
GLOBAL ATTRACTOR OF COUPLED DIFFERENCE
EQUATIONS AND APPLICATIONS TO
LOTKA-VOLTERRA SYSTEMS

C. V. PAO

Received 22 April 2004

This paper is concerned with a coupled system of nonlinear difference equations which is
a discrete approximation of a class of nonlinear differential systems with time delays. The
aim of the paper is to show the existence and uniqueness of a positive solution and to in-
vestigate the asymptotic behavior of the positive solution. Sufficient conditions are given
to ensure that a unique positive equilibrium solution exists and is a global attractor of the
difference system. Applications are given to three basic types of Lotka-Volterra systems
with time delays where some easily verifiable conditions on the reaction rate constants
are obtained for ensuring the global attraction of a positive equilibrium solution.

1. Introduction

Difference equations appear as discrete phenomena in nature as well as discrete analogues
of differential equations which model various phenomena in ecology, biology, physics,
chemistry, economics, and engineering. There are large amounts of works in the literature
that are devoted to various qualitative properties of solutions of difference equations, such
as existence-uniqueness of positive solutions, asymptotic behavior of solutions, stability
and attractor of equilibrium solutions, and oscillation or nonoscillation of solutions (cf.
[1, 4, 11, 13] and the references therein). In this paper, we investigate some of the above
qualitative properties of solutions for a coupled system of nonlinear difference equations
in the form

un = un−1 + k f (1)
(
un,vn,un−s1 ,vn−s2

)
,

vn = vn−1 + k f (2)
(
un,vn,un−s1 ,vn−s2

)
(n= 1,2, . . .),

un = φn
(
n∈ I1

)
, vn = ψn

(
n∈ I2

)
,

(1.1)

where f (1) and f (2) are, in general, nonlinear functions of their respective arguments, k is
a positive constant, s1 and s2 are positive integers, and I1 and I2 are subsets of nonpositive
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integers given by

I1 ≡
{− s1,−s1 + 1, . . . ,0

}
, I2 ≡

{− s2,−s2 + 1, . . . ,0
}
. (1.2)

System (1.1) is a backward (or left-sided) difference approximation of the delay differen-
tial system

du

dt
= f (1)

(
u,v,uτ1 ,vτ2

)
,

dv

dt
= f (2)

(
u,v,uτ1 ,vτ2

)
(t > 0),

u(t)= φ(t)
(− τ1 ≤ t ≤ 0

)
, v(t)= ψ(t)

(− τ2 ≤ t ≤ 0
)
,

(1.3)

where uτ1 = u(t− τ1), vτ2 = v(t− τ2), and τ1 and τ2 are positive constants representing
the time delays. In relation to the above differential system, the constant k in (1.1) plays
the role of the time increment ∆t in the difference approximation and is chosen such that
s1 ≡ τ1/k and s2 ≡ τ2/k are positive integers.

Our consideration of the difference system (1.1) is motivated by some Lotka-Volterra
models in population dynamics where the effect of time delays in the opposing species
is taken into consideration. The equations for the difference approximations of these
model problems, referred to as cooperative, competition, and prey-predator, respectively,
involve three distinct quasimonotone reaction functions, and are given as follows (cf.
[7, 11, 12, 15, 20]):

(a) the cooperative system:

un = un−1 + kα(1)un
(
1− a(1)un + b(1)vn + c(1)vn−s2

)
vn = vn−1 + kα(2)vn

(
1+ a(2)un− b(2)vn + c(2)un−s1

)
(n= 1,2, . . .),

un = φn
(
n∈ I1

)
, vn = ψn

(
n∈ I2

)
;

(1.4)

(b) the competition system:

un = un−1 + kα(1)
(
1− a(1)un− b(1)vn− c(1)vn−s2

)
vn = vn−1 + kα(2)

(
1− a(2)un− b(2)vn− c(2)un−s1

)
(n= 1,2, . . .),

un = φn
(
n∈ I1

)
, vn = ψn

(
n∈ I2

)
;

(1.5)

(c) the prey-predator system:

un = un−1 + kα(1)
(
1− a(1)un− b(1)vn− c(1)vn−s2

)
vn = vn−1 + kα(2)

(
1+ a(2)un− b(2)vn + c(2)un−s1

)
(n= 1,2, . . .),

un = φn
(
n∈ I1

)
, vn = ψn

(
n∈ I2

)
.

(1.6)

In the systems (1.4), (1.5), and (1.6), un and vn represent the densities of the two popula-
tion species at time nk(≡ n∆t), k is a small time increment, and for each l = 1,2,α(l),a(l),
b(l), and c(l) are positive constants representing the various reaction rates.

There are huge amounts of works in the literature that dealt with the asymptotic be-
havior of solutions for differential and difference systems with time delays, and much of
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the discussions in the earlier work are devoted to differential systems, including various
Lotka-Volterra-type equations (cf. [2, 3, 5, 7, 8, 12, 15, 19, 20]). Later development leads
to various forms of difference equations, and many of them are discrete analogues of dif-
ferential equations (cf. [2, 3, 4, 5, 6, 8, 9, 10, 11, 19]). In recent years, attention has also
been given to finite-difference equations which are discrete approximations of differential
equations with the effect of diffusion (cf. [14, 15, 16, 17, 18]). In this paper, we consider
the coupled difference system (1.1) for a general class of reaction functions ( f (1), f (2)),
and our aim is to show the existence and uniqueness of a global positive solution and the
asymptotic behavior of the solution with particular emphasis on the global attraction of a
positive equilibrium solution. The results for the general system are then applied to each
of the three Lotka-Volterra models in (1.4)–(1.6) where some easily verifiable conditions
on the rate constants a(l), b(l), and c(l), l = 1,2, are obtained so that a unique positive
equilibrium solution exists and is a global attractor of the system.

The plan of the paper is as follows. In Section 2, we show the existence and uniqueness
of a positive global solution to the general system (1.1) for arbitrary Lipschitz continu-
ous functions ( f (1), f (2)). Section 3 is concerned with some comparison theorems among
solutions of (1.1) for three different types of quasimonotone functions. The asymptotic
behavior of the solution is treated in Section 4 where sufficient conditions are obtained
for ensuring the global attraction of a positive equilibrium solution. This global attrac-
tion property is then applied in Section 5 to the Lotka-Volterra models in (1.4), (1.5),
and (1.6) which correspond to the three types of quasimonotone functions in the general
system.

