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For a sequence of bounded linear operators {An}∞n=0 on a Banach space X , we investigate
the characterization of exponential dichotomy of the difference equations vn+1 = Anvn.
We characterize the exponential dichotomy of difference equations in terms of the exis-
tence of solutions to the equations vn+1 = Anvn + fn in lp spaces (1 ≤ p <∞). Then we
apply the results to study the robustness of exponential dichotomy of difference equa-
tions.
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1. Introduction and preliminaries

We consider the difference equation

xn+1 = Anxn, n∈N, (1.1)

where An, n = 0,1,2, . . ., is a sequence of bounded linear operators on a given Banach
space X , xn ∈ X for n∈N.

One of the central interests in the asymptotic behavior of solutions to (1.1) is to find
conditions for solutions to (1.1) to be stable, unstable, and especially to have an exponen-
tial dichotomy (see, e.g., [1, 5, 7, 12, 16–20] and the references therein for more details
on the history of this problem). One can also use the results on exponential dichotomy
of difference equations to obtain characterization of exponential dichotomy of evolution
equations through the discretizing processes (see, e.g., [4, 7, 9, 18]).

One can easily see that if An = A for all n∈N, then the asymptotic behavior of solu-
tions to (1.1) can be determined by the spectra of the operator A. However, the situation
becomes more complicated if {An}n∈N is not a constant sequence because, in this case,
the spectra of each operator An cannot determine the asymptotic behavior of the solu-
tions to (1.1). Therefore, in order to find the conditions for (1.1) to have an exponential
dichotomy, one tries to relate the exponential dichotomy of (1.1) to the solvability of the
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2 Exponential dichotomy

following inhomogeneous equation:

xn+1 =Anxn + fn, n∈N, (1.2)

in some certain sequence spaces for each given f = { fn}. In other words, one wants to
relate the exponential dichotomy of (1.1) to the surjectiveness of the operator T defined
by

(Tx)n := xn+1−Anxn for x = {xn
}
belonging to a relevant sequence space. (1.3)

In the infinite-dimensional case, in order to characterize the exponential dichotomy of
(1.1) defined on N, beside the surjectiveness of the operator T , one needs a priori con-
dition that the stable space is complemented (see, e.g., [5]). In our recent paper, we have
replaced this condition by the spectral conditions of related operators (see [9, Corollary
3.3]).

At this point, we would like to note that if one considers the difference equation (1.1)
defined on Z, then the existence of exponential dichotomy of (1.1) is equivalent to the
existence and uniqueness of the solution of (1.2) for a given f = { fn}n∈Z, or, in other
words, to the invertibility of the operator T on suitable sequence spaces defined on Z.
This means that one can drop the above priori condition in the case that the difference
equations are defined on Z (see [7, Theorem 3.3] for the original result and see also [2,
3, 11, 15] for recent results on the exponential dichotomy of difference equations defined
on Z).

However, if one considers the difference equation (1.1) defined only on N, then the
situation becomes more complicated, because for a given f = { fn}n∈N, the solutions of
the difference equation (1.2) on N are not unique even in the case that the difference
equation (1.1) has an exponential dichotomy. Moreover, one does not have any informa-
tion on the negative half-line Z− := {z ∈ Z : z ≤ 0} of the difference equations (1.1) and
(1.2) (we refer the readers to [8] for more details on the differences between the expo-
nential dichotomy of the differential equations defined on the half-line and on the whole
line). Therefore, one needs new ideas and new techniques to handle the exponential di-
chotomy of difference equations defined only onN. For differential equations defined on
the half-line, such ideas and techniques have appeared in [14] (see also [8, 13]). Those
ideas and techniques have been exploited to obtain the characterization of exponential
dichotomy of difference equations defined on N with l∞-phase space of sequences de-
fined on N (see [9]). As a result, we have obtained a necessary and sufficient condition
for difference equations to have an exponential dichotomy. This conditions related to the
solvability of (1.2) in l∞ spaces of sequences defined on N. In the present paper, we will
characterize the exponential dichotomy of (1.1) by the solvability of (1.2) in lp spaces
(1 ≤ p <∞) of sequences defined on N. Moreover, we also characterize the exponential
dichotomy by invertibility of a certain appropriate difference operator derived from the
operator T . Consequently, we will use this characterization to prove the robustness of ex-
ponential dichotomy under small perturbations. Our results are contained in Theorems
3.2, 3.6, 3.7, and Corollary 3.3.

