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A general method for solving boundary value problems associated to functional differ-
ence systems on the discrete half-line is presented and applied in studying the existence
of positive unbounded solutions for a system of two coupled nonlinear difference equa-
tions. A further example, illustrating the method, completes the paper.
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1. Introduction

A method for solving discrete functional boundary value problems (FBVPs) on infinite
intervals is presented and applied to study the existence of positive unbounded solutions
of the coupled nonlinear difference system

Δ
(
rkΦα

(
Δxk

))=− f
(
k, yk+1

)
,

Δ
(
qkΦβ

(
Δyk

))= g
(
k,xk+1

)
,

(1.1)

where Δ is the forward difference operator, r = {rk}, q = {qk} are positive real sequences,
Φλ(u)= |u|λ−1 sgnu with λ > 1, and f , g are real continuous functions on N×R, satisfy-
ing additional assumptions that will be specified later. The sequences r, q are assumed to
satisfy

∞∑

k=1

1
Φα∗

(
rk
) =∞,

∞∑

k=1

1
Φβ∗

(
qk
) =∞, (1.2)

where α∗ and β∗ denote the conjugate numbers of α and β, respectively, that is, 1/α+
1/α∗ = 1 and 1/β+1/β∗ = 1.

In the last years, an increasing interest has been devoted to investigate the qualitative
properties of higher order difference equations and, in particular, fourth order equations.

Hindawi Publishing Corporation
Advances in Difference Equations
Volume 2006, Article ID 31283, Pages 1–14
DOI 10.1155/ADE/2006/31283

http://dx.doi.org/10.1155/S1687183906312836


2 BVPs for functional difference equations

They naturally appear in the discretization of a variety of physical, biological and chem-
ical phenomena, such as, for instance, problems of elasticity, deformation of structures
or soil settlement (see, e.g., [9, 10]). We refer, for instance, to [12, 14, 17–19], to the
monographs [3, 5], and references therein. In particular, in [12] conditions for all the so-
lutions of (1.1) to be oscillatory are presented. Here the existence of positive unbounded
solutions of (1.1) is examined: these solutions are classified according to their growth at
infinity and necessary and sufficient existence results are obtained. Such results are strictly
related also to the recent ones in [14], in which the asymptotic behavior of nonoscillatory
solutions of a fourth order nonlinear difference equation is considered.

Our main tool is based on an existence result concerning the solvability of functional
boundary value problems on unbounded domains and is presented in the next section.
Such a result originates from an existing one stated for differential systems in [8, Theo-
rem 1.2]. Bymeans of this approach, the study of the topological properties (compactness
and continuity) of the fixed-point operator, can be quite simplified because, very often,
these properties become an immediate consequence of good a-priori bounds. Other ad-
vantages of our approach are illustrated in Section 2. Applications and examples are given
in Sections 3 and 4, respectively.

2. A fixed point approach

Let m ∈ N, Nm = {k ∈ N, k ≥ m}, and denote with F the Fréchet space of all real se-
quences defined on Nm endowed with the topology of uniform convergence on compact
subsets of Nm. We recall that a subset W ⊂ F is bounded if and only if it consists of se-
quences which are equibounded on the discrete interval [m,m+ p] for each p ∈N, that
is, if and only if there exists a sequence z ∈ F such that |wk| ≤ zk for each k ∈ Nm and
w ∈W . Moreover Ascoli theorem implies that any bounded set in F is relatively compact
(see, e.g., [3, Theorem 5.6.1]). Further, let Fn be the Fréchet space of all n-vector se-
quences endowed with the topology induced by the Cartesian product. A vector sequence
in Fn will be represented by x and its elements by xk. Consider the FBVP

Δxk = F
(
k,xk,x

)
, k ∈Nm, x ∈ B, (2.1)

where F :Nm×Rn×Fn→Rn is a continuous map, and B is a subset of Fn.
In the last years, FBVPs have attracted considerable attention, both in the continuous

and in the discrete case, especially when they are examined on unbounded domains (see,
e.g., [2–4, 6, 13, 16]). Indeed the functional dependence of the function F in (2.1) al-
lows to treat in a similar way a wide class of boundary value problems, such as the ones
associated to advanced, or delayed difference equations, or sum difference equations.