2. Existence and uniqueness of positive solution

Before discussing the asymptotic behavior of the solution of (1.1) we show the existence
and uniqueness of a positive solution under the following basic hypothesis on the func-
tion ( f (1), f (2))≡ ( f (1)(u,v,us,vs), f (2)(u,v,us,vs)).

(H1) (i) The function ( f (1), f (2)) satisfies the local Lipschitz condition

∣∣ f (l)(u,v,us,vs)− f (l)
(
u′,v′,u′s,v

′
s

)∣∣
≤ K (l)(|u−u′|+ |v− v′|+∣∣us−u′s

∣∣+∣∣vs− v′s
∣∣)

for
(
u,v,us,vs

)
,
(
u′,v′,u′s,v

′
s

)∈�×�, (l = 1,2).

(2.1)

(ii) There exist positive constants (M(1),M(2)), (δ(1),δ(2)) with (M(1),M(2)) ≥
(δ(1),δ(2)) such that for all (us,vs)∈�,

f (1)
(
M(1),v,us,vs

)≤ 0≤ f (1)
(
δ(1),v,us,vs

)
when δ(2) ≤ v ≤M(2),

f (2)
(
u,M(2),us,vs

)≤ 0≤ f (2)
(
u,δ(2),us,vs

)
when δ(1) ≤ u≤M(1).

(2.2)

In the above hypothesis, � is given by

�≡ {(u,v)∈R2;
(
δ(1),δ(2)

)≤ (u,v)≤ (M(1),M(2))}. (2.3)
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To ensure the uniqueness of the solution, we assume that the time increment k satisfies
the condition

k
(
K (1) +K (2)) < 1, (2.4)

where K (1) and K (2) are the Lipschitz constants in (2.1).

Theorem 2.1. Let hypothesis (H1) hold. Then system (1.1) has at least one global solution
(un,vn) in �. If, in addition, condition (2.4) is satisfied, then the solution (un,vn) is unique
in �.

Proof. Given anyWn ≡ (wn,zn)∈�, we letUn ≡ (un,vn) be the solution of the uncoupled
initial value problem

(
1+ kK (1))un = un−1 + k

[
K (1)wn + f (1)

(
wn,zn,un−s1 ,vn−s2

)]
,(

1+ kK (2))vn = vn−1 + k
[
K (2)zn + f (2)

(
wn,zn,un−s1 ,vn−s2

)]
(n= 1,2, . . .),

un = φn
(
n∈ I1

)
, vn = ψn

(
n∈ I2

)
,

(2.5)

where K (1) and K (2) are the Lipschitz constants in (2.1). Define a solution operator � :
�→R2 by

�Wn ≡
(
P(1)Wn,P(2)Wn

)≡ (un,vn) (
Wn ∈�

)
. (2.6)

Then system (1.1) may be expressed as

Un =�Un, Un =
(
un,vn

)
(n= 1,2, . . .). (2.7)

To prove the existence of a global solution to (1.1) it suffices to show that � has a fixed
point in � for every n. It is clear from hypothesis (H1) that � is a continuous map on �
which is a closed bounded convex subset of R2. We show that � maps � into itself by a
marching process.

Given anyWn ≡ (wn,zn)∈�, relation (2.6) and conditions (2.1), (2.2) imply that

(
1+ kK (1))(M(1)−P(1)Wn

)
= (1+ kK (1))M(1)− [un−1 + k

(
K (1)wn + f (1)

(
wn,zn,un−s1 ,vn−s2

))]
≥ (M(1)−un−1

)
+ k
[
K (1)(M(1)−wn

)
+ f (1)

(
M(1),zn,un−s1 ,vn−s2

)
− f (1)

(
wn,zn,un−s1 ,vn−s2

)]≥M(1)−un−1,(
1+ kK (2))(M(2)−P(2)Wn

)
= (1+ kK (2))M(2)− [vn−1 + k

(
K (2)zn + f (2)

(
wn,zn,un−s1 ,vn−s2

))]
≥ (M(2)− vn−1

)
+ k
[
K (2)(M(2)− zn

)
+ f (2)

(
wn,M(2),un−s1 ,vn−s2

)
− f (2)

(
wn,zn,un−s1 ,vn−s2

)]
≥M(2)− vn−1 (n= 1,2, . . .),

(2.8)
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whenever (un−s1 ,vn−s2 )∈�. This leads to the relation

M(1)−P(1)Wn ≥ M(1)−un−1
1+ kK (1)

M(2)−P(2)Wn ≥ M(2)− vn−1
1+ kK (2)

(n= 1,2, . . .).

(2.9)

A similar argument using the second inequalities in (2.2) gives

P(1)Wn− δ(1) ≥ un−1− δ(1)

1 + kK (1)
,

P(2)Wn− δ(2) ≥ vn−1− δ(2)

1 + kK (2)
(n= 1,2, . . .),

(2.10)

whenever (un−s1 ,vn−s2 ) ∈ �. Consider the case n = 1. Since (u1−s1 ,v1−s2 ) = (φ1−s1 ,ψ1−s2 )
and (u0,v0) = (φ0,ψ0) are in �, relations (2.9), (2.10) imply that (δ(1),δ(2)) ≤ (P(1)W1,
P(2)W1)≤ (M(1),M(2)). By Brower’s fixed point theorem, �≡ (P(1),P(2)) has a fixed point
U1 ≡ (u1,v1) in �. This shows that (u1,v1) is a solution of (1.1) for n= 1, and (u1,v1) and
(u2−s1 ,v2−s2 ) are in �. Using this property in (2.9), (2.10) for n = 2, the same argument
shows that � has a fixed point U2 ≡ (u2,v2) in �, and (u2,v2) is a solution of (1.1) for
n = 2 and (u3−s1 ,v3−s2 ) ∈ �. A continuation of the above argument shows that � has a
fixed point Un ≡ (un,vn) in � for every n, and (un,vn) is a global solution of (1.1) in �.

