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We prove that all solutions to the nonlinear second-order difference equation in integers
yn+1 = �ayn�− yn−1, {a∈R : |a| < 2, a �= 0,±1}, y0, y1 ∈ Z, are periodic. The first-order
system representation of this equation is shown to have self-similar and chaotic solutions
in the integer plane.
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1. Introduction

We study the nonlinear second-order difference equation in integers

yn+1 =
⌈
ayn

⌉− yn−1,
{
a∈R : |a| < 2, a �= 0,±1}, y0, y1 ∈ Z, (1.1)

where �x� denotes the smallest integer not smaller than x (the ceiling function). The
reader is already familiar with the linear cases a = 0,±1, therefore we do not consider
these values in this paper. Besides the natural generalization to discrete space, there are at
least three reasons why (1.1) is interesting.

First, when a= 3/2, (1.1) becomes

yn+1 =

⎧
⎪⎪⎨

⎪⎪⎩

3yn +1
2

− yn−1 if yn is odd

3
(
yn
2

)
− yn−1 if yn is even,

(1.2)

a second-order variant of the notorious “3x+1 iteration.” So far as we know, the ultimate
convergence to 1 of the 3x + 1 iterates remains an unproven conjecture. In contrast, we
will prove an ultimate recurrence property for (1.1) for all initial states y0, y1 ∈ Z and
parameter values −2 < a < 2. It is the initial state that is always recurrent. Moreover, so-
lutions to (1.1) can exhibit periods of arbitrary length (Theorems 2.2, 3.2, below).
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Second, the method used to establish the periodicity of all solutions to (1.1) seems
novel, elegant, and of potentially wider applicability. Without this method, we could not
prove that solutions of the special case (1.2), above, were even bounded [1].

Third, (1.1) is converted to a first-order system in two variables using the mapping
T(x, y) = (y,�ay� − x). The simplicity of T gives no hint of the startling complexity
shown by scatter plots of some of the solutions. See Figures 4.1–4.4, below.

2. Qualitative behavior of solutions

Henceforth, all pairs (x, y) denote points in the integer plane Z2, and the real parameter
a satisfies |a| < 2. We obtain the aforementioned first-order system by letting

T(x, y)= (y,�ay�− x
)
, Xn =

(
xn, yn

)= Tn
(
x0, y0

)
, n= 0,1,2, . . . . (2.1)

Remark 2.1. The sequence (yn) appearing as the second coordinate in each term of (Xn)
is the same sequence generated by (1.1) when x0 = �ay0�− y1.

A first glimpse of the rotational motion of solutions is obtained from the powers of
A= ( 0 1

−1 a), the matrix underlying T without the ceiling function. Because |a| < 2, A has
complex eigenvalues. After diagonalizing A, we have

An =

⎛

⎜
⎜
⎜
⎝

cos(nθ)− asin(nθ)√
4− a2

2sin(nθ)√
4− a2

−2sin(nθ)√
4− a2

cos(nθ) +
asin(nθ)√
4− a2

⎞

⎟
⎟
⎟
⎠
, θ = arccos

(
a

2

)
. (2.2)

The significance of θ for the nonlinear equation (1.1) will become apparent later.
The identity x2 + y2− axy = y2 + (ay− x)2− ay(ay− x) supplies a family of invariant

ellipses E(x, y) = x2 + y2 − axy for the linear equation. Figure 2.1 shows the ellipse x2 +
y2 − (1/2)xy determined by a = 1/2 and (x0, y0) = (0,32), as well as the first six iterates
of T acting on (x0, y0) = (0,32) : (0,32), (32,16), (16,−24), (−24,−28), (−28,10), and
(10,33). All these points lie on the ellipse x2 + y2 − (1/2)xy = 1024 because the ceiling
function is inactive. The first odd yn requiring use of the ceiling is y5 = 33, and we expect
that T(10,33) = (33,7) does not lie on this ellipse. Indeed, it does not: 332 + 72 − 1/2 ·
33 · 7= 1022.5.

The clockwise motion in Z2 of the iterates of T is further clarified by the vector field
drawn in Figure 2.2 with a= 1/3. Each directed segment at (x, y) has the form T(x, y)−
(x, y) and thus points toward T(x, y). This is seen clearly in Figure 2.2 for the orbit initi-
ated at (1,0). The vector field is divided into four quadrants with boundaries y = x and
the step locus y = �ay� − x. Each linear segment of this locus includes the upper left-
hand endpoint and excludes the lower right-hand endpoint. The quadrants discriminate
whether direction vectors have Δx > 0 (≤ 0) or Δy > 0 (≤ 0). In general, the clockwise ro-
tation and roughly elliptic orbits are easily confirmed for all parameter values −2 < a < 2
and initial conditions (x0, y0) �= T(x0, y0).
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Figure 2.1. a= 1/2, X0 = (0,32).
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Figure 2.2. a= 1/3, X0 = (1,0).