To describe more detailedly our construction, we will use the following notation: in
this paper X denotes a given complex Banach space endowed with the norm ‖ · ‖. As
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usual, we denote by N, R, R+, and C the sets of natural, real, nonnegative real, and com-
plex numbers, respectively. Throughout this paper, for 1 ≤ p <∞ we will consider the
following sequence spaces:

lp(N,X) :=
{
v = {vn

}
n∈N : vn ∈ X :

∞∑

n=0

∥
∥vn
∥
∥p <∞

}
:= lp,

l0p(N,X) :=
{
v = {vn

}
: v ∈ lp; v0 = 0

}
:= l0p

(1.4)

endowed with the norm ‖v‖p := (
∑∞

n=0‖vn‖p)1/p.
Let {An}n∈N be a sequence of bounded linear operators from X to X which is uni-

formly bounded. This means that there exists M > 0 such that ‖Anx‖ ≤M‖x‖ for all
n∈N and x ∈ X . Next we define a discrete evolution family �= (Un,m)n≥m≥0 associated
with the sequence {An}n∈N as follows:

Um,m = Id (the identity operator in X)

Un,m =An−1An−2 ···Am for n >m.
(1.5)

The uniform boundedness of {An} yields the exponential boundedness of the evolu-
tion family (Un,m)n≥m≥0. That is, there exist positive constants K , α such that ‖Un,mx‖ ≤
Keα(n−m)‖x‖; x ∈ X ; n≥m≥ 0.

Definition 1.1. Equation (1.1) is said to have an exponential dichotomy if there exist a
family of projections (Pn)n∈N on X and positive constants N , ν such that

(1) AnPn = Pn+1An;
(2) An : kerPn→ kerPn+1 is an isomorphism and its inverse is denoted by A−1|n ;
(3) ‖Un,mx‖ ≤Ne−ν(n−m)‖x‖; n≥m≥ 0; x ∈ PmX ;
(4) denote U|m,n = A−1|mA

−1
|m+1 ···A−1|n−1; n >m, and U|m,m = Id, then

∥
∥U|m,nx

∥
∥≤Ne−ν(n−m)‖x‖, n≥m≥ 0; x ∈ kerPn. (1.6)

The above family of projections (Pn)n∈N is called the family of dichotomy projections.

We define a linear operator T as follows:

If u= {un
}∈ lp set (Tu)n = un+1−Anun for n∈N. (1.7)

For u= {un} ∈ lp, we have ‖(Tu)n‖ = ‖un+1−Anun‖ ≤ ‖un+1‖+M‖un‖, hence Tu∈ lp
and ‖Tu‖p ≤ (1 +M)‖u‖p. This means that T is a bounded linear operator from lp into
lp. We denote the restriction of T on l0p by T0, this means that D(T0)= l0p and T0u= Tu

for u∈ l0p. From the definition of T , the following are obvious.

Remark 1.2. (i) kerT = {u= {un} ∈ lp : un =Un,0u0, n∈N}.
(ii) It is easy to verify that T0 is injective. Indeed, let u= {un}, v = {vn} ∈ l0p and T0u=

T0v. Then we have u0 = v0 = 0, u1 = (T0v)0 = v1, u2 = A1u1 + (T0u)1 = A1v1 + (T0v)1 =
v2, . . . , un+1 = Anun + (T0u)n = Anvn + (T0v)n = vn+1, for all n∈N. Hence, u= v.
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Recall that for an operator B on a Banach space Y , the approximate point spectrum
Aσ(B) of B is the set of all complex numbers λ such that for every ε > 0, there exists
y ∈D(B) with ‖y‖ = 1 and ‖(λ−B)y‖ ≤ ε.

In order to characterize the exponential stability and dichotomy of an evolution family,
we need the concept of lp-stable spaces defined as follows.

Definition 1.3. For a discrete evolution family �= (Um,n)m≥n≥0, m,n ∈ N, on Banach
space X and n0 ∈N, define the lp-stable space X0(n0) by

X0
(
n0
)
:=
{

x ∈ X :
∞∑

n=n0

∥
∥Un,n0x

∥
∥p <∞

}

. (1.8)

An orbit Um,n0x form≥ n0 ≥ 0 and x ∈ X0(n0) is called an lp-stable orbit.

2. Exponential stability

In this section we will give a sufficient condition for stability of lp-stable orbits of a dis-
crete evolution family �. The obtained results will be used in the next section to charac-
terize the exponential dichotomy of (1.1).