Several approaches can be used in order to treat boundary value problems on infinite
intervals; besides the classical ones, such as, for instance, the Schauder (or Schauder-
Tychonoff) fixed point theorem, recently new methods have been proposed, especially as
an extension of the Leray-Schauder continuation principle. The reader can refer to the
monograph [3] for a good survey on this topic. Here we present a new approach, based
on a result stated for the continuous case in [8, Theorem 1.2]. The following holds.
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Theorem 2.1. Let G : Nm ×R2n × F2n → Rn be a continuous map such that, for (k,u) ∈
Nm×Fn,

G
(
k,uk,uk,u,u

)= F
(
k,uk,u

)
. (2.2)

If there exists a nonempty, closed, convex and bounded setΩ⊂ Fn such that:
(a) for any q∈Ω, the problem

Δy
k
=G

(
k,y

k
,q

k
,y,q

)
, y ∈ B (2.3)

has a unique solution y = T(q);
(b) T(Ω)⊂Ω;
(c) T(Ω)⊂ B;
then (2.1) has at least one solution.

Proof. The argument is similar to that given for the continuous case in [8, Theorem 1.2],
with minor changes. For the sake of completeness we briefly sketch the proof.

Let us show that the operator T :Ω→Ω is continuous with relatively compact image.
The relatively compactness of T(Ω) follows immediately from (b), since Ω is bounded.
To prove the continuity of T in Ω, let {q j} be a sequence in Ω, q j → q∞ ∈ Ω, and let
v j = T(q j). Since T(Ω) is relatively compact, {v j} admits a subsequence (still indicated
with {v j} to avoid double indexes) which is convergent to v∞ ∈ Fn. In view of (c), we
have v∞ ∈ B. Since G is continuous, we obtain

Δv∞k = lim
j
Δv

j
k = lim

j
G
(
k,v

j
k,q

j
k,v

j ,q j
)=G

(
k,v∞k ,q

∞
k
,v∞,q∞

)
. (2.4)

The uniqueness of the solution of (2.3) yields v∞ = T(q∞), and therefore T is continuous
on Ω. By the Schauder-Tychonoff fixed point theorem, T has at least one fixed point in
Ω, which is a solution of (2.1), as it can be easily checked. �

Remark 2.2. Analogously to the continuous case, as follows from the proof of Theorem
2.1, the operator T , defined by condition (a), has a relatively compact image provided
that condition (b) holds. If, moreover, the closure T(Ω) is contained in B, then T is also
continuous in Ω. In practice, these conditions may be directly derived by the existence
of appropriate a-priori bounds on the solutions of (2.3). So the map G has to be well-
chosen, and an optimal choice can bemade by taking amapGwhich is linear with respect
to the second variable, and does not depend on the fourth one. From this point of view,
our approach is very similar to the Schauder linearization device, as the applications and
examples in the subsequent sections will illustrate.

Remark 2.3. In dealing with boundary value problems on infinite intervals, the use of the
Fréchet space F has some advantages over the use of a suitable Banach space due to com-
pactness test. Indeed, as claimed, a subsetW ⊂ F is relatively compact in F if it is bounded
in F and this condition can be easily checked, as the subsequent applications will show.
Moreover, seeking a Banach space, the compactness test may not be easy to check. For
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instance, in the Banach space �∞ of all bounded real sequences, the compactness test of
a subsetW ⊂ �∞ requires to verify, besides the boundedness, some additional properties
(see, e.g., [3, Remark 5.3.1]), that may be difficult to check, for instance, when sequences
inW do not admit a limit as k→∞. In addition, if the Banach space is a weighted space,
that is, �∞w = {u : supk |uk/wk| <∞}, being w a positive fixed sequence, then the proof of
the compactness may be even less immediate. Notice that, to work in a Banach space, a
weighted space has to be chosen for solving boundary value problems related to existence
of unbounded solutions.

