d22 > 0 if and only if condition (3.6) holds. Substituting (3.19) into (3.16), we
have

EΔV1i =−Ex2i + σ21d22Ex
2
i−m + γd22Ex2i−1−m, (3.20)

where

γ = σ22 + 2σ1σ2
A

1−B
. (3.21)

Letting γ0 =max(γ,0) we can at last (the fourth step of the method) by some standard
way choose the additional functional

V2i = d22

(
(
σ21 + γ0

) m∑

j=1
x2i− j + γ0x

2
i−1−m

)

. (3.22)

It follows that

ΔV2i = d22

(
(
σ21 + γ0

)
( m∑

j=1
x2i+1− j −

m∑

j=1
x2i− j

)

+ γ0
(
x2i−m− x2i−1−m

)
)

= d22
((

σ21 + γ0
)(

x2i − x2i−m
)
+ γ0

(
x2i−m− x2i−1−m

))

= d22
((
σ21 + γ0

)
x2i − σ21x

2
i−m− γ0x

2
i−1−m

)
.

(3.23)

So, using (3.16), (3.23) for the functional Vi =V1i +V2i we have

EΔVi =−
(
1−d22

(
σ21 + γ0

))
Ex2i +d22

(
γ− γ0

)
Ex2i−1−m. (3.24)

If γ ≥ 0 then γ0 = γ and, using (3.21), we obtain

EΔVi =−
(
1−d22

(
σ21 + 2σ1σ2

A

1−B
+ σ22

))
Ex2i . (3.25)
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From here and representation (3.18) for d22 it follows [29] that if γ ≥ 0 then the inequality

σ21 + 2σ1σ2
A

1−B
+ σ22 <

1+B

1−B

(
(1−B)2−A2) (3.26)

is the necessary and sufficient condition for asymptotic mean square stability of the trivial
solution of (3.4).

Consider now the situation if γ < 0. In this case γ0 = 0 and (3.24) takes the form

EΔVi =−
(
1− σ21d22

)
Ex2i + γd22Ex2i−1−m. (3.27)

So, if γ < 0 then the inequality σ21d22 < 1 is a sufficient condition for asymptotic mean
square stability of the trivial solution of (3.4). Let us suppose that γ < 0 and σ21d22 ≥ 1.
Summing (3.27) from i= 0 to i= n, we have

EVn+1−EV0 =−
(
1− σ21d22

) n∑

i=0
Ex2i + γd22

(n−1−m∑

i=0
Ex2i +

−1∑

i=−1−m
Ex2i

)

. (3.28)

From here, using Vn+1 ≥ 0 and γ < 0, we obtain

(
1− σ21d22

) n∑

i=0
Ex2i − γd22

n−1−m∑

i=0
Ex2i ≤ EV0. (3.29)

or

(
1−d22

(
σ21 + γ

)) n∑

i=0
Ex2i ≤ EV0 + |γ|d22

n∑

i=n−m
Ex2i . (3.30)

Note that by virtue of (3.6) we have

σ21 + γ = σ21 + 2σ1σ2
A

1−B
+ σ22 > σ21 − 2

∣
∣σ1σ2

∣
∣+ σ22 =

(∣∣σ1
∣
∣−∣∣σ2

∣
∣)2 ≥ 0. (3.31)

Therefore, by condition (3.26), that is equivalent to d22(σ21 + γ) < 1, each mean square
bounded solution of (3.4), that is, Ex2i ≤ C, satisfies the condition limi→∞Ex2i = 0.

So by condition (3.26) the mean square bounded solution of (3.4) is asymptotically
mean square trivial, that is, limi→∞Ex2i = 0. Note also that for σ2 = 0 condition (3.26)
coincides with (3.1).

Using (3.5), (3.6), we rewrite condition (3.26) in terms of the parameters of (3.1):

σ20 < (1− a+ bθ)
(
1+ a− b

(
θ− 1

2

))
,

b
(
θ− 1

2

)
− 1 < a < bθ +1, −4 < b < 0.