Theorem 2.1. Let the operator T0 defined as above satisfy the condition 0 �∈ Aσ(T0). Then
every lp-stable orbit of � is exponentially stable. Precisely, there exist positive constants N , ν
such that for any n0 ∈N and x ∈ X0(n0),

∥
∥Un,n0x

∥
∥≤Ne−ν(n−s)∥∥Us,n0x

∥
∥, n≥ s≥ n0. (2.1)

Proof. Since 0 �∈ Aσ(T0), we have that there exists a constant η > 0 such that

η
∥
∥T0v

∥
∥
p ≥ ‖v‖p for v ∈ l0p. (2.2)

To prove (2.1), we first prove that there is a positive constant l such that for any n0 ∈N
and x ∈ X0(n0),

∥
∥Un,n0x

∥
∥≤ l

∥
∥Us,n0x

∥
∥, n≥ s≥ n0 ≥ 0. (2.3)

Fix n0 ∈N, x ∈ X0(n0), and s≥ n0. Taking

v = {vn
}

with vn :=
⎧
⎨

⎩
Un,n0x for n > s,

0 for 0≤ n≤ s,
(2.4)

we have v ∈ l0p. By definition of T0, we have (T0v)n = vn+1−Anvn. This yields

(
T0v

)
n =

⎧
⎪⎪⎪⎨

⎪⎪⎪⎩

0 for n≤ s− 1,

Us+1,n0x for n= s,

0 for n > s.

(2.5)
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By inequality (2.2), we have

η
∥
∥Us+1,n0x

∥
∥≥

( ∞∑

k=s

∥
∥Uk,n0x

∥
∥p
)1/p

≥ ∥∥Un,n0x
∥
∥ for n > s≥ n0. (2.6)

Hence,

∥
∥Un,n0x

∥
∥≤ η

∥
∥Us+1,n0x

∥
∥= η

∥
∥Us+1,sUs,n0x

∥
∥≤ ηM

∥
∥Us,n0x

∥
∥ for n > s≥ n0. (2.7)

Putting l =max{1,ηM}, we obtain (2.3).
We now show that there is a number K = K(η, l) > 0 such that for any n0 ∈ N and

x ∈ X0(n0),

∥
∥Us+n,n0x

∥
∥≤ 1

2

∥
∥Us,n0x

∥
∥ for n≥ K , s≥ n0. (2.8)

To prove (2.8), put un :=Un,n0x, n≥ n0, and let a < b be two natural numbers with a≥ n0
such that ‖ub‖ > 1/2‖ua‖. From (2.3), we obtain that

l
∥
∥ua

∥
∥≥ ∥∥un

∥
∥ >

1
2l

∥
∥ua

∥
∥ for a≤ n≤ b. (2.9)

Put now

v = {vn
}

with vn =

⎧
⎪⎪⎪⎪⎪⎪⎪⎪⎪⎨

⎪⎪⎪⎪⎪⎪⎪⎪⎪⎩

0 for 0≤ n≤ a,

un

n∑

k=a+1

1
∥
∥uk

∥
∥ for a+1≤ n≤ b,

un

b+1∑

k=a+1

1
∥
∥uk

∥
∥ for n≥ b+1.

(2.10)

Then v ∈ l0p. By definition of T0, we have

T0v =
{(
T0v

)
n

}
with

(
T0v

)
n =

⎧
⎪⎪⎪⎪⎪⎨

⎪⎪⎪⎪⎪⎩

0, for 0≤ n < a,

un+1∥
∥un+1

∥
∥ for a≤ n≤ b− 1,

0 for n≥ b.

(2.11)

By inequality (2.2), we obtain

η(b− a)1/p ≥ ‖v‖p. (2.12)

Using Hölder inequality for v and χ[a+1,b], where

(
χ[a+1,b]

)
n =

⎧
⎨

⎩
1 for a+1≤ n≤ b,

0 otherwise ,
(2.13)
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we have that

b∑

n=a+1

∥
∥vn
∥
∥≤ (b− a)1−1/p‖v‖p. (2.14)

Substituting this into inequality (2.12), we obtain that

η(b− a)≥
b∑

n=a+1

∥
∥vn
∥
∥. (2.15)

Using now the estimates (2.9), we have

η(b− a)≥
b∑

n=a+1

∥
∥vn
∥
∥=

b∑

n=a+1

n∑

k=a+1

∥
∥un

∥
∥

∥
∥uk

∥
∥

≥
b∑

n=a+1

1
2l

∥
∥ua

∥
∥

n∑

k=a+1

1
l
∥
∥ua

∥
∥=

(b− a)(b− a+1)
4l2

>
(b− a)2

4l2
.

