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We obtain multiple positive solutions of singular discrete p-Laplacian problems using
variational methods.

1. Introduction

We consider the boundary value problem

−∆(ϕp
(
∆u(k− 1)

))= f
(
k,u(k)

)
, k ∈ [1,n],

u(k) > 0, k ∈ [1,n],

u(0)= 0= u(n+1),

(1.1)

where n is an integer greater than or equal to 1, [1,n] is the discrete interval {1, . . . ,n},
∆u(k) = u(k + 1)− u(k) is the forward difference operator, ϕp(s) = |s|p−2s, 1 < p <∞,
and we only assume that f ∈ C([1,n]× (0,∞)) satisfies

a0(k)≤ f (k, t)≤ a1(k)t−γ, (k, t)∈ [1,n]× (0, t0) (1.2)

for some nontrivial functions a0,a1 ≥ 0 and γ, t0 > 0, so that it may be singular at t = 0
and may change sign.

Let λ1,ϕ1 > 0 be the first eigenvalue and eigenfunction of

−∆(ϕp
(
∆u(k− 1)

))= λϕp
(
u(k)

)
, k ∈ [1,n],

u(0)= 0= u(n+1).
(1.3)

Theorem 1.1. If (1.2) holds and

limsup
t→∞

f (k, t)
tp−1

< λ1, k ∈ [1,n], (1.4)

then (1.1) has a solution.
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Theorem 1.2. If (1.2) holds and

f (k, t1)≤ 0, k ∈ [1,n], (1.5)

for some t1 > t0, then (1.1) has a solution u1 < t1. If, in addition,

liminf
t→∞

f (k, t)
tp−1

> λ1, k ∈ [1,n], (1.6)

then there is a second solution u2 > u1.

Example 1.3. Problem (1.1) with f (k, t) = t−γ + λtβ has a solution for all γ > 0 and λ
(resp., λ < λ1, λ≤ 0) if β < p− 1 (resp., β = p− 1, β > p− 1) by Theorem 1.1.

Example 1.4. Problem (1.1) with f (k, t)= t−γ + et − λ has two solutions for all γ > 0 and
sufficiently large λ > 0 by Theorem 1.2.

Our results seem new even for p = 2. Other results on discrete p-Laplacian problems
can be found in [1, 2] in the nonsingular case and in [3, 4, 5, 6] in the singular case.

2. Preliminaries

First we recall the weak comparison principle (see, e.g., Jiang et al. [2]).

Lemma 2.1. If

−∆(ϕp
(
∆u(k− 1)

))≥−∆(ϕp
(
∆v(k− 1)

))
, k ∈ [1,n],

u(0)≥ v(0), u(n+1)≥ v(n+1),
(2.1)

then u≥ v.

Next we prove a local comparison result.

Lemma 2.2. If

−∆(ϕp
(
∆u(k− 1)

))≥−∆(ϕp
(
∆v(k− 1)

))
,

u(k)= v(k), u(k± 1)≥ v(k± 1),
(2.2)

then u(k± 1)= v(k± 1).

Proof. We have

−ϕp
(
∆u(k)

)
+ϕp

(
∆u(k− 1)

)≥−ϕp
(
∆v(k)

)
+ϕp

(
∆v(k− 1)

)
, (2.3)

∆u(k)≥ ∆v(k), ∆u(k− 1)≤ ∆v(k− 1). (2.4)

Combining with the strict monotonicity of ϕp shows that

0≤ ϕp
(
∆u(k)

)−ϕp
(
∆v(k)

)≤ ϕp
(
∆u(k− 1)

)−ϕp
(
∆v(k− 1)

)≤ 0, (2.5)

and hence, the equalities hold in (2.4). �
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The following strong comparison principle is now immediate.

Lemma 2.3. If

−∆(ϕp
(
∆u(k− 1)

))≥−∆(ϕp
(
∆v(k− 1)

))
, k ∈ [1,n],

u(0)≥ v(0), u(n+1)≥ v(n+1),
(2.6)

then either u > v in [1,n], or u≡ v. In particular, if

−∆(ϕp
(
∆u(k− 1)

))≥ 0, k ∈ [1,n],

u(0)≥ 0, u(n+1)≥ 0,
(2.7)

then either u > 0 in [1,n] or u≡ 0.