Theorem 2.2. For nonzero rational a = p/q where p and q have no common factors, the
number of distinct terms of a solution (yn) can be made arbitrarily large depending on the
initial conditions.

Proof. Imitating the example of Figure 2.1, we choose initial conditions designed to de-
activate the ceiling function for a finite number of terms, thereby turning the nonlinear
equation (1.1) into a linear equation. Take y0 = qm, y1 = pqm−1 with arbitrarily large
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positivem. As before, A denotes the matrix underlying the linear system. By induction,

An =

⎛

⎜
⎜
⎜
⎝

− fn−2
qn−2

fn−1
qn−1

− fn−1
qn−1

fn
qn

⎞

⎟
⎟
⎟
⎠
, (2.3)

where f−1 = 0, f0 = 1, and fn(p,q)=
∑�n/2	

k=0 (n−kk )(−1)k pn−2kq2k for n > 0. A consequence
of taking p and q relatively prime is that q never divides fn for n≥ 0; the coefficient of pn

in fn is always 1. Repeated application of A to the initial vector (0,qm) gives the general
form of the first m + 1 iterates: yn = fnqm−n. These are all distinct because the highest
power of q that divides each one is different. �

In contrast, the following example shows that when a is irrational, it does not follow
that there are arbitrarily many distinct iterates simply because an initial condition is ar-
bitrarily large (however, see Figure 4.1 below).

Example 2.3. Let a = (
√
5− 1)/2 = 0.6180339 . . . , that is, θ = 2π/5 in (2.2), above. Let

y0 = 1, y1 = 10n for n≥ 0. With this form of initial condition, all solutions have period 5.
Solutions are shown, below, for n= 0,1,2,3, and 6.

n= 0 1, 1, 0, −1, 0, 1, 1, . . .
1 1, 10, 6, −6, −9, 1, 10, . . .
2 1, 100, 61, −62, −99, 1, 100, . . .
3 1, 1000, 618, −618, −999, 1, 1000, . . .
6 1, 106, 618033, −618034, 1− 106, 1, 106, . . . .

(2.4)

The curious relation between y2 and y3 should be noted: sometimes y3 = −y2 and
sometimes y3 =−y2− 1. It is easy to see that y2 = �10na	, where �x	 denotes the greatest
integer not greater than x. With a little more work, using the fact that a2 + a− 1= 0, we
can prove that y3 =−y2 if and only if 1− a < �10na�− 10na; otherwise, y3 =−y2− 1.

3. Periodicity of solutions

An involution is a map V such that the square of V is the identity, that is, V 2 =V ·V = I
[2]. The following lemma provides basic machinery for proving that all solutions of (1.1)
are periodic.

Lemma 3.1. Let T be defined as in (2.1), above, and S(x, y)≡ T−1(x, y)= (�ax�− y,x). The
involution V(x, y) = (y,x) satisfies VT = SV and TV = VS. It follows that the mappings
VT , VS, TV , and SV are involutions.

Proof. We have

V
(
T(x, y)

)=V
(
y,�ay�− x

)= (�ay�− x, y
)= S(y,x)= S

(
V(x, y)

)
. (3.1)
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Multiplying VT = SV on the left and right by V yields TV = VS, which is used to
prove that VTVT = VVST = I . Thus, VT is an involution and similarly so are VS, TV ,
and SV . �

We call a solution of (1.1) invariant under V if the point set O = {Xn ∈ Z2 : Xn =
Tn(X0), n= 0,1,2, . . .} satisfies V(O)=O. Geometrically, for V(x, y)= (y,x), this means
that the plot of iterates is symmetric about the 45◦ line, for example, see Figure 2.2, above.
For rational a, numerical experiments have shown that this invariance is so prevalent,
we conjecture it occurs with probability 1. See the corollary to Theorem 3.2, below. For
solutions invariant under V , the lemma establishes periodicity at once:

X0 = TVTV
(
X0
)= TVT

(
Xk
)= TV

(
Xk+1

)= T
(
Xm
)= Xm+1. (3.2)

The general periodicity result follows, with Figure 3.1, below, providing concrete support
to the proof.

Theorem 3.2. For a∈R, |a| < 2, all solutions of (1.1) are periodic.

Proof. Let a solution to (1.1) begin y0, y1, . . .. Citing Remark 2.1, takeX0 = (�ay0�− y1, y0)
in Z2. The mappings T , S, and V are defined as in (2.1) and Lemma 3.1, respectively. Set
Y0 = V(X0) and Yk(n) = V(Xn) for n= 1,2, . . .. The value of k is determined by use of the
lemma in (3.3), below: k is the number of times Smust be applied to the point V(Xn) so
that the points Yk,Yk−1,Yk−2, . . . rotate (counterclockwise) back to Y0. See Figure 3.1.