To show the uniqueness of the solution, we consider any two solutions (un,vn), (u′n,v′n)
in � and let (wn,zn)= (un−u′n,vn− v′n). By (1.1),

wn =wn−1 + k
[
f (1)
(
un,vn,un−s1 ,vn−s2

)− f (1)
(
u′n,v

′
n,u

′
n−s1 ,v

′
n−s2

)]
,

zn = zn−1 + k
[
f (2)
(
un,vn,un−s1 ,vn−s2

)− f (2)
(
u′n,v

′
n,u

′
n−s1 ,v

′
n−s2

)]
(n= 1,2, . . .),

wn = 0
(
n∈ I1

)
, zn = 0

(
n∈ I2

)
.

(2.11)

The above relation and condition (2.1) imply that
∣∣wn

∣∣≤ ∣∣wn−1
∣∣+ kK (1)(∣∣wn

∣∣+∣∣zn∣∣+∣∣wn−s1
∣∣+∣∣zn−s2∣∣),∣∣zn∣∣≤ ∣∣zn−1∣∣+ kK (2)(∣∣wn

∣∣+∣∣zn∣∣+∣∣wn−s1
∣∣+∣∣zn−s2∣∣). (2.12)

Addition of the above inequalities leads to
∣∣wn

∣∣+∣∣zn∣∣≤ ∣∣wn−1
∣∣+∣∣zn−1∣∣

+ k
(
K (1)+K (2))(∣∣wn

∣∣+∣∣zn∣∣+∣∣wn−s1
∣∣+∣∣zn−s2∣∣) (n= 1,2, . . .).

(2.13)

Since wn = zn = 0 for n= 0,−1,−2, . . . , the above inequality for n= 1 yields
∣∣w1

∣∣+∣∣z1∣∣≤ k
(
K (1) +K (2))(∣∣w1

∣∣+∣∣z1∣∣). (2.14)

In view of condition (2.4), this is possible only when |w1| = |z1| = 0. Using w1 = z1 = 0
in (2.13) for n= 2 yields

∣∣w2
∣∣+∣∣z2∣∣≤ k

(
K (1) +K (2))(∣∣w2

∣∣+∣∣z2∣∣). (2.15)
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It follows again from (2.4) that |w2| = |z2| = 0. The conclusion |wn| = |zn| = 0 for every
n follows by an induction argument. This proves (un,vn)= (u′n,v′n), and therefore (un,vn)
is the unique solution of (1.1) in �. �

Remark 2.2. (a) Since problem (1.3) may be considered as an equivalent system of the
scalar second-order differential equation

u′′ = f
(
u,u′,uτ1 ,u

′
τ2

)
(t > 0),

u(t)= φ(t)
(− τ1 ≤ t ≤ 0

)
, u′(t)= ψ(t)

(− τ2 ≤ t ≤ 0
)
,

(2.16)

the conclusion in Theorem 2.1 and all the results obtained in later sections are directly
applicable to the difference approximation of (2.16) with (un,vn) = (un,u′n) and ( f (1),
f (2))= (vn, f (un,vn,un−s1 ,vn−s2 )).

(b) System (1.1) is a difference approximation of (1.3) by the backward (or left-sided)
approximation of the time derivative (du/dt,dv/dt), and this approximation preserves the
nonlinear nature of the differential system. If the forward (or right-sided) approximation
for (du/dt,dv/dt) is used, then the resulting difference system gives an explicit formula
for (un+1,vn+1) which can be computed by a marching process for every n= 0,1,2, . . . and
for any continuous function ( f (1), f (2)). From a view point of differential equations, the
forward approximation may lead to misleading information about the solution of the
differential system. One reason is that a global solution to the differential system may fail
to exist while the difference solution (un+1,vn+1) exists for every n.

(c) The uniqueness result in Theorem 2.1 is in the set �, and it does not rule out the
possibility of existence of positive solutions outside of �.

3. Comparison theorems

To investigate the asymptotic behavior of the solution we consider a class of quasimono-
tone functions which depend on the monotone property of ( f (1), f (2)). Specifically, we
make the following hypothesis.

(H2) ( f (1), f (2)) is a C1-function in �×� and possesses the property ∂ f (1)/∂us ≥ 0,
∂ f (2)/∂vs ≥0 and one of the following quasimonotone properties for (u,v,us,vs)∈
�×�:
(a) quasimonotone nondecreasing:

∂ f (1)

∂v
≥ 0,

∂ f (1)

∂vs
≥ 0,

∂ f (2)

∂u
≥ 0,

∂ f (2)

∂us
≥ 0; (3.1)

(b) quasimonotone nonincreasing:

∂ f (1)

∂v
≤ 0,

∂ f (1)

∂vs
≤ 0,

∂ f (2)

∂u
≤ 0,

∂ f (2)

∂us
≤ 0; (3.2)

(c) mixed quasimonotone:

∂ f (1)

∂v
≤ 0,

∂ f (1)

∂vs
≤ 0,

∂ f (2)

∂u
≥ 0,

∂ f (2)

∂us
≥ 0. (3.3)



C. V. Pao 63

Notice that if ( f (1), f (2))≡ ( f (1)(u,v), f (2)(u,v)) is independent of (us,vs), then the above
conditions are reduced to those required for the standard three types of quasimonotone
functions (cf. [15, 18]).

It is easy to see from (H2) that for quasimonotone functions the conditions on (M(1),
M(2)), (δ(1),δ(2)) in (2.2) are reduced to the following.

(a) For quasimonotone nondecreasing functions:

f (1)
(
M(1),M(2),M(1),M(2))≤ 0≤ f (1)

(
δ(1),δ(2),δ(1),δ(2)

)
,

f (2)
(
M(1),M(2),M(1),M(2))≤ 0≤ f (2)

(
δ(1),δ(2),δ(1),δ(2)

)
.

(3.4)

(b) For quasimonotone nonincreasing functions:

f (1)
(
M(1),δ(2),M(1),δ(2)

)≤ 0≤ f (1)
(
δ(1),M(2),δ(1),M(2)),

f (2)
(
δ(1),M(2),δ(1),M(2))≤ 0≤ f (2)

(
M(1),δ(2),M(1),δ(2)

)
.

(3.5)

(c) For mixed quasimonotone functions:

f (1)
(
M(1),δ(2),M(1),δ(2)

)≤ 0≤ f (1)
(
δ(1),M(2),δ(1),M(2)),

f (2)
(
M(1),M(2),M(1),M(2))≤ 0≤ f (2)

(
δ(1),δ(2),δ(1),δ(2)

)
.