Consider the problem

−∆(ϕp
(
∆u(k− 1)

))= g
(
k,u(k)

)
, k ∈ [1,n],

u(0)= 0= u(n+1),
(2.8)

where g ∈ C([1,n]×R). The classW of functions u : [0,n+1]→R such that u(0)= 0=
u(n+1) is an n-dimensional Banach space under the norm

‖u‖ =
( n+1∑

k=1

∣∣∆u(k− 1)
∣∣p)1/p

. (2.9)

Define

Φg(u)=
n+1∑
k=1

[
1
p

∣∣∆u(k− 1)
∣∣p−G

(
k,u(k)

)]
, u∈W , (2.10)

where G(k, t)= ∫ t0 g(k,s)ds. Then the functional Φg is C1 with

(
Φ′

g(u),v
)= n+1∑

k=1

[
ϕp
(
∆u(k− 1)

)
∆v(k− 1)− g

(
k,u(k)

)
v(k)

]
=−

n∑
k=1

[
∆
(
ϕp
(
∆u(k− 1)

))
+ g
(
k,u(k)

)]
v(k)

(2.11)

(summing by parts), so solutions of (2.8) are precisely the critical points of Φg .

Lemma 2.4. If

limsup
|t|→∞

g(k, t)
|t|p−2t < λ1, k ∈ [1,n], (2.12)

then Φg has a global minimizer.
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Proof. By (2.12), there is a λ∈ [0,λ1) such that

G(k, t)≤ λ

p
|t|p +C, (2.13)

where C denotes a generic positive constant. Since

λ1 = min
u∈W\{0}

∑n+1
k=1
∣∣∆u(k− 1)

∣∣p∑n
k=1
∣∣u(k)∣∣p , (2.14)

then

Φg(u)≥ 1
p

(
1− λ

λ1

)
‖u‖p−C‖u‖, (2.15)

so Φg is bounded from below and coercive. �

Lemma 2.5. If

liminf
t→+∞

g(k, t)
tp−1

> λ1, lim
t→−∞

g(k, t)
|t|p−1 = 0, k ∈ [1,n], (2.16)

then Φg satisfies the Palais-Smale compactness condition (PS): every sequence (uj) in W
such that Φg(uj) is bounded and Φ′

g(uj)→ 0 has a convergent subsequence.

Proof. It suffices to show that (uj) is bounded since W is finite dimensional, so suppose
that ρj := ‖uj‖→∞ for some subsequence. We have

o(1)
∥∥u−j ∥∥= (Φ′

g

(
uj
)
,u−j
)≤−∥∥u−j ∥∥p− n+1∑

k=1
g
(
k,−u−j (k)

)
u−j (k), (2.17)

where u−j =max{−uj ,0} is the negative part of uj , so it follows from (2.16) that (u−j ) is
bounded. So, for a further subsequence, ũ j := uj/ρj converges to some ũ≥ 0 in W with
‖ũ‖ = 1.

We may assume that for each k, either (uj(k)) is bounded or uj(k)→∞. In the former

case, ũ(k)= 0 and g
(
k,uj(k)

)
/ρ

p−1
j → 0, and in the latter case, g

(
k,uj(k)

)≥ 0 for large j
by (2.16). So it follows from

o(1)=
(
Φ′

g

(
uj
)
,v
)

ρ
p−1
j

=
n+1∑
k=1

[
ϕp
(
∆ũ j(k− 1)

)
∆v(k− 1)− g

(
k,uj(k)

)
ρ
p−1
j

v(k)

]
(2.18)

that

n+1∑
k=1

ϕp
(
∆ũ(k− 1)

)
∆v(k− 1)≥ 0 ∀v ≥ 0, (2.19)
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and hence, ũ > 0 in [1,n] by Lemma 2.3. Then uj(k)→∞ for each k, and hence, (2.18)
can be written as

n+1∑
k=1

[
ϕp
(
∆ũ j(k− 1)

)
∆v(k− 1)−αj(k)ũ j(k)p−1v(k)

]= o(1), (2.20)

where

αj(k)=
g
(
k,uj(k)

)
uj(k)p−1

≥ λ, j large, (2.21)

for some λ > λ1 by (2.16).
Choosing v appropriately and passing to the limit shows that each αj(k) converges to

some α(k)≥ λ and

−∆(ϕp
(
∆ũ(k− 1)

))= α(k)ũ(k)p−1, k ∈ [1,n],

ũ(0)= 0= ũ(n+1).
(2.22)

This implies that the first eigenvalue of the corresponding weighted eigenvalue problem
is given by

min
u∈W\{0}

∑n+1
k=1
∣∣∆u(k− 1)

∣∣p∑n
k=1α(k)

∣∣u(k)∣∣p = 1. (2.23)

Then

1≤
∑n+1

k=1
∣∣∆ϕ1(k− 1)

∣∣p∑n
k=1α(k)ϕ1(k)p

≤ λ1
λ
< 1, (2.24)

a contradiction. �

3. Proofs

The problem

−∆(ϕp
(
∆u(k− 1)

))= a0(k), k ∈ [1,n],

u(0)= 0= u(n+1),
(3.1)

has a unique solution u0 > 0 by Lemmas 2.3 and 2.4. Fix ε ∈ (0,1] so small that u :=
ε1/(p−1)u0 < t0. Then

−∆(ϕp
(
∆u(k− 1)

))− f
(
k,u(k)

)≤−(1− ε)a0(k)≤ 0 (3.2)

by (1.2), so u is a subsolution of (1.1). Let

fu(k, t)=

f (k, t), t ≥ u(k),

f
(
k,u(k)

)
, t < u(k).