(3.32)

If b→ 0 then condition (3.32) takes form (3.2). Conditions (3.32), (3.2) can also be writ-
ten in the form

(
a−

(
θ− 1

4

)
b
)2

+ σ20 <
(
1+

b

4

)2
(3.33)
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Figure 3.1. Stability diagram, σ0 = 0, differing θ values.
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Figure 3.2. Stability diagram, θ = 1, differing σ2
0 values.

or

(
θ− 1

4

)
b−

√
√
√
(
1+

b

4

)2
− σ20 < a <

(
θ− 1

4

)
b+

√
√
√
(
1+

b

4

)2
− σ20 , −4(1−∣∣σ0

∣
∣) < b ≤ 0.

(3.34)

Stability regions, obtained by virtue of condition (3.34) for σ0 = 0 and different values of
θ are shown in Figure 3.1 with the following key: (1) θ = 0, (2) θ = 0.25, (3) θ = 0.5, (4)
θ = 0.75, (5) θ = 1.
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Figure 3.3. Stability diagram, θ = 0.375, differing σ2
0 values.

Stability regions, obtained by virtue of condition (3.34) for θ = 1 and different values
of σ20 are shown in Figure 3.2 with the following key: (1) σ20 = 0, (2) σ20 = 0.1, (3) σ20 =
0.2, (4) σ20 = 0.3, (5) σ20 = 0.4, (6) σ20 = 0.5, (7) σ20 = 0.6, (8) σ20 = 0.7, (9) σ20 = 0.8, (10)
σ20 = 0.9. Figure 3.3 uses the same key as Figure 3.2 and is for θ = 0.375.

Remark 3.1. Note that the stability region, given by condition (3.34) depends on θ and
σ0, but the area S of this stability region depends on σ0 only and does not depend on θ,
that is, S= S(σ0). It is easy to see that

S
(
σ0
)= 2

∫ 0

−4(1−|σ0|)

√
√
√
(
1+

b

4

)2
− σ20db. (3.35)

Putting t = x+
√
x2− σ20 , x = 1+ b/4, one can show that

S
(
σ0
)= 4

(√
1− σ20 − σ20 ln

(
1+
√
1− σ20∣

∣σ0
∣
∣

))

. (3.36)

In particular, S(0)= 4, S(0.5)= 2
√
3− ln(2+

√
3) > 2, S(1)= 0.

Stability condition (3.34) in the terms of initial equation (1.1) takes the form

1
h

(

− 1+
(
θ− 1

4

)
βh2−

√
√
√
(
1+

1
4
βh2
)2
− σ2h

)

< α

<
1
h

(

− 1+
(
θ− 1

4

)
βh2 +

√
√
√
(
1+

1
4
βh2
)2
− σ2h

)

, −4(1−|σ|h1/2) < βh2 ≤ 0.

(3.37)
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Figure 3.4. Stability diagram, θ = 1, σ2 = 0, differing h values.
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Figure 3.5. Stability diagram, θ = 1, σ2 = 1, differing h values.

The stability regions in the (α,β) space, obtained by condition (3.37) for θ = 1, σ2 = 0
are shown in Figure 3.4 for different values of the step size h of the numerical method,
using the following key: (1) h = 0, (2) h = 0.01, (3) h = 0.02, (4) h = 0.03, (5) h = 0.04,
(6) h= 0.05, (7) h= 0.06, (8) h= 0.07, (9) h= 0.08, (10) h= 0.1, (11) h= 0.15. Figures
3.5 and 3.6 show similar pictures with θ = 1 and h as indicated above but with σ2 = 1 and
σ2 = 3 respectively.
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Figure 3.6. Stability diagram, θ = 1, σ2 = 3, differing h values.
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−1500
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α
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Figure 3.7. Stability diagram, σ2 = 1, h= 0.05, differing θ values.

Figure 3.7 illustrates the stability region in the (α,β) space for σ2 = 1, h = 0.05 and
different values θ (i.e., different numerical schemes) according to the following key: (1)
θ = 0, (2) θ = 0.25, (3) θ = 0.5, (4) θ = 0.75, (5) θ = 1.

If we calculate the infimum with respect to θ in the left-hand part and the supremum
in the right-hand part of inequalities (3.37) we obtain

1
h

(

− 1+
3
4
βh2−

√
√
√
(
1+

1
4
βh2
)2
− σ2h

)

< α

<
1
h

(

− 1− 1
4
βh2 +

√
√
√
(
1+

1
4
βh2
)2
− σ2h

)

, −4(1−|σ|h1/2) < βh2 ≤ 0.

