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We obtain multiple positive solutions of singular discrete p-Laplacian problems using
variational methods.

1. Introduction

We consider the boundary value problem
_A(¢p(A”(k_1))) :f(k)u(k))) ke [l,f’l],
u(k) >0, kell,n], (1.1)
u(0)=0=u(n+1),

where # is an integer greater than or equal to 1, [1,7] is the discrete interval {1,...,n},
Au(k) = u(k + 1) — u(k) is the forward difference operator, ¢,(s) = s|P72s, 1 < p < oo,
and we only assume that f € C([1,n] x (0, )) satisfies

ag(k) < fk,t) <ar(k)t™7,  (k,t) € [1,n] X (0,£) (1.2)

for some nontrivial functions ag,a; = 0 and y,f > 0, so that it may be singular at t = 0
and may change sign.
Let A1, ¢1 > 0 be the first eigenvalue and eigenfunction of

_A(Gop(Au(k_l))) :/\(Pp(”(k))a ke [1,1’[],

(1.3)
u(0)=0=u(n+1).
THeoreMm 1.1. If (1.2) holds and
lim sup ftifﬁ’f) <k, kellnl, (1.4)
t— o0

then (1.1) has a solution.
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TaeoreM 1.2. If (1.2) holds and
f(k,t])SO, ke[l,}’l], (15)

for some t| > ty, then (1.1) has a solution u, < t,. If, in addition,

timinf L0 50 ke 1, (16)

t—oo t
then there is a second solution u, > uj.

Example 1.3. Problem (1.1) with f(k,t) = ¢t + At? has a solution for all y >0 and A
(resp, A <A, A<0)if < p—1(resp,f=p—1,5>p—1)byTheorem 1.1.

Example 1.4. Problem (1.1) with f(k,t) = t”7 +e' — A has two solutions for all y >0 and
sufficiently large A > 0 by Theorem 1.2.

Our results seem new even for p = 2. Other results on discrete p-Laplacian problems
can be found in [1, 2] in the nonsingular case and in [3, 4, 5, 6] in the singular case.
2. Preliminaries

First we recall the weak comparison principle (see, e.g., Jiang et al. [2]).

LemMmA 2.1. If
_A(¢P(Au(k_1))) Z—A((PP(AV(I{—I))), ke [l,l’l], ( )
2.1
u(0) > v(0), un+1)=v(n+1),
then u = v.
Next we prove a local comparison result.
LemMA 2.2. If
_A((Pp(A”(k— 1)) = _A(%(Av(k— 1)), (22)
2.2
u(k) = v(k), utk+1)=v(k+1),
thenu(k+1) =v(k£1).
Proof. We have
—¢p(Au(k)) + ¢, (Au(k — 1)) = —¢, (Av(k)) + ¢, (Av(k - 1)), (2.3)
Au(k) = Av(k), Au(k—1) < Av(k-1). (2.4)

Combining with the strict monotonicity of ¢, shows that
0 < @p(Au(k)) — @p(Av(k)) < ¢p(Au(k—1)) — @, (Av(k—1)) <0, (2.5)

and hence, the equalities hold in (2.4). O
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The following strong comparison principle is now immediate.

LEmMa 2.3. If
—A(pp(Au(k—1))) = —Alpp(Av(k—1))), ke [l,n], )
2.6
u(0) > v(0), un+1)=v(n+1),
then either u > v in [1,n], or u = v. In particular, if
-A(gp(Au(k—1))) =0, ke[l,n],
(2.7)
u(0) > 0, u(n+1) =0,
then either u >0 in [1,n] oru=0.
Consider the problem
—A(gp(Au(k—1))) = g(k,u(k)), ke [l,n],
(2.8)

u(0)=0=u(n+1),

where g € C([1,n] X R). The class W of functions u : [0,n+ 1] — R such that u(0) =0 =
u(n+1) is an n-dimensional Banach space under the norm

n+l p
||u|=<Z|Au(k—1>|"> . (2.9)
Define
n+1 1
d)g(u)zZ[7|Au(k—1)|p—G(k,u(k))], wew, (2.10)
k—1-P

where G(k,t) = [; g(k,s)ds. Then the functional @, is C' with

(D (u),v Z ¢p (Au(k —1))Av(k — 1) — g (k,u(k)) v(k)]

) (2.11)
Z (9p (Au(k —1))) +g (k,u(k)) Jv(k)
(summing by parts), so solutions of (2.8) are precisely the critical points of @,.
LEmMMA 2.4. If
: (k1)
llmjgp 72t <M, kell,n], (2.12)

then @, has a global minimizer.
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Proof. By (2.12), thereisa A € [0,A;) such that
A
G(k,t) < E|t|P+C, (2.13)

where C denotes a generic positive constant. Since

n+l _ p
A = min Zk=1n|Au<k lp) - (219
ue W\ {0} Zk:l |u(k) |

then
@g(u) = £ (1= 2 )l - Clull (2.15)
Py A
so @, is bounded from below and coercive. O
LEmMMA 2.5. If
1i£1+igfgt(fjf) >h, lim ffﬁ,tf —0, kellnl, (2.16)

then ®, satisfies the Palais-Smale compactness condition (PS): every sequence (u;j) in W
such that ®g(u;) is bounded and d)é(uj) — 0 has a convergent subsequence.