(2.16)

This yields b− a < 4ηl2. Putting K := 4ηl2, the inequality (2.1) follows.
We finish by proving (2.1). Indeed, if n ≥ s ≥ n0 ∈N writing n− s = n1K + r for 0 ≤

r < K , and n1 ∈N, we have

∥
∥Un,n0x

∥
∥= ∥∥Un−s+s,n0x

∥
∥= ∥∥Un1K+r+s,n0x

∥
∥

by (2.8)≤ 1
2n1
∥
∥Ur+s,n0x

∥
∥

by (2.3)≤ l

2n1
∥
∥Us,n0x

∥
∥≤ 2le−((n−s)/K) ln2

∥
∥Us,n0x

∥
∥.

(2.17)

Taking N := 2l and ν := ln2/K , the inequality (2.1) follows. �

From this theorem, we obtain the following corollary.

Corollary 2.2. Under the conditions of Theorem 2.1, the space X0(n0) can be expressed as

X0
(
n0
)= {x ∈ X :

∥
∥Un,n0x

∥
∥≤Ne−ν(n−n0)‖x‖; n≥ n0 ≥ 0

}
, (2.18)

for certain positive constants N , ν. Hence, X0(n0) is a closed linear subspace of X .

3. Exponential dichotomy and perturbations

We will characterize the exponential dichotomy of (1.1) by using the operators T0, T . In
particular, we will also get necessary and sufficient conditions for exponential dichotomy
in Hilbert spaces and finite-dimensional spaces. Moreover, using our characterization of
the exponential dichotomy, we can prove the robustness of the exponential dichotomy
of (1.1) under small perturbations. Then we start with the following lemma which has a
history that can be traced back to [14, Lemma 4.2] and to [6] and beyond.

Lemma 3.1. Assume that (1.1) has an exponential dichotomy with corresponding family of
projections Pn, n≥ 0, and constants N > 0, ν > 0, thenM := supn≥0‖Pn‖ <∞.
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Proof. The proof is done in [9, Lemma 3.1]. We present it here for sake of completeness.
Fix n0 > 0, and set P0 := Pn0 ; P

1 := Id−Pn0 , Xk = PkX , k = 0,1. Set γ0 := inf{‖x0 + x1‖ :
xk ∈ Xk, ‖x0‖ = ‖x1‖ = 1}. If x ∈ X and Pkx �= 0, k = 0,1, then

γn0 ≤
∥
∥
∥
∥
∥

P0x
∥
∥P0x

∥
∥ +

P1x
∥
∥P1x

∥
∥

∥
∥
∥
∥
∥≤

1
∥
∥P0x

∥
∥

∥
∥
∥
∥
∥P

0x+

∥
∥P0x

∥
∥

∥
∥P1x

∥
∥P

1x

∥
∥
∥
∥
∥

≤ 1
∥
∥P0x

∥
∥

∥
∥
∥
∥
∥x+

∥
∥P0x

∥
∥−∥∥P1x

∥
∥

∥
∥P1x

∥
∥ P1x

∥
∥
∥
∥
∥≤

2
∥
∥x
∥
∥

∥
∥P0(x)

∥
∥ .

(3.1)

Hence, ‖P0‖ ≤ 2/γn0 . It remains to show that there is a constant c > 0 (independent of n0)
such that γn0 ≥ c. For this, fix xk ∈ Xk, k = 0,1, with ‖xk‖ = 1. By the exponential bound-
edness of �, we have ‖Un,n0 (x

0 + x1)‖ ≤ Keα(n−n0)‖x0 + x1‖ for n ≥ n0 and constants K ,
α≥ 0. Thus,

∥
∥x0 + x1

∥
∥≥ K−1e−α(n−n0)

∥
∥Un,n0x

0 +Un,n0x
1
∥
∥

≥ K−1e−α(n−n0)
(
N−1eν(n−n0)−Ne−ν(n−n0))=: cn−n0 ,

(3.2)

and hence γn0 ≥ cn−n0 . Obviously cm > 0 form sufficiently large. Thus 0 < cm ≤ γn0 . �

Now we come to our first main result. It characterizes the exponential dichotomy of
(1.1) by properties of the operator T .