Yk−1 = S
(
Yk
)= SV

(
Xn
)=VT

(
Xn
)=V

(
Xn+1

)
,

Yk+1 = T
(
Yk
)= TV

(
Xn
)=VS

(
Xn
)=V

(
Xn−1

)
.

(3.3)

Again, by the lemma, (3.3) implies that n applications of T to V(Xn) move Yk,Yk+1,
Yk+2, . . . (clockwise) to Yk+n = V(X0) = Y0. Thus the sequence (Yk) is periodic. By def-
inition, (Xn) and (Yk) are in one-to-one correspondence by way of reflection across the
45◦ line. Thus, (Xn) is periodic. In particular, (3.3) implies Y0 =V(X0)=V(Xn+k); hence,
X0 = Xn+k. In accordance with Remark 2.1, all solutions to (1.1) are periodic. �

In Figure 3.1 the points of (Xn)

(2,−3),(−3,−6),(−6,−5),(−5,−1),(−1,4),(4,7),(7,6),(6,2),(2,−3) (3.4)

are denoted by black circles. The points of (Yk), which are read from right to left in (3.4)
with V applied to each pair, are denoted by open circles in Figure 3.1. The following
corollary deals with the special case where the initial pair lies on the 45◦ line.

Corollary 3.3. For a ∈ R, |a| < 2, and X0 = (y0, y0) all solutions of (1.1) are invariant
under V .
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Figure 3.1. The subscripts of Xn and its image under V always sum to 8.
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Figure 3.2. X0 = (20,−30), a= 7/5= 1.4 (black squares); a=√2 (open circles).

Proof. Solutions are periodic by Theorem 3.2. Suppose that, for a given a and X0 = (y0,
y0), the resulting solution has smallest periodN , so that X0 = XN . Since V(X)= X on the
45◦ line, the lemma yields

X1 = T
(
X0
)= TV

(
X0
)=VS

(
XN
)=V

(
XN−1

)
. (3.5)
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Figure 4.1. a= (
√
5− 1)/2, θ = 2π/5.

Next,

X2 = T
(
X1
)= TV

(
XN−1

)=VS
(
XN−1

)=V
(
XN−2

)
. (3.6)

Continuing in this way, Xk =V(XN−k) for k = 0,1,2, . . . ,N . �

By re-indexing, it is clear that if any iterate touches the 45◦ line, the entire trajectory
becomes symmetric about this line. Perhaps this explains why there are so many invariant
solutions when a is rational. The rotation angle θ = arccos(a/2) ((2.2), above) is never a
rational multiple of π for nontrivial rational a, that is, a �= 0,±1 [3], indicating a large
number of iterations relative to the size of X0. The more densely packed with points a
trajectory is, the greater the likelihood that one of them is located on the 45◦ line. In any
event, the small-period non-invariant solution with rational a= 7/5 shown in Figure 3.1,
above, was found by observing that 7/5= 1.4 is a fair approximation of

√
2= 2cos(2π/8)

for a small initial point; hence, the period-8 solution (3.4). Predictably, with the same
a = 7/5 and larger X0 = (20,−30), we get the period-79, V-invariant solution shown in
Figure 3.2. In this solution, indicated by the dark squares, X59 = (60,60). By the corollary,
above, the entire orbit must line up with itself when reflected about the 45◦ line. Main-
tainingX0 = (20,−30) and changing a to√2 gives back a period-8 non-invariant solution
shown by the open circles in Figure 3.2.

4. Self-similarity and chaos

The presence of symmetry in a brute iteration, perhaps just by accident of sheer numbers,
is striking. Still more improbable is that, as the initial condition becomes larger, such
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Figure 4.2. a= (1−√5)/2, θ = 3π/5.
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Figure 4.3. a= 2cos(2π/7), θ = 2π/7.

a process can generate images with self-similar complexity as it winds blindly around
the plane. See Figures 4.1 and 4.2. Each of Figures 4.1–4.4 shows a different choice of
the parameter a and several orbits for each choice. Even chaos is possible for specific
initial conditions when a = 2cos(θ) and θ is a rational multiple of π. Such solutions
give rise to entirely unexpected structures as the initial point gets larger. For instance,
Figure 4.4 shows just four orbits, with bizarre excrescences forming a single outermost
orbit. Where it seems incontrovertible that the fractal stars in Figure 4.1 will continue to
develop their repetitive complexity, there is no telling what may emerge from the vaguely
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Figure 4.4. a= 2cos(2π/9), θ = 2π/9.

bio-reproductive shapes in Figure 4.3 as we zoom out. Evidently, only the distance from
the origin of a properly chosen initial pair limits the complexity of these images.
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