Proof. Tt suffices to show that (u;) is bounded since W is finite dimensional, so suppose
that p; := [[u;[| — oo for some subsequence. We have

n+l

oDl || = (D (), 7 ) < —|[u; [I” = > g (k= (k))u; (k) (2.17)
k=1

where u; = max{—u;,0} is the negative part of u;, so it follows from (2.16) that (u;) is
bounded. So, for a further subsequence, #i; := u;/p; converges to some z > 0 in W with
lull = 1.

We may assume that for each k, either (u;(k)) is bounded or u;(k) — co. In the former
case, (k) = 0 and g(k,uj(k))/p;-)_1 — 0, and in the latter case, g(k,u;(k)) = 0 for large j
by (2.16). So it follows from

’ i n+l .
o(1) = w Y [%(Aaj(k —1))Av(k—1) - g(k’;‘iffk))v(k)} (2.18)
Pj k=1 Pj
that
n+l
> 9p(ATi(k—1))Av(k—1)20 Vv=0, (2.19)

k=1
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and hence, % > 0 in [1,n] by Lemma 2.3. Then u;j(k) — o for each k, and hence, (2.18)
can be written as

n+l
Z [(pP(Aﬁj(k -1))Av(k—1) - txj(k)ﬁj(k)l’_lv(k)] =o0(1), (2.20)
k=1
where
(k,l/l(k)) .
aj(k) = W >, jlarge, (2.21)

for some A > A, by (2.16).
Choosing v appropriately and passing to the limit shows that each «;(k) converges to
some a(k) > A and
~Algp(Alik = 1))) = a(k)u(k)?™!, ke [1,n],
(2.22)
u(0) =0=1u(n+1).

This implies that the first eigenvalue of the corresponding weighted eigenvalue problem
is given by

P Autk-1) |7

= 2.23
W01 S k) [uh)]? (2:23)
Then
lag (k-1 A
1< k’,,1| 1 <=2y, 2.24
SiagiR)r - A (2.24)
a contradiction. 0
3. Proofs
The problem
~A(pp(Au(k —1))) = ao(k), ke [1,n],
(3.1)

u(0)=0=u(n+1),

has a unique solution u >0 by Lemmas 2.3 and 2.4. Fix ¢ € (0,1] so small that u :=
81/(‘071)1/!0 < to. Then

—A(pp (Aulk—1))) = f (k,u(k)) < —(1-e)ag(k) <0 (3.2)
by (1.2), so u is a subsolution of (1.1). Let

f(k)t)) > E(k),
Julkst) = (3.3)
fku(k), t<u(k).
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Proof of Theorem 1.1. By (1.4), there are A € [0,A;) and T > f, such that

fl,t) <P~ (k,t) € [1,n] X (T, 00). (3.4)
Then
<a;(k)u(k)™ +max f ([1,n] X [to, T]) +AtP~1, >0,
Sulk,t) (3.5)
> qo(k), t<0,
by (1.2), so the modified problem
—Agp(Autk —1))) = fulk,u(k)), ke [l,n],
(3.6)

u(0)=0=u(n+1),

has a solution u by Lemma 2.4. By Lemma 2.1, u > u, and hence, also a solution of (1.1).

O
Proof of Theorem 1.2. Noting that , is a supersolution of (3.6), let
~ fg(kytl)y t>t1,
Julkst) = (3.7)
fulk,t), t=<t.
By (1.2),
L [=autor +max f([1,n] x [6,1]), =0,
Su(k,t) (3.8)
> ao(k), t<0,

so Dy has a global minimizer u; by Lemma 2.4. By Lemmas 2.1 and 2.2, u < u; < t;, so
q)ﬂ =7(1)fE near u; and hence, u; is a local minimizer of Oy, Let

f(k)t)a t > u(k),
fun (k1) = (3.9)
fkui(k)), t<u(k).

Since u; is also a subsolution of (1.1), repeating the above argument with u,; in place of
u, we see that ® fur also has a local minimizer, which we assume is u; itself, for otherwise
we are done. By (1.6), there are A >A; and T > #; such that

fk,t) = AtP~1, (k,t) € [1,n] X (T, ), (3.10)

$0
(A
(Dful(tq)l)s—;(T—1)+Ct<®ful(ul), t >0 large. (3.11)
1

Since @y, satisfies (PS) by Lemma 2.5, the mountain-pass lemma now gives a second
critical point u,, which is greater than u; by Lemmas 2.1 and 2.2. O
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