Theorem 3.2. Let {An}n∈N be a family of bounded linear and uniformly bounded operators
on the Banach space X . Then the following assertions are equivalent.

(i) Equation (1.1) has an exponential dichotomy.
(ii) T is surjective and X0(0) is complemented in X .

Proof. (i)⇒(ii). Let (Pn)n≥0 be the family of dichotomy projections. Then X0(0) = P0X ,
and hence X0(0) is complemented. If f ∈ lp, define v = {vn}n∈N by

vn =

⎧
⎪⎪⎪⎪⎪⎪⎨

⎪⎪⎪⎪⎪⎪⎩

n∑

k=1
Un,kPk fk−1−

∞∑

k=n+1
U|n,k

(
Id−Pk

)
fk−1 for n≥ 1,

−
∞∑

k=1
U|0,k

(
Id−Pk

)
fk−1 for n= 0,

(3.3)

then vn+1 =Anvn + fn. Moreover, since

∥
∥
∥
∥
∥

n∑

k=1
Un,kPk fk−1−

∞∑

k=n+1
U|n,k

(
Id−Pk

)
fk−1

∥
∥
∥
∥
∥≤N

∞∑

k=1
e−ν|n−k|∥∥ fk−1

∥
∥ (3.4)

and f ∈ lp, we can easily derive that v ∈ lp. By the definition of T , we have Tv = f . There-
fore T : lp → lp is surjective.
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(ii)⇒(i). We prove this in several steps.
(A) Let Z ⊆ X be a complement of X0(0) in X , that is, X = X0(0)⊕Z. Set X1(n) =

Un,0Z. Then

Un,sX0(s)⊆ X0(n), Un,sX1(s)= X1(n), n≥ s≥ 0. (3.5)

(B) There are constants N ,ν > 0 such that

∥
∥Un,0x

∥
∥≥Neν(n−s)∥∥Us,0x

∥
∥ for x ∈ X1(0), n≥ s≥ 0. (3.6)

In fact, let Y := {(vn)n∈N ∈ lp : v0 ∈ X1(0)} endowed with lp-norm. Then Y is a closed
subspace of the Banach space lp, and henceY is complete. By Remark 1.2, we have kerT :=
{v ∈ lp : vn =Un,0x for some x ∈ X0(0)}. Since X = X0(0)⊕X1(0) and T is surjective, we
obtain that

T : Y −→ lp (3.7)

is bijective and hence an isomorphism. Thus, by Banach isomorphism theorem, there is
a constant η > 0 such that

η‖Tv‖p ≥ ‖v‖p, for v ∈ Y. (3.8)

To prove (3.6), we first prove that there is a positive constant l such that

∥
∥Un,0x

∥
∥≥ l

∥
∥Us,0x

∥
∥ for x ∈ X1(0), n≥ s≥ 0, n,s∈N. (3.9)

Indeed, fix x ∈ X1(0), x �= 0, and n ≥ s ≥ 0. If n = 0, there is nothing to do. So, assume
that n≥ 1. Now taking

v := {vm
}

with vm :=
⎧
⎨

⎩
Um,0x for 0≤m≤ n− 1,

0 form> n− 1,
(3.10)

we have that v ∈ Y . Then, by definition of T , we obtain that

(Tv)m :=

⎧
⎪⎪⎪⎨

⎪⎪⎪⎩

0 form> n− 1,

−Un,0x form= n− 1,

0 form< n− 1.

(3.11)

Inequality (3.8) yields

η
∥
∥Un,0x

∥
∥≥

⎛

⎝
n−1∑

k=0

∥
∥Uk,0x

∥
∥p
⎞

⎠

1/p

≥ ∥∥Us,0x
∥
∥ ∀ 0≤ s≤ n− 1. (3.12)

Putting now l :=min{1/η,1}, inequality (3.9) follows.
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We now show that there is a number K = K(η, l) > 0 such that

∥
∥Us+n,0x

∥
∥≥ 2

∥
∥Us,0x

∥
∥ for n≥ K , s≥ 0; x ∈ X1(0). (3.13)

Let 0 �= x ∈ X1(0), set un := Un,0x, n≥ 0. By Remark 1.2 we have un �= 0 for all n≥ 0. To
prove (3.13), let a < b be two natural numbers such that ‖ub‖ < 2‖ua‖. From (3.9), we
obtain that

2
l

∥
∥ua

∥
∥ >

∥
∥un

∥
∥≥ l

∥
∥ua

∥
∥ ∀ a≤ n≤ b. (3.14)

Take now v = {vn}, where

vn =

⎧
⎪⎪⎪⎪⎪⎪⎪⎪⎪⎨

⎪⎪⎪⎪⎪⎪⎪⎪⎪⎩

−un
b∑

k=a+1

1
∥
∥uk

∥
∥ for 0≤ n < a,

−un
b∑

k=n+1

1
∥
∥uk

∥
∥ for a≤ n < b,

0 for n≥ b.