(3.6)

In this section, we show some comparison results among solutions with different initial
functions for each of the above three types of quasimonotone functions. The comparison
results for the first two types of quasimonotone functions are based on the following
positivity lemma for a function (wn,zn) satisfying the relation

γ(1)n wn ≥wn−1 + a(1)n zn + b(1)n wn−s1 + c(1)n zn−s2 ,

γ(2)n zn ≥ zn−1 + a(2)n wn + b(2)n wn−s1 + c(2)n zn−s2 (n= 1,2, . . .),

wn ≥ 0
(
n∈ I1

)
, zn ≥ 0 (n∈ I),

(3.7)

where for each l = 1,2, and n= 1,2, . . . ,γ(l)n is positive, and a(l)n , b(l)n , and c(l)n are nonnega-
tive.

Lemma 3.1. Let (wn,zn) satisfy (3.7), and let

a(1)n a(2)n < γ(1)n γ(2)n (n= 1,2, . . .). (3.8)

Then (wn,zn)≥ (0,0) for every n= 1,2, . . . .

Proof. Consider the case n= 1. Since wn ≥ 0 for n∈ I1 and zn ≥ 0 for n∈ I2, the inequal-
ities in (3.7) yield

γ(1)1 w1 ≥ a(1)1 z1, γ(2)1 z1 ≥ a(2)1 w1. (3.9)
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The positivity of γ(1)1 , γ(2)1 implies that

w1 ≥
(
a(1)1

γ(1)1

)
z1 ≥

(
a(1)1 a(2)1

γ(1)1 γ(2)1

)
w1,

z1 ≥
(
a(2)1

γ(2)1

)
w1 ≥

(
a(1)1 a(2)1

γ(1)1 γ(2)1

)
z1.

(3.10)

In view of (3.8), the above inequalities can hold only if (w1,z1) ≥ (0,0). Assume, by in-
duction, that (wn,zn)≥ (0,0) for n= 1,2, . . . ,m− 1 for somem> 1. Then by (3.7),

γ(1)m wm ≥ a(1)m zm, γ(2)m zm ≥ a(2)m wm. (3.11)

This leads to

wm ≥
(
a(1)m a(2)m

γ(1)m γ(2)m

)
, zm ≥

(
a(1)m a(2)m

γ(1)m γ(2)m

)
zm. (3.12)

It follows again from (3.8) that (wm,zm)≥ (0,0). The conclusion of the lemma follows by
the principle of induction. �

The above positivity lemma can be extended to a function (wn,zn,wn,zn) satisfying the
relation

γ(1)n wn ≥wn−1 + a(1)n zn + b(1)n wn−s1 + c(1)n zn−s2 ,

γ(2)n zn ≥ zn−1 + a(2)n wn + b(2)n wn−s1 + c(2)n zn−s2 ,

γ̂(1)n wn ≥wn−1 + â(1)n zn + b̂(1)n wn−s1 + ĉ(1)n zn−s2 ,

γ̂(2)n zn ≥ zn−1 + â(2)n wn + b̂(2)n wn−s1 + ĉ(2)n zn−s2 (n= 1,2, . . .),

wn ≥ 0, wn ≥ 0
(
n∈ I1

)
, zn ≥ 0, zn ≥ 0

(
n∈ I2

)
,

(3.13)

where γ(l)n , a(l)n , b(l)n , and c(l)n , l = 1,2, are the same as that in (3.7) and γ̂(l)n , â(l)n , b̂(l)n , and ĉ(l)n

are nonnegative with γ̂(l)n > 0, n= 1,2, . . . .

Lemma 3.2. Let (wn,zn,wn,zn) satisfy (3.13), and let

(
a(1)n a(2)n

)(
â(1)n â(2)n

)
<
(
γ(1)n γ(2)n

)(
γ̂(1)n γ̂(2)n

)
(n= 1,2, . . .). (3.14)

Then (wn,zn,wn,zn)≥ (0,0,0,0) for every n.

Proof. By (3.13) with n= 1, we have

γ(1)1 w1 ≥ a(1)1 z1, γ(2)1 z1 ≥ a(2)1 w1, γ̂(1)1 w1 ≥ â(1)1 z1, γ̂(2)1 z1 ≥ â(2)1 w1. (3.15)
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This implies that

w1 ≥
(
a(1)1

γ(1)1

)
z1 ≥

(
a(1)1

γ(1)1

)(
â(2)1

γ̂(2)1

)
w1 ≥

(
a(1)1

γ(1)1

)(
â(2)1

γ̂(2)1

)(
â(1)1

γ̂(1)1

)
z1

≥
(
a(1)1 a(2)1

γ(1)1 γ(2)2

)(
â(1)1 â(2)2

γ̂(1)1 γ̂(2)1

)
w1.

(3.16)

In view of condition (3.14), we have w1 ≥ 0. This implies that z1 ≥ 0, w1 ≥ 0 and z1 ≥ 0
which proves the case for n = 1. Assume, by induction, that (wn,zn,wn,zn) ≥ (0,0,0,0)
for n= 1,2, . . . ,m− 1 for somem> 1. Then by (3.13),

γ(1)m wm ≥ a(1)m zm, γ(2)m zm ≥ a(2)m wm, γ̂(1)m wm ≥ â(1)m zm, γ̂(2)m zm ≥ â(2)m wm.
(3.17)

This leads to

wm ≥
(
a(1)m a(2)m

γ(1)m γ(2)m

)(
â(1)m â(2)m

γ̂(1)m γ̂(2)m

)
wm. (3.18)

It follows again from (3.14) thatwm ≥ 0 fromwhich we obtain zm ≥ 0,wm ≥ 0 and zm ≥ 0.
The conclusion of the lemma follows from the principle of induction. �

To obtain comparison results among solutions, we need to impose a condition on the
time increment k. Define

σ (1)1 ≡max

{
∂ f (1)

∂u

(
u,v,us,vs

)
; (u,v),

(
us,vs

)∈�

}
,

σ (1)2 ≡max

{∣∣∣∣∣∂ f
(1)

∂v

(
u,v,us,vs

)∣∣∣∣∣; (u,v),(us,vs)∈�

}
,

σ (2)1 ≡max

{∣∣∣∣∣∂ f
(2)

∂u

(
u,v,us,vs

)∣∣∣∣∣; (u,v),(us,vs)∈�

}
,

σ (2)2 ≡max

{
∂ f (2)

∂v

(
u,v,us,vs

)
; (u,v),

(
us,vs

)∈�

}
.