Remark 2.4. If B is closed, as it often happens for boundary value problems on finite dis-
crete intervals, then condition (c) is trivially satisfied. If the interval, in which the problem
has to be considered, is infinite, and the boundary conditions involve the behavior of the
solution at infinity, then B may not be closed. A weaker condition than (c) is

(c1) if {qm} is a sequence in Ω converging in Ω and T(qm)→ q∞ (in the topology of
Fn), then q∞ ∈ B.

In particular, if conditions (a) and (b) are satisfied, then it is easy to verify that (c1)
becomes also necessary for the continuity of T in Ω.

Remark 2.5. The functional dependence can also appear when the solvability of a bound-
ary value problem is accomplished by means of a suitable change of variables, which
reduces higher order difference equations to functional difference equations of lower or-
der. For instance, given a second order equation in the unknown x, the change of variable
wk = Δxk gives xk =

∑k−1
j=1wk + x1, if x1 is known, or xk = x∞ −∑∞

j=k wj , if x∞ = limk xk
is finite. In both cases we have xk = (S[w])k, with a clear meaning of the operator S. An
example of this approach is given in the next section.

In the particular case of FBVPs for scalar difference equations of order n

Δnxk = F̃
(
k,xk, . . . ,xk+n−1,x

)
, x ∈ B̃, (2.5)

where F̃ :Nm×Rn×F→R is a continuous map, and B̃ is a subset of F, the assumptions
of Theorem 2.1 can be slightly simplified, because good a-priori bounds for the unknown
x are sufficient to treat FBVPs for a scalar difference equations of higher order. Indeed,
in the discrete case, if a set Ω̃ ⊂ F is bounded, Ω̃Δ = {Δu, u ∈ Ω̃} is bounded, too. The
following holds.

Corollary 2.6. Let G̃ : Nm ×R2n × F2 → R be a continuous map such that, for (k,u) ∈
Nm×F,

G̃
(
k,uk, . . . ,uk+n−1,uk, . . . ,uk+n−1,u,u

)= F̃
(
k,uk, . . . ,uk+n−1,u

)
. (2.6)

If there exists a nonempty, closed, convex and bounded set Ω̃⊂ F such that:
(a) for any q ∈ Ω̃, the problem

Δnyk = G̃
(
k, yk, . . . , yk+n−1,qk, . . . ,qk+n−1, y,q

)
, y ∈ B̃ (2.7)

has a unique solution y = T̃(q);
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(b) T̃(Ω̃)⊂ Ω̃;

(c) T̃(Ω̃)⊂ B̃;
then (2.5) has at least one solution.

Proof. The proof can be easily done, following the same arguments as in the proof of
Theorem 2.1, with minor changes. �

As a final remark, notice that any difference equation of higher order can always be
understood as a first order equation with deviating arguments.

3. Unbounded solutions of (1.1)

In this section we study the existence of solutions (x, y), x = {xk}, y = {yk}, of (1.1),
having both components unbounded. For the sake of simplicity, we will restrict our at-
tention only to unbounded solutions whose components are both eventually positive.
The remaining cases can be easily treated using the results of this section and some sym-
metry arguments. As usually, a component x [y] of a solution (x, y) of (1.1) is said to be
nonoscillatory if there exists ν∈N such that xkxk+1 > 0 [yk yk+1 > 0] for any k ∈N, k ≥ ν,
and oscillatory otherwise.

Assume that f and g satisfy the following additional assumptions: f and g are non-
decreasing with respect to the second variable; f (k,u)u > 0, g(k,u)u > 0 for (k,u)∈N×
R\{0};∀B > 1, ∃Cf , Cg ≥ 1, depending on B, such that

f
(
k,Bu

)≤ Cf f (k,u), ∀(k,u)∈Nm× [1,∞), (H1)

g
(
k,Bu

)≤ Cg g(k,u), ∀(k,u)∈Nm× [1,∞). (H2)

Conditions (H1) and (H2) involve the asymptotic behavior of f and g only for posi-
tive values of the second variable. If unbounded solutions with components not both
positive are to be considered, then the above assumptions need to be modified conse-
quently. Clearly f satisfies (H1) when any of the following two cases occurs for (k,u) ∈
Nm× [1,∞):

(E1) f (k,u) = ψkh(u), where ψ is a positive sequence and h is a positive function,
homogeneous of degree γ > 0, or, more generally, a positive regularly varying function
[11],