(3.38)
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Figure 3.8. Stability diagram, h= 0.1, differing σ2 values.
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1 0

−1000

−2000

−100 −50 α
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Figure 3.9. Stability diagram, σ2 = 1, differing h values.

It is easy to check that if h→ 0 then condition (3.38) coincides with condition (2.16). It
leads to the following useful statement.

Theorem 3.2. If α, β and σ satisfy condition (2.16) then there exists a small enough h such
that condition (3.38) holds too. And if α, β, σ and h satisfy condition (3.38) then there exists
a θ ∈ [0,1] such that condition (3.37) holds too and therefore the trivial solution of (3.1) is
asymptotically mean square stable.

The stability regions obtained by condition (3.38) for h = 0.1 and different values of
σ are shown in Figure 3.8, according to the following key: (1) σ2 = 0.5, (2) σ2 = 1, (3)
σ2 = 2, (4) σ2 = 3. Figure 3.9 shows a similar picture for σ2 = 1 and different values of h:
(1) h= 0.1, (2) h= 0.065, (3) h= 0.045, (4) h= 0.035.
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Figure 4.1. Stability diagram, σ2 = 1, h= 0.05, differing θ values.

4. Upper bound for the step of discretization

From condition (3.37) it follows that f (h) > 0 where

f (h) := θ
(
θ− 1

2

)
β2h3−

(
2θ− 1

2

)
αβh2 +

(
α2− 2βθ

)
h+2α+ σ2. (4.1)

Using the representation (4.1) consider different possible cases for determining an upper
bound for the step of discretization.

4.1. Case β = 0. Let β = 0. From (4.1), (2.16) we obtain f (h) = α2h + 2α + σ2 < 0 for
h∈ [0,h1), where

h1 =−2α+ σ2

α2
> 0. (4.2)

For example, if α = −30, β = 0, σ2 = 1 then h1 ≈ 0.0656. Changing α to α = −40, we
obtain h1 ≈ 0.0494. On Figure 4.1 which coincides with Figure 3.7 (σ2 = 1, h= 0.05) the
points A1(−30,0) and A2(−40,0) are shown. One can see that the point A1 belongs to the
stability region but the point A2 does not belong since h= 0.05 > h1 = 0.0494.

Suppose now that β < 0 and consider the following possibilities for θ.

4.2. Case θ = 0. Let θ = 0. Then

f (h)= 1
2
αβh2 +α2h+2α+ σ2. (4.3)

Since 2α+ σ2 < 0 and αβ > 0 then f (h) < 0 for h∈ [0,h1), where

h1 =
√
α4− 2αβ

(
2α+ σ2

)−α2

αβ
> 0. (4.4)
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For example, if α=−10, β =−1000, σ2 = 1 then h1 ≈ 0.0524. Changing β to β =−1200
we obtain h1 ≈ 0.0486 < 0.05. On Figure 4.1 the point B1(−10,−1000) belongs to the
stability region with θ = 0 and the point B2(−10,−1200) does not belong.

4.3. Case θ = 1/2. Let θ = 1/2. Then

f (h)=−1
2
αβh2 +

(
α2−β

)
h+2α+ σ2. (4.5)

Since

D = (α2−β
)2
+ 2αβ

(
2α+ σ2)= (α2 +β

)2
+ 2αβσ2 > 0 (4.6)

then f (h) < 0 for h∈ [0,h1), where

h1 = α2−β−√D
αβ

> 0. (4.7)

For example, if α=−30, β =−1000, σ2 = 1 then h1 ≈ 0.0545. Changing β on β =−1200
we obtain h1 ≈ 0.0472. On Figure 4.1 the point C1(−30,1000) belongs to the stability
region with θ = 1/2 and the point C2(−30,−1200) does not belong to this region.