(3.15)

Then, v ∈ Y . By definition of T , we have that

(Tv)n =

⎧
⎪⎪⎪⎪⎪⎨

⎪⎪⎪⎪⎪⎩

0 for 0≤ n < a,

un+1∥
∥un+1

∥
∥ for a≤ n < b,

0 for n≥ b.

(3.16)

By inequality (3.8), we obtain

η(b− a)1/p ≥ ‖v‖p. (3.17)

Using Hölder inequality for v and χ[a,b−1], where

(
χ[a,b−1]

)
n =

⎧
⎨

⎩
1 for a≤ n≤ b− 1,

0 otherwise ,
(3.18)

we have that

b−1∑

n=a

∥
∥vn
∥
∥≤ (b− a)1−1/p‖v‖p. (3.19)

Substituting this into inequality (3.17), we obtain that

η(b− a)≥
b−1∑

n=a

∥
∥vn
∥
∥. (3.20)
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Using now the estimates (3.14), we have

η(b− a)≥
b−1∑

n=a

∥
∥vn
∥
∥=

b−1∑

n=a

b∑

k=n+1

∥
∥un

∥
∥

∥
∥uk

∥
∥

≥
b−1∑

n=a
l
∥
∥ua

∥
∥

b∑

k=n+1

l

2
∥
∥ua

∥
∥ =

l2(b− a)(b− a+1)
4

>
l2(b− a)2

4
.

(3.21)

This yields b− a < 4η/l2. Putting K := 4η/l2, the inequality (3.13) follows.
We finish this step by proving inequality (3.6). Indeed, if n ≥ s ∈ N, writing n− s =

n0K + r for 0≤ r < K , and n0 ∈N, we have

∥
∥Un,0x

∥
∥= ∥∥Un−s+s,0x

∥
∥= ∥∥Un0K+r+s,0x

∥
∥

by (3.13)≥ 2n0
∥
∥Ur+s,0x

∥
∥

by (3.9)≥ l2n0
∥
∥Us,0x

∥
∥≥ l

2
e((n−s)/K) ln2

∥
∥Us,0x

∥
∥.

(3.22)

Taking N := l/2 and ν := ln2/K , inequality (3.6) follows.
(C) X = X0(n)⊕X1(n), n∈N.
Let Y ⊂ lp be as in (B). Then by Remark 1.2, we have that l0p ⊂ Y . From this fact and

(3.8), we obtain that η‖T0v‖lp ≥ ‖v‖lp , for v ∈ l0p. Thus,

0 �∈Aσ
(
T0
)
. (3.23)

The relation (3.23) and Corollary 2.2 imply that X0(n) is closed. From (3.5), (3.6), and
the closedness of X1(0), we can easily derive that X1(n) is closed and X1(n)∩X0(n)= {0}
for n≥ 0.

Finally, fix n0 > 0, and x ∈ X (note that we already have X = X0(0)⊕X1(0)). For a
natural number n1 > n0 + 1, set

v = {vn
}

with vn =

⎧
⎪⎪⎪⎨

⎪⎪⎪⎩

0 for 0≤ n < n0,
(
n−n0 + 1

)
Un,n0x for n0 ≤ n≤ n1,

0 for n > n1,

f = { fn
}

with fn =

⎧
⎪⎪⎪⎪⎪⎪⎪⎨

⎪⎪⎪⎪⎪⎪⎪⎩

0 for 0≤ n < n0,

Un+1,n0x for n0 ≤ n < n1,

−(n1−n0 + 1
)
Un+1,n0x for n= n1,

0 for n > n1.