(3.19)

Our condition on k is given by

k
(
K (1) +K (2)) < 1,

(
kσ (1)2

)(
kσ (2)1

)
<
(
1− kσ (1)1

)(
1− kσ (2)2

)
, (3.20)

where K (l), l = 1,2, are the Lipschitz constants in (2.1). Since σ (1)1 ≤ K (1), σ (2)2 ≤ K (2),
it follows that kσ (1)1 < 1 and kσ (2)2 < 1. Notice that σ (1)2 and σ (2)1 are nonnegative while

σ (1)1 and σ (2)2 are not necessarily nonnegative. The following comparison theorem is for
quasimonotone nondecreasing functions.
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Theorem 3.3. Let hypotheses (H1), (H2)(a), and condition (3.20) be satisfied. Denote by
(un,vn), (un,vn), and (un,vn) the solutions of (1.1) with (φn,ψn)= (M(1),M(2)), (φn,ψn)=
(δ(1),δ(2)), and arbitrary (φn,ψn)∈�, respectively. Then

(
un,vn

)≤ (un,vn)≤ (un,vn), n= 1,2, . . . . (3.21)

Proof. Let (wn,zn)= (un−un,vn− vn). By (1.1) and the mean value theorem,

wn =wn−1 + k
[
f (1)
(
un,vn,un−s1 ,vn−s2

)− f (1)
(
un,vn,un−s1 ,vn−s2

)]

=wn−1 + k

[(
∂ f (1)

∂u

(
ξn
))

wn +

(
∂ f (1)

∂v

(
ξn
))

zn

+

(
∂ f (1)

∂us

(
ξn
))

wn−s1 +

(
∂ f (1)

∂vs

(
ξn
))

zn−s2

]
,

zn = zn−1 + k
[
f (2)
(
un,vn,un−s1 ,vn−s2

)− f (2)
(
un,vn,un−s1 ,vn−s2

)]

= zn−1 + k

[(
∂ f (2)

∂u

(
ξ′n
))

wn +

(
∂ f (2)

∂v

(
ξ′n
))

zn

+

(
∂ f (2)

∂us

(
ξ′n
))

wn−s1 +

(
∂ f (2)

∂vs

(
ξ′n
))

zn−s2

]
(n= 1,2, . . .),

wn = φn− δ(1) ≥ 0
(
n∈ I1

)
, zn = ψn− δ(2) ≥ 0

(
n∈ I2

)
,

(3.22)

where ξn ≡ (ξn,ηn,ξn−s1 ,ηn−s2 ) and ξ′n ≡ (ξ′n,η′n,ξ′n−s1 ,η
′
n−s2 ) are some intermediate values

between (un,vn,un−s1 ,vn−s2 ) and (un,vn,un−s1 ,vn−s2 ) and therefore are in �×�. Define

α(1)n = k
∂ f (1)

∂u

(
ξn
)
, a(1)n = k

∂ f (1)

∂v

(
ξn
)
, b(1)n = k

∂ f (1)

∂us

(
ξn
)
, c(1)n = k

∂ f (1)

∂vs

(
ξn
)
,

α(2)n = k
∂ f (2)

∂v

(
ξ′n
)
, a(2)n = k

∂ f (2)

∂u

(
ξ′n
)
, b(2)n = k

∂ f (2)

∂us

(
ξ′n
)
, c(2)n = k

∂ f (2)

∂vs

(
ξ′n
)
.

(3.23)

Then (3.22) may be written as

(
1−α(1)n

)
wn =wn−1 + a(1)n zn + b(1)n wn−s1 + c(1)n zn−s2 ,(

1−α(2)n

)
zn = zn−1 + a(2)n wn + b(2)n wn−s1 + c(2)n zn−s2 (n= 1,2, . . .),

wn ≥ 0
(
n∈ I1

)
, zn ≥ 0

(
n∈ I2

)
.

(3.24)

Since by hypothesis (H2)(a), a
(l)
n , b(l)n , and c(l)n are nonnegative, and by conditions (3.19)

and (3.20),

γ(1)n ≡ 1−α(1)n ≥ 1− kσ (1)1 > 0, γ(2)n ≡ 1−α(2)n ≥ 1− kσ (2)2 > 0,

a(1)n a(2)n ≤
(
kσ (1)2

)(
kσ (2)1

)
<
(
1− kσ (1)1

)(
1− kσ (2)2

)
≤ γ(1)n γ(2)n (n= 1,2, . . .),

(3.25)
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we conclude from Lemma 3.1 that (wn,zn) ≥ (0,0). This leads to (un,vn) ≥ (un,vn). A
similar argument using the property (φn,ψn)≤ (M(1),M(2)) yields (un,vn)≥ (un,vn). This
proves the theorem. �

For quasimonotone nonincreasing functions, we have the following analogous theo-
rem.

Theorem 3.4. Let hypotheses (H1), (H2)(b) and condition (3.20) be satisfied. Denote by
(un,vn), (un,vn), and (un,vn) the solutions of (1.1) with (φn,ψn) = (M(1),δ(2)), (φn,ψn) =
(δ(1),M(2)), and arbitrary (φn,ψn) in �, respectively. Then

un ≤ un ≤ un, vn ≤ vn ≤ vn (n= 1,2, . . .). (3.26)

Proof. Consider the solutions (un,vn), (un,vn) and let wn = un−un, zn = vn− vn. By (1.1)
and the mean-value theorem,

wn =wn−1 + k
[
f (1)
(
un,vn,un−s1 ,vn−s2

)− f (1)
(
un,vn,un−s1 ,vn−s2

)]
=wn−1 +α(1)n wn− a(1)n zn + b(1)n wn−s1 − c(1)n zn−s2 ,

zn = zn−1 + k
[
f (2)
(
un,vn,un−s1 ,vn−s2

)− f (2)
(
un,vn,un−s1 ,vn−s2

)]
= zn−1− a(2)n wn +α(2)n zn− b(2)n wn−s1 + c(2)n zn−s2 (n= 1,2, . . .),

wn =Mn−φn ≥ 0
(
n∈ I1

)
, zn = ψn− δ(2) ≥ 0

(
n∈ I2

)
,

(3.27)

where α(l)n , a(l)n , b(l)n , and c(l)n , l = 1,2, are given by (3.23) (with possibly some different
intermediate values in �). Since the above relation can be written in the form (3.24)
with a(1)n , c(1)n , a(2)n , and b(2)n replaced, respectively, by (−a(1)n ), (−c(1)n ), (−a(2)n ), and (−b(2)n )
which are nonnegative because of the quasimonotone nonincreasing property of
( f (1), f (2)) in hypothesis (H2)(b), we conclude from the argument in the proof of
Theorem 3.3 that (wn,zn) ≥ (0,0). This leads to un ≥ un, vn ≥ vn. A similar argument
using φn ≥ δ(1), ψn ≤M(2) gives un ≥ un, vn ≥ vn. This proves the theorem. �

Formixed quasimonotone functions, we consider the solution ((un,vn),(un,vn)) of the
coupled system

un = un−1 + k f (1)
(
un,vn,un−s1 ,vn−s2

)
,

vn = vn−1 + k f (2)
(
un,vn,un−s1 ,vn−s2

)
,

un = un−1 + k f (1)
(
un,vn,un−s1 ,vn−s2

)
,

vn = vn−1 + k f (2)
(
un,vn,un−s1 ,vn−s2

)
(n= 1,2, . . .),

un =M(1), un = δ(1)
(
n∈ I1

)
, vn =M(2), vn = δ(2)

(
n∈ I2

)
.

(3.28)

The existence and uniqueness of a solution to (3.28) can be treated by the same argument
as that for (1.1). The following theorem gives an analogous result as that in Theorem 3.3.
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Theorem 3.5. Let hypotheses (H1), (H2)(c) and condition (3.20) be satisfied. Let also ((un,
vn),(un,vn)) be the solution of (3.28) and (un,vn) the solution of (1.1) with arbitrary (φn,ψn)
in �. Then

(
un,vn

)≤ (un,vn)≤ (un,vn) (n= 1,2, . . .). (3.29)

Proof. Let (wn,zn)= (un−un,vn− vn), (wn,zn)= (un−un,vn− vn). By (1.1), (3.28), and
the mean value theorem,

wn =wn−1 + k
[
f (1)
(
un,vn,un−s1 ,vn−s2

)− f (1)
(
un,vn,un−s1 ,vn−s2

)]
=wn−1 +α(1)n wn− a(1)n zn + b(1)n wn−s1 − c(1)n zn−s2 ,

zn = zn−1 + k
[
f (2)
(
un,vn,un−s1 ,vn−s2

)− f (2)
(
un,vn,un−s1 ,vn−s2

)]
= zn−1 + a(2)n wn +α(2)n zn + b(2)n wn−s1 + c(2)n zn−s2 ,

wn =wn−1 + k
[
f (1)
(
un,vn,un−s1 ,vn−s2

)− f (1)
(
un,vn,un−s1 ,vn−s2

)]
=wn−1 + α̂(1)n wn− â(1)n zn + b̂(1)n wn−s1 − ĉ(1)n zn−s2 ,

zn = zn−1 + k
[
f (2)
(
un,vn,un−s1 ,vn−s2

)− f (2)
(
un,vn,un−s1 ,vn−s2

)]
= zn−1 + â(2)n wn + α̂(2)n zn + b̂(2)n wn−s1 + ĉ(2)n zn−s2 (n= 1,2, . . .),

wn =M(1)−φn ≥ 0, wn = φn− δ(1) ≥ 0
(
n∈ I1

)
,

zn =M(2)−ψn ≥ 0, zn = ψn− δ(2) ≥ 0
(
n∈ I2

)
,

(3.30)

where (α(l)n ,a(l)n ,b(l)n ,c(l)n ) and (α̂(l)n , â(l)n , b̂(l)n , ĉ(l)n ) are given in the form of (3.23) with possibly
some different intermediate values in�. It is clear that the above relation can be expressed
in the form (3.13) with

γ(l)n = 1−α(l)n , γ̂(l)n = 1− α̂(l)n (l = 1,2), (3.31)

and with a(1)n , c(1)n , â(1)n , and ĉ(1)n replaced, respectively, by (−a(1)n ), (−c(1)n ), (−â(1)n ), and

(−ĉ(1)n ) which are nonnegative in view of the mixed quasimonotone property (3.3). Since

by hypothesis (H2)(c), all other coefficients (a(l)n ,b(l)n ,c(l)n ) and (â(l)n , b̂(l)n , ĉ(l)n ) are nonnega-
tive, and by conditions (3.19), (3.20), and (3.23),

γ(1)n ≥ 1− kσ (1)1 > 0, γ(2)n ≥ 1− kσ (2)2 > 0,

γ̂(1)n ≥ 1− kσ (1)1 > 0, γ̂(2)n ≥ 1− kσ (2)2 > 0
(3.32)

we conclude from Lemma 3.2 that ((w,zn),(wn,zn)) ≥ ((0,0),(0,0)) if condition (3.14)
holds. Since

0≤
(
− a(1)n

)
≤ kσ (1)2 , a(2)n ≤ kσ (2)1 , 0≤

(
− â(1)n

)
≤ kσ (1)2 , â(2)n ≤ kσ (2)1 , (3.33)
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we see from (3.31) and (3.32) that condition (3.14) holds if

[(
kσ (1)2

)(
kσ (2)1

)]2
<
[(
1− kσ (1)1

)(
1− kσ (2)2

)]2
. (3.34)

But the above inequality is equivalent to (3.20). This proves relation (3.29) and thus the
theorem. �

4. Asymptotic behavior

It is seen from the comparison theorems in the previous section that the asymptotic be-
havior of the solution (un,vn) for arbitrary initial functions in � can be determined from
the behavior of the solutions (un,vn) and (un,vn) provided that these solutions converge
to a common limit as n→∞. In this section, we show the monotone convergence of
(un,vn) and (un,vn) to equilibrium solutions (or quasiequilibrium solutions) of (1.1) for
each of the three types of quasimonotone functions ( f (1), f (2)). Here by an equilibrium
solution (or simply equilibrium), we mean a constant (u,v)∈� such that

f (1)(u,v,u,v)= 0, f (2)(u,v,u,v)= 0. (4.1)

Our first result is for quasimonotone nondecreasing functions.