4.4. Case θ ∈ (1/2,1]. Let θ ∈ (1/2,1]. From (4.1) and (2.16) it follows that f (h) < 0 for
h≤ 0. So f (h) < 0 for h∈ [0,h1), where h1 is the least root of the equation f (h)= 0. For
example, if α=−40, β =−1000, σ2 = 1, θ = 0.75 we obtain

f (h)= 187500h3− 40000h2 + 3100h− 79= 0 (4.8)

and h1 ≈ 0.0511. Changing β to β =−1200 we obtain

f (h)= 270000h3− 48000h2 + 3400h− 79= 0 (4.9)

with h1 ≈ 0.0431. On Figure 4.1 the point D1(−40,−1000) belongs to the stability region
with θ = 3/4 but the point D2(−40,−1200) does not belong to this region.

4.5. Case θ ∈ (0,1/2). Let θ ∈ (0,1/2). From (4.1) and (2.16) it follows that f (0) < 0 and
(df /dh)(0) > 0. It means that f (h) < 0 for h∈ [0,h1) where h1 is the least positive root of
the equation f (h)= 0. For example, if α=−20, β =−1200, σ2 = 1, θ = 1/4 then

f (h)=−90000h3 + 1000h− 39 (4.10)

and h1 ≈ 0.0508. Changing β to β =−1300 we obtain

f (h)=−105625h3 + 1050h− 39= 0 (4.11)

with h1 ≈ 0.0489. On Figure 4.1 the point E1(−20,−1000) belongs to the stability region
with θ = 1/4 but the point E2(−20,−1300) does not belong to this region.
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Figure 5.1. Trajectories of (3.1) withm= 0, α=−55, β =−1000, σ2 = 1, h= 0.05, θ = 1, x0 = 1.

109876543210
−2

−1.5

−1

−0.5

0

0.5

1

1.5
×1013

τ = ih

X
t

Figure 5.2. Trajectories of (3.1) withm= 0, α=−55, β =−1000, σ2 = 1, h= 0.06, θ = 1, x0 = 1.

5. Numerical experiments

We illustrate some of our results with trajectories of (3.1). Note that in [30] an absolute
correspondence of asymptotic mean square stability of the trivial solution and conver-
gence of trajectories to zero was shown.

Figure 5.1 shows 50 trajectories of (3.1) with m = 0 (i.e., without delay), x0 = 1, α =
−55, β =−1000, σ2 = 1, h= 0.05, θ = 1. The dark line represents the arithmetic mean of
the trajectories, as it does for all the figures in this section. It is clear that we have a stable
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Figure 5.3. Trajectories of (3.1) withm= 0, α=−40, β =−25, σ2 = 1, h= 0.05, θ = 0, x0 = 1.
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Figure 5.4. Trajectories of (3.1) withm= 0, α=−40, β =−25, σ2 = 1, h= 0.05, θ = 1, x0 = 1.

system. If we change the parameter h to h = 0.06 we no longer have a stable system (as
shown in Figure 5.2, as expected from examining Figure 3.5).

Figure 3.7 shows the regions of stability for different θmethods.We illustrate this point
with Figures 5.3, 5.4 and 5.5. Each figure shows 50 trajectories with identical parameter
values except for θ. For Figure 5.3 θ = 0, for Figure 5.4 θ = 1, and for Figure 5.5 θ = 0.5.
The interesting point here is that for particular parameter values where the integro-
differential equation is asymptotically mean square stable we can choose a θ method
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Figure 5.5. Trajectories of (3.1) withm= 0, α=−40, β=−25, σ2 = 1, h= 0.05, θ = 0.5, x0 = 1.
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Figure 5.6. Trajectories of (3.1) withm= 0, α=−39, β =−25, σ2 = 1, h= 0.05, θ = 0, x0 = 1.

which replicates this stability property. In Figure 5.3 the sufficient conditions for asymp-
totic mean square stability of the discrete system (i.e., −38.8603 < α < −0.5147, given
the other parameters) are not satisfied and the trajectories are indeed unstable, whereas
in Figures 5.4 and 5.5 the conditions (i.e., −40.1103 < α < −1.7647 for Figure 5.4 and
−39.4853 < α < −1.1397 for Figure 5.5, given the other parameters) are satisfied and we
have asymptotic mean-square stability. Figure 5.6 uses the same parameters as Figure 5.3
except that α=−39. In this case the sufficient conditions are not satisfied for the discrete
analogue (we are very close to satisfying them though) but we still have asymptotic mean
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square stability, thus verifying that are conditions are only sufficient and not necessary
and sufficient. However we believe our experiments indicate that the sufficient condi-
tions are very good ones.