(E2) ∃γ > 0 such that f (k,u)/uγ is nonincreasing in u.
We start by briefly summarizing some basic properties of solutions of (1.1), which

were analyzed in detail in [12]. In view of the sign assumptions on f and g, it is easy to
show that either x, y are both nonoscillatory or x, y are both oscillatory. Thus a solution
(x, y) is said to be oscillatory or nonoscillatory according to x and y are both oscillatory or
nonoscillatory. Clearly, if a solution (x, y) of (1.1) is nonoscillatory, then also the quasid-

ifferences x[1] = {x[1]k }, y[1] = {y[1]k }, where

x[1]k = rkΦα
(
Δxk

)
, y[1]k = qkΦβ

(
Δyk

)
, (3.1)
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are both nonoscillatory, and therefore x and y are eventually monotone. The following
holds.

Lemma 3.1. Every eventually positive unbounded solution (x, y) of (1.1) belongs to any of
the following classes:

(i) limk x
[1]
k = x[1]∞ = const. > 0, limk y

[1]
k = y[1]∞ = const. > 0;

(ii) limk x
[1]
k = x[1]∞ = 0, limk y

[1]
k = y[1]∞ = const. > 0;

(iii) limk x
[1]
k = x[1]∞ = const. > 0, limk y

[1]
k = y[1]∞ =∞;

(iv) limk x
[1]
k = x[1]∞ = 0, limk y

[1]
k = y[1]∞ =∞.

Proof. Let (x, y) be an eventually positive unbounded solution of (1.1). Then x[1] is even-

tually decreasing and y[1] is eventually increasing. Since x, y are unbounded, then x[1]∞ ≥
0, y[1]∞ > 0. �

Put, for the sake of simplicity, (1≤m< k)

Rm,k :=
k−1∑

j=m
Φα∗

(
1
r j

)
, Qm,k :=

k−1∑

j=m
Φβ∗

(
1
qj

)
. (3.2)

In view of (1.2), if an eventually positive solution (x, y) of (1.1) is in the class (i), then
there exist two positive constants Lx,Ly such that

lim
k

xk
R1,k

= Lx, lim
k

yk
Q1,k

= Ly , (3.3)

and vice versa. Similar results hold for the other classes, with Lx = 0 for the classes (ii)
and (iv), and Ly =∞ for the classes (iii) and (iv).

In what follows we will use a usual convention, namely
∑n−1

k=n ak = 0, for any sequence
a and any n∈N.

Concerning the existence of positive unbounded solutions of (1.1) in the class (i), the
following holds.

Theorem 3.2. System (1.1) admits eventually positive unbounded solutions belonging to
the class (i) if and only if

∞∑

k=1
f
(
k,Q1,k+1

)
<∞,

∞∑

k=1
g
(
k,R1,k+1

)
<∞. (3.4)

In addition, if (3.4) is satisfied, then for every couple of positive constants (Mx,My) there

exist infinitely many eventually positive unbounded solutions (x, y) of (1.1) such that x[1]∞ =
Mx, y

[1]∞ =My .

Proof. Let (x, y) be an eventually positive solution of (1.1) in the class (i). In view of
(3.3), two positive constants d1, d2, and m ∈ N exist such that d1R1,k ≤ xk, d2Q1,k ≤ yk,
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for k ≥m. By summing (1.1) we have

x[1]k+1− x[1]m =−
k∑

j=m
f
(
j, yj+1

)≤−
k∑

j=m
f
(
j,d2Q1, j+1

)
,

y[1]k+1− y[1]m =
k∑

j=m
g
(
j,xj+1

)≥
k∑

j=m
g
(
j,d1R1, j+1

)
.

(3.5)

Since x[1] and y[1] are both convergent, we obtain
∑∞

j=1 f ( j,d2Q1, j+1) < ∞,
∑∞

j=1 g( j,
d1R1, j+1) <∞. If d2 ≥ 1, then the convergence of the first series in (3.4) follows, since
f is nondecreasing with respect to the second variable. On the other hand, if d2 < 1, the
assertion comes from (H1), with B = 1/d2. The convergence of the second series in (3.4)
follows in a similar way.