Theorem 4.1. Let the conditions in Theorem 3.3 be satisfied. Then the solution (un,vn) con-
verges monotonically to a maximal equilibrium (u,v), the solution (un,vn) converges mono-
tonically to a minimal equilibrium (u,v), and

(
δ(1),δ(2)

)≤ (u,v)≤ (u,v)≤ (M(1),M(2)). (4.2)

If, in addition, (u,v) = (u,v)(≡ (u∗,v∗)), then (u∗,v∗) is the unique equilibrium in �,
and for arbitrary (φn,ψn) in � the corresponding solution (un,vn) converges to (u∗,v∗) as
n→∞.

Proof. Consider the solution (un,vn), and let (wn,zn) = (un+1 − un,vn+1 − vn). By (1.1)
and the mean value theorem,

wn =wn−1 + k
[
f (1)
(
un+1,vn+1,un+1−s1 ,vn+1−s2

)− f (1)
(
un,vn,un−s1 ,vn−s2

)]
=wn−1 +α(1)n wn + a(1)n zn + b(1)n wn−s1 + c(1)n zn−s2 ,

zn = zn−1 + k
[
f (2)
(
un+1,vn+1,un+1−s1 ,vn+1−s2

)− f (2)
(
un,vn,un−s1 ,vn−s2

)]
= zn−1 + a(2)n wn +α(2)n zn + b(2)n wn−s1 + c(2)n zn−s2 (n= 1,2, . . .),

wn = un+1− δ(1) ≥ 0
(
n∈ I1

)
, zn = vn+1− δ(2) ≥ 0

(
n∈ I2

)
,

(4.3)

where α(l)n , a(l)n , b(l)n , and c(l)n are given by (3.23) with possibly some different interme-
diate values ξn, ξ

′
n. Since (un,vn) ∈ � for all n, the values of ξn and ξ′n remain in �,

and therefore the coefficients a(l)n , b(l)n , and c(l)n are nonnegative. It follows from the proof
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of Theorem 3.3 that (wn,zn) ≥ (0,0) for n = 1,2, . . .. This proves the relation (un,vn) ≤
(un+1,vn+1). A similar argument gives (un+1,vn+1)≤ (un,vn) and (un,vn)≤ (un,vn) for ev-
ery n= 1,2, . . . .

This leads to the relation

un ≤ un+1 ≤ un+1 ≤ un, vn ≤ vn+1 ≤ vn+1 ≤ vn, n= 1,2, . . . . (4.4)

The above monotone property ensures that the limits

lim
n→∞

(
un,vn

)= (u,v), lim
n→∞

(
un,vn

)= (u,v) (4.5)

exist and satisfy relation (4.2). Letting n→∞ in (1.1) shows that (u,v) and (u,v) are
solutions of (4.1). Now if (u,v) is another solution of (4.1) in �, then by considering
(u,v) as a solution of (1.1) with (φn,ψn) = (u,v), Theorem 3.3 ensures that (un,vn) ≤
(u,v) ≤ (un,vn) for every n. Letting n→∞ yields (u,v) ≤ (u,v) ≤ (u,v). This proves the
maximal and minimal property of (u,v) and (u,v), respectively. It is clear that if (u,v)=
(u,v)(≡ (u∗,v∗)), then the above maximal and minimal property implies that (u∗,v∗) is
the unique equilibrium solution in �. Moreover, by Theorem 3.3, (un,vn)→ (u∗,v∗) as
n→∞. The proof of the theorem is completed. �

If f (1) ≡ f (1)(u) is independent of (v,us,vs) and there exist constants M ≥ δ > 0
such that

f (1)(M)≤ 0≤ f (1)(δ), (4.6)

then all the conditions in (H1) and (H2)(a) for the scalar problem

un = un−1 + k f (1)
(
un
)
, u0 = φ (n= 1,2, . . .) (4.7)

are satisfied. In this situation, Theorem 4.1 ensures that the solutions un, un of (4.7) with
φ =M and φ = δ, respectively, converge to some constants u and u as n→∞. Moreover,
u and u satisfy the equation f (1)(u) = f (1)(u) = 0 and the relation δ ≤ u ≤ u ≤M. If
u = u(≡ u∗), then for any φ ∈ [δ,M], the corresponding solution un of (4.7) converges
to u∗ as n→∞. In particular, if f (1)(u) = αu(1− βu) for some positive constants α, β,
then condition (4.6) is fulfilled by any constantsM, δ satisfying 0 < δ ≤ β−1 ≤M, and the
limits u, u are both equal to β−1. Since δ can be chosen arbitrarily small andM arbitrarily
large, we have the following result which will be needed in later applications.

Corollary 4.2. If f (1) ≡ f (1)(u) is a C1-function such that kσ (1)1 < 1 and condition (4.6)
holds for some constantsM ≥ δ > 0, then the solutions un, un of (4.7) with φ =M and φ = δ,
respectively, converge to some equilibrium solutions u, u such that f (1)(u)= f (1)(u)= 0. In
particular, if f (1)(u) = αu(1− βu) for some positive constants α, β, then for any φ > 0, the
corresponding solution un of (4.7) converges to β−1 as n→∞.

For quasimonotone nonincreasing functions, we have the following analogous result.

Theorem 4.3. Let the conditions in Theorem 3.4 be satisfied. Then the solution (un,vn) con-
verges monotonically to an equilibrium (u,v), the solution (un,vn) converges monotonically
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to an equilibrium (u,v), and

δ(1) ≤ u≤ u≤M(1), δ(2) ≤ v ≤ v ≤M(2). (4.8)

If, in addition, (u,v)= (u,v)(≡ (u∗,v∗)), then (u∗,v∗) is the unique equilibrium in � and
for any (φn,ψn)∈�, the corresponding solution (un,vn) converges to (u∗,v∗) as n→∞.