Acknowledgments

This work has been completed with the financial assistance of NATO, grant reference
PST.EV.979727, to whom the authors wish to express their thanks. We would also like to
thank Dr John Edwards and Prof Neville Ford of University College Chester for helpful
comments relating to early drafts of the work.

References

[1] V. N. Afanas’ev, V. B. Kolmanovskii, and V. R. Nosov, Mathematical Theory of Control Systems
Design, Mathematics and Its Applications, vol. 341, Kluwer Academic, Dordrecht, 1996.

[2] H. Brunner and J. D. Lambert, Stability of numerical methods for Volterra integro-differential
equations, Computing (Arch. Elektron. Rechnen) 12 (1974), no. 1, 75–89.

[3] H. Brunner and P. J. van der Houwen, The Numerical Solution of Volterra Equations, CWIMono-
graphs, vol. 3, North-Holland, Amsterdam, 1986.

[4] S. Busenberg and K. L. Cooke, The effect of integral conditions in certain equations modelling
epidemics and population growth, Journal of Mathematical Biology 10 (1980), no. 1, 13–32.

[5] A. Drozdov, Explicit stability conditions for stochastic integro-differential equations with non-
selfadjoint operator coefficients, Stochastic Analysis and Applications 17 (1999), no. 1, 23–41.

[6] J. T. Edwards, N. J. Ford, and J. A. Roberts, The numerical simulation of the qualitative behaviour
of Volterra integro-differential equations, Proceedings of Algorithms for Approximation IV (Hud-
dersfield, 2001) (J. Levesley, I. J. Anderson, and J. C. Mason, eds.), University of Huddersfield,
Huddersfield, 2002, pp. 86–93.

[7] J. T. Edwards, N. J. Ford, J. A. Roberts, and L. E. Shakhet, Stability of a discrete nonlinear integro-
differential equation of convolution type, Stability and Control: Theory and Applications. An In-
ternational Journal 3 (2000), no. 1, 24–37.

[8] S. Elaydi and S. Sivasundaram, A unified approach to stability in integrodifferential equations via
Liapunov functions, Journal of Mathematical Analysis and Applications 144 (1989), no. 2, 503–
531.

[9] N. J. Ford, C. T. H. Baker, and J. A. Roberts, Nonlinear Volterra integro-differential equations—
stability and numerical stability of θ-methods, Journal of Integral Equations and Applications 10
(1998), no. 4, 397–416.

[10] I. I. Gihman and A. V. Skorokhod, Stochastic Differential Equations, Izdat. Naukova Dumka,
Kiev, 1968.

[11] J. Golec and S. Sathananthan, Sample path approximation for stochastic integro-differential equa-
tions, Stochastic Analysis and Applications 17 (1999), no. 4, 579–588.

[12] , Strong approximations of stochastic integro-differential equations, Dynamics of Contin-
uous, Discrete & Impulsive Systems. Series B. Applications & Algorithms 8 (2001), no. 1, 139–
151.

[13] D. J. Higham, X. R. Mao, and A.M. Stuart, Strong convergence of Euler-type methods for nonlinear
stochastic differential equations, SIAM Journal on Numerical Analysis 40 (2002), no. 3, 1041–
1063.

[14] , Exponential mean-square stability of numerical solutions to stochastic differential equa-
tions, LMS Journal of Computation and Mathematics 6 (2003), 297–313.

[15] P. E. Kloeden and E. Platen,Numerical Solution of Stochastic Differential Equations, Applications
of Mathematics (New York), vol. 23, Springer, Berlin, 1992.



22 Reliability to preserve stability properties

[16] V. B. Kolmanovskii and A. Myshkis, Applied Theory of Functional-Differential Equations, Math-
ematics and Its Applications (Soviet Series), vol. 85, Kluwer Academic, Dordrecht, 1992.