Conversely, letMx,My be two positive constants and letm be an integer so large that

∞∑

k=m
f
(
k,Φβ∗

(
My
)
Qm,k+1

)≤Mx,
∞∑

k=m
g
(
k,Φα∗

(
2Mx

)
Rm,k+1

)≤ My

2
. (3.6)

Note that (3.6) follows from (3.4), (H1), and (H2). Let Si : F→ F, i= 1,2, be the operators
defined by S1[w]= {(S1[w])k}, S2[z]= {(S2[z])k}, where

(
S1[w]

)
k =

k−1∑

j=m
Φα∗

(
wj

rj

)
,

(
S2[z]

)
k =

k−1∑

j=m
Φβ∗

(
zj
q j

)
. (3.7)

Consider the FBVP

Δwk =− f
(
k,
(
S2[z]

)
k+1

)
,

Δzk = g
(
k,
(
S1[w]

)
k+1

)
,

lim
k
wk =Mx, lim

k
zk =My.

(3.8)

Notice that (3.8) is a functional boundary value problem of the form (2.1) and therefore
we can apply Theorem 2.1 to solve it. Let Ω⊂ F2 be the set defined as

Ω=
{
(u,v)∈ F2 :Mx ≤ uk ≤ 2Mx,

My

2
≤ vk ≤My

}
(3.9)

and for every (u,v)∈Ω consider the linearized boundary value problem

Δwk =− f
(
k,
(
S2[v]

)
k+1

)
,

Δzk = g
(
k,
(
S1[u]

)
k+1

)
,

lim
k
wk =Mx, lim

k
zk =My.

(3.10)
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Clearly (3.10) admits a unique solution (w,z) = T(u,v), given by T(u,v) = (T1v,T2u),
where

(
T1v

)
k =Mx +

∞∑

j=k
f
(
j,
(
S2[v]

)
j+1

)
,

(
T2u

)
k =My −

∞∑

j=k
g
(
j,
(
S1[u]

)
j+1

)
. (3.11)

The map T is well defined in Ω, and for k ≥m≥ 1 we have

∞∑

j=k
f
(
j,
(
S2[v]

)
j+1

)≤
∞∑

j=m
f
(
j,Φβ∗

(
My
)
Qm, j+1

)≤Mx,

∞∑

j=k
g
(
j,
(
S1[u]

)
j+1

)≤
∞∑

j=m
g
(
j,Φα∗

(
2Mx

)
Rm, j+1

)≤ My

2
.

(3.12)

Therefore T(Ω)⊆Ω. The proof that condition (c) of Theorem 2.1 is satisfied, with

B =
{
(w,z)∈ F2 : lim

k
wk =Mx, lim

k
zk =My

}
, (3.13)

is an easy consequence of the discrete dominated convergence theorem, whose applica-
bility is guaranteed by the estimates (3.12). Indeed, let {(T1vn,T2un)} be a sequence in
T(Ω), converging to (ŵ, ẑ) in F2. Since Ω is compact, we can assume that the sequence
{(un,vn)} ⊂Ω converges to (û, v̂) in Ω. Then the continuity of f , g and Si, i= 1,2 yields
limn f ( j, (S2[vn]) j+1) = f ( j, (S2[v̂]) j+1), limn g( j, (S1[un]) j+1) = g( j, (S1[û]) j+1), for all
j ≥m. Since (û, v̂) ∈Ω, and the estimates (3.12) hold, the dominated convergence the-
orem leads to (ŵ, ẑ) = limn(T1vn,T2un) = (T1v̂,T2û) ∈ B. Theorem 2.1 can be therefore
applied to problem (3.8), obtaining the existence of at least one solution. Let (w̄, z̄) be
such a solution; clearly (x̄, ȳ) = (S1[w̄],S2[z̄]) is a solution of (1.1) in the class (i), with
x̄m = ȳm = 0. Finally the existence of infinitely many solutions in the class (i) follows by
using the same argument, with minor changes. Instead of (3.7) and (3.6) it is sufficient to
consider

(
S1[w]

)
k = a1 +

k−1∑

j=m
Φα∗

(
wj

rj

)
,

(
S2[z]