(3.3)
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Proof of Theorem 1.1. By (1.4), there are λ∈ [0,λ1) and T > t0 such that

f (k, t)≤ λtp−1, (k, t)∈ [1,n]× (T ,∞). (3.4)

Then

fu(k, t)


≤ a1(k)u(k)−γ +max f

(
[1,n]× [t0,T])+ λtp−1, t ≥ 0,

≥ a0(k), t < 0,
(3.5)

by (1.2), so the modified problem

−∆(ϕp
(
∆u(k− 1)

))= fu
(
k,u(k)

)
, k ∈ [1,n],

u(0)= 0= u(n+1),
(3.6)

has a solution u by Lemma 2.4. By Lemma 2.1, u≥ u, and hence, also a solution of (1.1).
�

Proof of Theorem 1.2. Noting that t1 is a supersolution of (3.6), let

f̃u(k, t)=

fu
(
k, t1

)
, t > t1,

fu(k, t), t ≤ t1.
(3.7)

By (1.2),

f̃u(k, t)


≤ a1(k)u(k)−γ +max f

(
[1,n]× [t0, t1]), t ≥ 0,

≥ a0(k), t < 0,
(3.8)

so Φ f̃u
has a global minimizer u1 by Lemma 2.4. By Lemmas 2.1 and 2.2, u≤ u1 < t1, so

Φ f̃u
=Φ fu near u1 and hence, u1 is a local minimizer of Φ fu . Let

fu1 (k, t)=

f (k, t), t ≥ u1(k),

f
(
k,u1(k)

)
, t < u1(k).

(3.9)

Since u1 is also a subsolution of (1.1), repeating the above argument with u1 in place of
u, we see that Φ fu1 also has a local minimizer, which we assume is u1 itself, for otherwise
we are done. By (1.6), there are λ > λ1 and T > t1 such that

f (k, t)≥ λtp−1, (k, t)∈ [1,n]× (T ,∞), (3.10)

so

Φ fu1

(
tϕ1
)≤− tp

p

(
λ

λ1
− 1
)
+Ct <Φ fu1

(
u1
)
, t > 0 large. (3.11)

Since Φ fu1 satisfies (PS) by Lemma 2.5, the mountain-pass lemma now gives a second
critical point u2, which is greater than u1 by Lemmas 2.1 and 2.2. �



Ravi P. Agarwal et al. 99

References

[1] R. Avery and J. Henderson, Existence of three positive pseudo-symmetric solutions for a one di-
mensional discrete p-Laplacian, J. Difference Equ. Appl. 10 (2004), no. 6, 529–539.

[2] D. Jiang, J. Chu, D. O’Regan, and R. P. Agarwal, Positive solutions for continuous and discrete
boundary value problems to the one-dimension p-Laplacian, Math. Inequal. Appl. 7 (2004),
no. 4, 523–534.

[3] D. Jiang, D. O’Regan, and R. P. Agarwal, A generalized upper and lower solution method for
singular discrete boundary value problems for the one-dimensional p-Laplacian, to appear in
J. Appl. Anal.

[4] , Existence theory for single and multiple solutions to singular boundary value problems
for the one-dimension p-Laplacian, Adv. Math. Sci. Appl. 13 (2003), no. 1, 179–199.

[5] D. Jiang, L. Zhang, D. O’Regan, and R. P. Agarwal, Existence theory for single and multiple so-
lutions to singular positone discrete Dirichlet boundary value problems to the one-dimension
p-Laplacian, ArchivumMathematicum (Brno) 40 (2004), no. 4, 367–381.

[6] D. Q. Jiang, P. Y. H. Pang, and R. P. Agarwal,Upper and lower solutions method and a superlinear
singular discrete boundary value problem, to appear in Dynam. Systems Appl.

Ravi P. Agarwal: Department of Mathematical Sciences, Florida Institute of Technology, Mel-
bourne, FL 32901, USA

E-mail address: agarwal@fit.edu

Kanishka Perera: Department of Mathematical Sciences, Florida Institute of Technology, Mel-
bourne, FL 32901, USA

E-mail address: kperera@fit.edu

Donal O’Regan: Department of Mathematics, National University of Ireland, Galway, Ireland
E-mail address: donal.oregan@nuigalway.ie

mailto:agarwal@fit.edu
mailto:kperera@fit.edu
mailto:donal.oregan@nuigalway.ie

	1. Introduction
	2. Preliminaries
	3. Proofs
	References