[17] V. B. Kolmanovskii and L. E. Shaikhet, A method for constructing Lyapunov functionals for sto-
chastic systems with aftereffect, Differentsial’nye Uravneniya 29 (1993), no. 11, 1909–1920, 2022
(Russian), translation in Differential Equations 29 (1993), no. 11, 1657–1666 (1994).

[18] ,New results in stability theory for stochastic functional-differential equations (SFDEs) and
their applications, Proceedings of Dynamic Systems and Applications, Vol. 1 (Atlanta, GA, 1993),
Dynamic, Georgia, 1994, pp. 167–171.

[19] , A method for constructing Lyapunov functionals for stochastic differential equations of
neutral type, Differentsial’nye Uravneniya 31 (1995), no. 11, 1851–1857, 1941, translation in
Differential Equations 31 (1995), no. 11, 1819–1825 (1996).

[20] ,General method of Lyapunov functionals construction for stability investigation of stochas-
tic difference equations, Dynamical Systems and Applications, World Sci. Ser. Appl. Anal., vol. 4,
World Scientific, New Jersey, 1995, pp. 397–439.

[21] , Construction of Lyapunov functionals for stochastic hereditary systems: a survey of some
recent results, Mathematical and Computer Modelling 36 (2002), no. 6, 691–716.

[22] , Some peculiarities of the general method of Lyapunov functionals construction, Applied
Mathematics Letters. An International Journal of Rapid Publication 15 (2002), no. 3, 355–360.

[23] , About one application of the general method of Lyapunov functionals construction, Inter-
national Journal of Robust and Nonlinear Control 13 (2003), no. 9, 805–818, Special issue on
Time-Delay Systems, RNC.

[24] J. D. Lambert, Numerical Methods for Ordinary Differential Systems: The Initial Value Problem,
John Wiley & Sons, Chichester, 1991.

[25] J. J. Levin and J. A. Nohel, Note on a nonlinear Volterra equation, Proceedings of the American
Mathematical Society 14 (1963), 924–929.

[26] X. R. Mao, Stability of stochastic integro-differential equations, Stochastic Analysis and Applica-
tions 18 (2000), no. 6, 1005–1017.

[27] B. Øksendal, Stochastic Differential Equations: An Introduction with Applications, 5th ed., Uni-
versitext, Springer, Berlin, 1998.

[28] Y. Saito and T. Mitsui, Stability analysis of numerical schemes for stochastic differential equations,
SIAM Journal on Numerical Analysis 33 (1996), no. 6, 2254–2267.

[29] L. E. Shaikhet, Necessary and sufficient conditions of asymptotic mean square stability for stochas-
tic linear difference equations, Applied Mathematics Letters. An International Journal of Rapid
Publication 10 (1997), no. 3, 111–115.

[30] , Numerical simulation and stability of stochastic systems with Markovian switching, Neu-
ral, Parallel & Scientific Computations 10 (2002), no. 2, 199–208.

[31] , About Lyapunov functionals construction for difference equations with continuous time,
Applied Mathematics Letters. An International Journal of Rapid Publication 17 (2004), no. 8,
985–991.

[32] , Construction of Lyapunov functionals for stochastic difference equations with continuous
time, Mathematics and Computers in Simulation 66 (2004), no. 6, 509–521.

[33] , Lyapunov functionals construction for stochastic difference second-kind Volterra equations
with continuous time, Advances in Difference Equations 2004 (2004), no. 1, 67–91.

Leonid E. Shaikhet: Department of Higher Mathematics,
Donetsk State University of Management, Donetsk 83015, Ukraine
E-mail address: leonid.shaikhet@usa.net

Jason A. Roberts: Mathematics Department, University of Chester,
Chester CH14BJ, England
E-mail address: j.roberts@chester.ac.uk

mailto:leonid.shaikhet@usa.net
mailto:j.roberts@chester.ac.uk

	1. Introduction
	2. A linear stochastic Volterra integro-differential equation
	3. Stability of difference analogues to the integro-differential equation
	4. Upper bound for the step of discretization
	4.1. Case = 0
	4.2. Case = 0
	4.3. Case = 1/2
	4.4. Case (1/2,1]
	4.5. Case (0,1/2)

	5. Numerical experiments
	Acknowledgments
	References