)
k = a2 +

k−1∑

j=m
Φβ∗

(
zj
q j

)
,

∞∑

k=m
f
(
k,a2 +Φβ∗

(
My
)
Qm,k+1

)≤Mx,
∞∑

k=m
g
(
k,a1 +Φα∗

(
2Mx

)
Rm,k+1

)≤ My

2
,

(3.14)

respectively, where a1, a2 are two arbitrarily positive constants. In this case, we obtain
a solution (x̄, ȳ) = (S1[w̄],S2[z̄]) of (1.1) belonging to the class (i), with x̄m = a1, ȳm =
a2. �

As follows from the proof of Theorem 3.2, the used change of variables decreases the
order of the system. It is transformed into a first order system, but of functional type,
and the application of our existence theorem (Theorem 2.1) leads to easier subsequent
computations.
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Concerning solutions in the class (ii), the following result holds. Its proof is similar,
with minor changes, to the one of Theorem 3.2.

Theorem 3.3. System (1.1) admits eventually positive unbounded solutions belonging to
the class (ii) if and only if

∞∑

k=1
Φα∗

(
1
rk

∞∑

j=k
f
(
j,Q1, j+1

)
)

=∞,

∞∑

k=1
g

(

k,
k∑

j=1
Φα∗

(
1
r j

∞∑

i= j

f
(
i,Q1,i+1

)
))

<∞.

(3.15)

In addition, if (3.15) is satisfied, then for every positive constant My there exist infinitely

many eventually positive unbounded solutions (x, y) of (1.1) such that x[1]∞ = 0, y[1]∞ =My .

The existence of solutions in the classes (iii) and (iv) is considered in the subsequent
two theorems. Since, in both cases, y[1] is unbounded, the change of variables that leads
to a first order system is now different from the previous cases.

Theorem 3.4. System (1.1) admits eventually positive unbounded solutions belonging to
the class (iii) if and only if

∞∑

k=1
g
(
k,R1,k+1

)=∞,

∞∑

k=1
f

(

k,
k∑

j=1
Φβ∗

(
1
qj

j−1∑

i=1
g
(
i,R1,i+1

)
))

<∞.

(3.16)

In addition, if (3.16) is satisfied, then for every positive constant Mx there exist infinitely

many eventually positive unbounded solutions of (1.1) such that x[1]∞ =Mx, y
[1]∞ =∞.

Proof. Let (x, y) be a solution of (1.1) in the class (iii). Then two positive constants d1 ≤ d2
exist such that d1R1,k ≤ xk ≤ d2R1,k, for k ≥m ≥ 1, where m is sufficiently large. We can
assume d1 ≤ 1, d2 ≥ 1. By summing the second equation in (1.1), we obtain

k∑

j=m
g
(
j,d1R1, j+1

)≤ y[1]k+1− y[1]m ≤
k∑

j=m
g
(
j,d2R1, j+1

)
, (3.17)

and the divergence of the first series in (3.16) follows, since y[1]∞ =∞, d2 ≥ 1, and g satisfies
(H2). From (3.17) we have

y[1]k ≥
k−1∑

j=m
g
(
j,d1R1, j+1

)
, (3.18)
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which implies

yk+1 ≥
k∑

j=m
Φβ∗

(
1
qj

j−1∑

i=m
g
(
i,d1R1,i+1

)
)

. (3.19)

By summing the first equation in (1.1), from (3.19) we obtain

x[1]k+1− x[1]m ≤−
k∑

j=m
f

(

j,
j∑

i=m
Φβ∗

(
1
qi

i−1∑

n=m
g
(
n,d1R1,n+1

)
))

. (3.20)

Since g satisfies (H2), and 1/d1 ≥ 1, we get g(n,d1R1,n+1) ≥ g(r,R1,n+1)/C1 for a suitable
C1 ≥ 1. Further, since f satisfies (H1), we get the existence of a constant C2 ≥ 1 such that

f

(

j,
j∑

i=m
Φβ∗

(
1

C1qi

i−1∑

n=m
g
(
n,R1,n+1

)
))