(3.24)

Then v, f ∈ lp and satisfy (1.2) for all n≥ n0 > 0. By assumption, there exists w ∈ lp such
that Tw = f . By the definition of T , wn is a solution of (1.2). Thus,

vn−wn =Un,n0

(
vn0 −wn0

)=Un,n0

(
x−wn0

)
, n≥ n0. (3.25)
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Since v −w ∈ lp, we have that x −wn0 ∈ X0(n0). On the other hand, since w0 = w0 +
w1 with wk ∈ Xk(0), wn0 = Un0,0w

0 +Un0,0w
1, and by (3.5), we have Un0,0w

k ∈ Xk(n0),
k = 0,1. Hence x = x−wn0 +wn0 = x−wn0 +Un0,0w

0 +Un0,0w
1 ∈ X0(n0) +X1(n0). This

proves (C).
(D) Let Pn be the projections from X onto X0(n) with kernel X1(n), n≥ 0. Then (3.5)

implies that Pn+1Un+1,n = Un+1,nPn, or AnPn = Pn+1An for n ≥ 0. From (3.5), (3.6), and
An = Un+1,n, we obtain that An : kerPn → kerPn+1, n ≥ 0 is an isomorphism. Finally, by
(3.6), Theorem 2.1, and the assumption 0 �∈ Aσ(T0), there exist constants N ,ν > 0 such
that

∥
∥Un,mx

∥
∥≤Ne−ν(n−m)‖x‖ for x ∈ PmX , n≥m≥ 0,

∥
∥U|m,nx

∥
∥≤Ne−ν(n−m)‖x‖ for x ∈ kerPn, n≥m≥ 0.

(3.26)

Thus (1.1) has an exponential dichotomy. �

If X is a Hilbert space, we need only the closedness of X0(0). Therefore, we obtain the
following corollary.

Corollary 3.3. If X is a Hilbert space, then the conditions that 0 �∈ Aσ(T0) and T is sur-
jective are necessary and sufficient for (1.1) to have an exponential dichotomy.

This can be restated as follows.
If X is a Hilbert space, then the conditions
(1) for all f ∈ lp, there exists a solution x ∈ lp of (1.2);
(2) there exists a constant c > 0 such that all bounded solutions x = {xn} (with x0 = 0

and x ∈ lp) of (1.2) (with f ∈ lp) satisfy
∑∞

n=0‖xn‖p ≤ c
∑∞

n=0‖ fn‖p
are necessary and sufficient for (1.1) to have an exponential dichotomy.

Proof. The corollary is obvious in view of Corollary 2.2 and Theorem 3.2. �

If X is a finite-dimensional space, then every subspace of X is closed and comple-
mented. Hence, by Theorem 3.2 we have the following corollary.

Corollary 3.4. If X is a finite-dimensional space, then the condition that T is surjective is
necessary and sufficient for existence of exponential dichotomy of (1.1).

In our next result, we will characterize the exponential dichotomy of (1.1) using in-
vertibility of a certain operator derived from the operator T . In order to obtain such
a characterization, we have to know the subspace kerP0 in advance (see Theorem 3.6).
Consequently, the exponential dichotomy of evolution family will be characterized by
the invertibility of the restriction of T to a certain subspace of lp. This restriction will be
defined as follows.

Definition 3.5. For a closed linear subspace Z of X , define

lZp :=
{
f = { fn

}∈ lp : f0 ∈ Z
}
. (3.27)

Then, lZp is a closed subspace of (lp,‖ · ‖p). Denote by TZ the part of T in lZp , that is,
D(TZ)= lZp and TZu= Tu for u∈ lZp .
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With these notations, we obtain the following characterization of exponential dicho-
tomy of (1.1).

Theorem 3.6. Let {An}n∈N be a family of bounded linear and uniformly bounded opera-
tors on the Banach space X and let Z be a closed linear subspace of X . Then the following
assertions are equivalent.

(i) Equation (1.1) has an exponential dichotomy with the family of dichotomy projec-
tions {Pn}n∈N satisfying kerP0 = Z.

(ii) TZ : lZp → lp is invertible.

Proof. We first note that the following proof is inspired by the proof of [14, Theorem 4.5].
(i)⇒(ii). Let Pn, n∈N, be a family of projections given by the exponential dichotomy

of (1.1) such that kerP0 = Z. Then P0X = X0(0) and X = X0(0)⊕Z. Fix f = { fn} ∈ lp. By
Theorem 3.2, there is v = {vn} ∈D(T) such thatTv = f . On the other hand, by definition
ofX0(0), the sequence u= {un} defined by un =Un,0P0v0 belongs to lp. By definition of T ,
we obtain that Tu= 0. Moreover, v0−u0 = v0−P0v0 ∈ Z since X = P0X ⊕Z. Therefore,
v−u∈ lZp and TZ(v−u)= T(v−u)= Tv = f . Hence, TZ :D(TZ)→ lp is surjective.