≥ 1
C2

f

(

j,
j∑

i=m
Φβ∗

(
1
qi

i−1∑

n=m
g
(
n,R1,n+1

)
))

. (3.21)

The convergence of the second series in (3.16) now follows, taking into account that x[1]

has a finite limit.
Conversely, letMx > 0 be a fixed constant and letm be a sufficiently large integer such

that

∞∑

k=m
f

(

k,
k∑

j=m
Φβ∗

(
1
qj

j−1∑

i=m
g
(
i,Φα∗

(
2Mx

)
Rm,i+1

)
))

≤Mx. (3.22)

Notice that the convergence of the second series in (3.16) assures that (3.22) is well posed,
taking into account that f and g are nondecreasing and satisfy (H1) and (H2), respec-
tively. Let Si : F→ F, i= 1,2, be the operators given by (3.7), and consider the FBVP

Δwk =− f
(
k,
(
S2[z]

)
k+1

)
,

Δzk = g
(
k,
(
S1[w]

)
k+1

)
,

lim
k
wk =Mx, zm = 0.

(3.23)

Let Ω⊂ F2 be the set

Ω=
{
(u,v)∈ F2 :Mx ≤ uk ≤ 2Mx,

k−1∑

j=m
g
(
j,Φα∗

(
Mx
)
Rm, j+1

)≤ vk

≤
k−1∑

j=m
g
(
j,Φα∗

(
2Mx

)
Rm, j+1

)}
(3.24)

and for every (u,v)∈Ω consider the linearized problem

Δwk =− f
(
k,
(
S2[v]

)
k+1

)
,

Δzk = g
(
k,
(
S1[u]

)
k+1

)
,

lim
k
wk =Mx, zm = 0.

(3.25)
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Clearly (3.25) admits a unique solution (w,z) = T(u,v), given by T(u,v) = (T1v,T2u),
with

(
T1v

)
k =Mx +

∞∑

j=k
f
(
j,
(
S2[v]

)
j+1

)
,

(
T2u

)
k =

k−1∑

j=m
g
(
j,
(
S1[u]

)
j+1

)
. (3.26)

The map T is well defined in Ω, and for k ≥m≥ 1 we have

∞∑

j=k
f
(
j,
(
S2[v]

)
j+1

)≤
∞∑

j=m
f

(

j,
k∑

i=m
Φβ∗

(
1
qi

i−1∑

n=m
g
(
n,Φα∗

(
2Mx

)
Rm,n+1

)
))

≤Mx

k−1∑

j=m
g
(
j,Φα∗

(
Mx
)
Rm, j+1

)≤
k−1∑

j=m
g
(
j,
(
S1[u]

)
j+1

)≤
k−1∑

j=m
g
(
j,Φα∗

(
2Mx

)
Rm, j+1

)
.

(3.27)

Then T(Ω) ⊆ Ω. Further, the above estimates and the discrete dominated convergence
theorem also assure that condition (c) of Theorem 2.1 is satisfied, where B = {(w,z) ∈
F2 : limk wk =Mx,zm = 0}. Therefore (3.23) has at least one solution (w̄, z̄), and clearly

(x̄, ȳ) = (S1[w̄],S2[z̄]) is a solution of (1.1) in the class (iii), with x̄m = ȳm = ȳ[1]m = 0.
Finally, the existence of infinitely many solutions in the class (iii) follows by using the
same argument, with minor changes. Instead of (3.7) and (3.22) it is sufficient to consider

(
S1[w]

)
k = a+

k−1∑

j=m
Φα∗

(
wj

rj

)
,

(
S2[z]

)
k =

k−1∑

j=m
Φβ∗

(
zj
q j

)
,

∞∑

k=m
f

(

k,
k∑

j=m
Φβ∗

(
b

qj
+

1
qj

j−1∑

i=m
g
(
i,a+Φα∗

(
2Mx

)
Rm,i+1

)
))

≤Mx,

(3.28)

respectively, where a, b are two arbitrarily positive constants. The boundary value prob-

lem to be solved is the system in (3.23) with the conditions limk w
[1]
k = 0, zm = b; it has at

least one solution (w̄, z̄) in the set

Ω=
{

(u,v)∈ F2 :Mx ≤ uk ≤ 2Mx,
k−1∑

j=m
g
(
j,Φα∗

(
Mx
)
Rm, j+1

)≤ vk − b

≤
k−1∑

j=m
g
(
j,a+Φα∗

(
2Mx

)
Rm, j+1

)
}

.