If noww ={wn} ∈ kerTZ then, by definition of TZ ,wn=Un,0w0 withw0 ∈ Z∩X0(0)=
{0}. Thus, w = 0, that is, TZ is injective.

(ii)⇒(i). Let TZ : lZp → lp be invertible. Since TZ is the restriction of T to lZp , it follows
that T is surjective. The boundedness of TZ implies that T−1Z is bounded, and hence there
is η > 0 such that η‖Tv‖p = η‖TZv‖p ≥ ‖v‖p for all v ∈ lZp . Since T0 is the part of TZ

in l0p = { f ∈ lp : f0 = 0}, we obtain that η‖T0v‖p ≥ ‖v‖p for all v ∈ D(T0). Hence, 0 �∈
Aσ(T0). By Corollary 2.2, X0(0) is closed. We now prove that X = X0(0)⊕Z. Let now x ∈
X . If Un,0x = 0 for some n = n0 > 0, then Un,0x = Un,n0Un0,0x = 0 for all n ≥ n0 yielding
x ∈ X0(0). Otherwise, Un,0x �= 0 for all n∈N. Set u= {un} with

un :=
⎧
⎨

⎩
x for n= 0

0 for n > 0,
f = { fn

}
with fn :=

⎧
⎨

⎩
−A0x for n= 0

0 for n > 0.
(3.28)

Clearly, u∈ lp, f ∈ lp, and fn = un+1−Anun. Therefore, Tu= f . On the other hand, since
TZ is invertible, there exists v ∈ lZp such that TZv = f = Tv. Thus, u− v ∈ kerT , and hence

(u− v)n =Un,0
(
u0− v0

)=Un,0
(
x− v0

)
, n∈N. (3.29)

Since u− v ∈ lp, this implies that x− v0 ∈ X0(0). Thus x = x− v0 + v0 ∈ X0(0)+Z.
If now y ∈ X0(0)∩ Z, then the sequence w = {wn} defined by wn := Un,0y, n ∈ N,

belongs to lZp ∩ kerT (see definitions of X0(0) and T). Hence, TZw = 0 and by invertibility
of TZ , we have that w = 0. Thus y = w0 = 0, that is, X0(0)∩ Z = {0}. This yields that
X = X0(0)⊕Z. The assertion now follows from Theorem 3.2. �

Using the above characterization of exponential dichotomy, we now study the robust-
ness of the exponential dichotomy of (1.1) under small perturbations. Precisely, we have
the following perturbation theorem.

Theorem 3.7. Let (1.1) have an exponential dichotomy and let {Bn}n∈N be a sequence of
bounded linear operators from X to X which is uniformly bounded (i.e., there is constant
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M > 0 such that ‖Bn‖ ≤M for all n ∈N). Then, if H := supn∈N‖Bn‖ is sufficiently small,
the equation

un+1 =
(
An +Bn

)
un (3.30)

has an exponential dichotomy as well.

Proof. Let (1.1) have an exponential dichotomy with the corresponding dichotomy pro-
jections (Pn)n∈N . Put kerP0 = Z. Then, Z is a closed subspace of X . By Theorem 3.6, we
have that the operator TZ defined by Definition 3.5 is invertible. Let now TB,Z be the op-
erator corresponding to the perturbed difference equation (3.30). That is, TB,Z : lZp → lp
is defined by (TB,Zu)n = un+1− (An +Bn)un. We now define the operatorB by (B f )n :=
Bn fn for f = { fn} and all n∈N. We then prove thatB : lp → lp is a bounded linear oper-
ator and ‖B‖ ≤H . Indeed, take f ∈ lp. Then ‖(B f )n‖ = ‖Bn fn‖ ≤H‖ fn‖ for all n∈N.
It follows that the sequenceB f belongs to lp and ‖B f ‖p ≤H‖ f ‖p. We thus obtain that
B : lp → lp is a bounded linear operator and ‖B‖ ≤H .

It is clear that TB,Z = TZ −B. Since TZ is invertible, by a perturbation theorem of
Kato [10, IV.1.16], we obtain that if ‖B‖ is sufficiently small then TB,Z = TZ −B is also
invertible. By Theorem 3.6 we have that (3.30) has an exponential dichotomy. �
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