(3.29)

In this case, we obtain a solution (x̄, ȳ) = (S1[w̄],S2[z̄]) of (1.1) belonging to the class

(iii), with x̄m = a, ȳm = 0, ȳ[1]m = b. �

Notice that Theorem 3.4 extends [14, Theorem 2.6]. Concerning the existence in the
class (iv), a sufficient condition is given in the following result, which can be proved by
using a similar argument as that given in the proof of Theorem 3.4.
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Theorem 3.5. If

∞∑

k=1
g(k,1)=∞

∞∑

k=1
f

(

k,
k∑

j=1
Φβ∗

(
1
qj

j−1∑

i=1
g(i,R1,i+1)

))

<∞

∞∑

k=1
Φα∗

(
1
rk

∞∑

j=k
f

(

j,
j∑

i=1
Φβ∗

(
1
qi

i−1∑

�=1
g(�,1)

)))

=∞,

(3.30)

then there exist infinitely many positive unbounded solutions of (1.1) such that x[1]∞ = 0,

y[1]∞ =∞.

4. A further example

Here we present a further example illustrating the role of function G in Theorem 2.1. It is
well-known ([1, Theorems 6.10.4 and 6.11.1]; see also [7, Theorem 5]), that the equation

Δ2xk = skx
γ
k+1, (4.1)

where sk ≥ 0 for every k ≥ 0, γ > 1 is a quotient of odd natural numbers, has a positive
solution satisfying x0 =A > 0, limk xk = x∞ = 0 if

∞∑

k=0
ksk+1 =∞ (4.2)

is satisfied. Such a result can be obtained easily by applying Corollary 2.6. Indeed it is
known (see, e.g., [15, Theorem 2], [1, Theorem 6.3.4]) that the linear equation

Δ2zk = sku
γ−1
k+1zk+1 (4.3)

has a unique solution z = T(u) satisfying

z0 = A, zk ≥ 0, Δzk ≤ 0, (4.4)

for any u∈Ω= {u : 0≤ uk ≤ A, k ≥ 0}. In addition such a solution is a recessive solution
of (4.3). It is immediate that T(Ω)⊂Ω. Since B is closed, we have T(Ω)⊂ B, and so, by
applying Corollary 2.6, we obtain the existence of a solution x of (4.1) such that x0 = A,
xk ≥ 0,Δxk ≤ 0. Clearly xk > 0 for any k > 0. Otherwise, if there exists N > 0 such that
xk = 0 for k ≥ N and xN−1 > 0, from (4.1) we obtain 0 = Δ2xN−1 = xN−1, that is, a con-
tradiction. Finally, x∞ = 0 by virtue of (4.2). Indeed, if x∞ = � > 0, then xk ≥ � for every
k ≥ 0, and from (4.1) we obtain (N ≥ k ≥ 0)

−Δxk =
N∑

j=k
s jx

γ
j+1−ΔxN+1 ≥ �γ

N∑

j=k
s j (4.5)
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which implies

x0− xk+1 ≥ �γ
k∑

i=0

N∑

j=k
s j = �γ

N∑

j=0
s j( j +1). (4.6)

Letting N →∞, from (4.2) it follows that x∞ = −∞, a contradiction. Therefore x∞ = 0
and the result is proved.

Notice that in the applications given in Section 3, by virtue of the choice of the vec-
tor function G, both systems in (3.8) and in (3.25) are linear and nonhomogeneous and
the conditions (b) and (c) of Theorem 2.1 are proved directly by solving (3.8), or (3.25).
In the above example the choice of the function G yields the linear homogeneous (4.3).
Consequently, conditions (b) and (c) of Corollary 2.6 are verified by using some quali-
tative properties of second order linear difference equation, and not by writing explicitly
the solution of (4.3)–(4.4), that would be impossible.

Finally, we point out that the above argument can be applied, with minor changes, also
to treat difference equations with more general nonlinearities.
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