Proof. Consider the solution (un,vn), and let (wn,zn)= (un−un+1,vn+1− vn). Then,

wn =wn−1 + k
[
f (1)
(
un,vn,un−s1 ,vn−s2

)− f (1)
(
un+1,vn+1,un+1−s1 ,vn+1−s2

)]
=wn−1 +α(1)n wn− a(1)n zn + b(1)n wn−s1 − c(1)n zn−s2 ,

zn = zn−1 + k
[
f (2)
(
un+1,vn+1,un+1−s1 ,vn+1−s2

)− f (2)
(
un,vn,un−s1 ,vn−s2

)]
= zn−1− a(2)n wn +α(2)n zn− b(2)n wn−s1 + c(2)n zn−s2 (n= 1,2, . . .),

wn =M(1)−un+1 ≥ 0
(
n∈ I1

)
, zn = vn+1− δ(2) ≥ 0

(
n∈ I2

)
,

(4.9)

where α(l)n , a(l)n , b(l)n , and c(l)n are given by (3.23) with possibly some different ξ, ξ′ in �×�.
Since relation (4.9) is the same as that in (3.27), the reasoning in the proof of Theorem 3.4
shows that un ≥ un+1 and vn+1 ≥ vn. A similar argument gives un+1 ≥ un and vn ≥ vn+1.
This shows that (un,vn) and (un,vn) possess the monotone property (4.4). Hence, the
limits

lim
n→∞

(
un,vn

)= (u,v), lim
n→∞

(
un,vn

)= (u,v) (4.10)

exist and are equilibrium solutions in�. If (u,v)= (u,v)(≡ (u∗,v∗)), then the uniqueness
of the equilibrium (u∗,v∗) and the convergence of (un,vn) to (u∗,v∗) follow from (3.26)
by letting n→∞. This proves the theorem. �

For mixed quasimonotone functions, we say that the constants (u,v), (u,v) are a pair
of quasiequilibrium solutions of (1.1) if (u,v) and (u,v) are in � and if

f (1)(u,v,u,v)= 0, f (1) = (u,v,u,v)= 0,

f (2)(u,v,u,v)= 0, f (2) = (u,v,u,v)= 0.
(4.11)

It is obvious that quasiequilibrium solutions are not necessarily true equilibrium solu-
tions unless u = u or v = v. In the following theorem, we show the convergence of the
solution of (3.28) to quasiequilibrium solutions.

Theorem 4.4. Let the conditions in Theorem 3.5 be satisfied. Then the solution ((un,vn),
(un,vn)) of (3.28) converges monotonically to a pair of quasiequilibrium solutions ((u,v),
(u,v)) that satisfy (4.11). If (u,v)= (u,v)(≡ (u∗,v∗)), then (u∗,v∗) is the unique equilib-
rium in � and for any (φn,ψn)∈�, the corresponding solution (un,vn) of (1.1) converges to
(u∗,v∗) as n→∞.
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Proof. Let (wn,zn) = (un − un+1,vn − vn+1), (wn,zn) = (un+1 − un,vn+1 − vn). By (3.28)
and the mean-value theorem,

wn =wn−1 + k
[
f (1)
(
un,vn,un−s1 ,vn−s2

)− f (1)
(
un+1,vn+1,un+1−s1 ,vn+1−s2

)]
=wn−1 +α(1)n wn− a(1)n zn + b(1)n wn−s1 − c(1)n zn−s2 ,

zn = zn−1 + k
[
f (2)
(
un,vn,un−s1 ,vn−s2

)− f (2)
(
un+1,vn+1,un+1−s1 ,vn+1−s2

)]
= zn−1 + a(2)n wn +α(2)n zn + b(2)n wn−s1 + c(2)n zn−s2 ,

wn =wn−1 + k
[
f (1)
(
un+1,vn+1,un+1−s1 ,vn+1−s2

)− f (1)
(
un,vn,un−s1 ,vn−s2

)]
=wn−1 + α̂(1)n wn− â(1)n zn + b̂(1)n wn−s1 − ĉ(1)n zn−s2 ,

zn = zn−1 + k
[
f (2)
(
un+1,vn+1,un+1−s1 ,vn+1−s2

)− f (2)
(
un,vn,un−s1 ,vn−s2

)]
= zn−1 + â(2)n wn + α̂(2)n zn + b̂(2)n wn−s1 + ĉ(2)n zn−s2 (n= 1,2, . . .),

wn ≥ 0, wn ≥ 0
(
n∈ I1

)
, zn ≥ 0, zn ≥ 0

(
n∈ I2

)
.

(4.12)

Since the above relation is in the same form as that in (3.30), we conclude from the proof
of Theorem 3.5 that ((wn,zn),(wn,zn))≥ ((0,0),(0,0)). This proves the monotone prop-
erty (4.4) for ((un,vn),(un,vn)). It follows from this property that the limits (u,v), (u,v)
in (4.5) exist and satisfy (4.2). Letting n→∞ in (3.28) shows that these limits satisfy the
equations in (4.11). If (u,v)= (u,v)(≡ (u∗,v∗)), then (u∗,v∗) is a solution of (4.1), and
both (un,vn) and (un,vn) converge to (u

∗,v∗) as n→∞. The uniqueness of (u∗,v∗) in �
and the convergence of (un,vn) to (u∗,v∗) follow from Theorem 3.5. �

The previous theorems imply that for each type of quasimonotone functions if (u,v)=
(u,v)≡ (u∗,v∗), then (u∗,v∗) is a global attractor relative to the set �. In the following
theorem, we give a sufficient condition for the global attraction of (u∗,v∗) relative to the
whole space R2 (or the positive cone R2

+) for any of the three types of quasimonotone
functions.

Theorem 4.5. Let the conditions in Theorems 3.3, 3.4, and 3.5 be satisfied for the respective
quasimonotone functions, and let (un,vn) be the solution of (1.1) for an arbitrary initial
function (φn,ψn), not necessarily in �. Assume that (un,vn)= (un,vn)(≡ (u∗,v∗)). If there
exists n0 > 0 such that

(
δ(1),δ(2)

)≤ (un,vn)≤ (M(1),M(2)) for n0− s≤ n≤ n0, (4.13)

where s=max{s1,s2}, then

lim
(
un,vn

)= (u∗,v∗) as n−→∞. (4.14)
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Proof. Let (wn,zn)= (un+n0 ,vn+n0 ). Then by (1.1),

wn = un+n0−1 + k f (1)
(
un+n0 ,vn+n0 ,un+n0−s1 ,vn+n0−s2

)
=wn−1 + k f (1)

(
wn,zn,wn−s1 ,zn−s2

)
,

zn = vn+n0−1 + k f (2)
(
un+n0 ,vn+n0 ,un+n0−s1 ,vn+n0−s2

)
= zn−1 + k f (2)

(
wn,zn,wn−s1 ,zn−s2

)
(n= 1,2, . . .).

(4.15)

Since by (4.13), (wn,zn) ∈ � for −s ≤ n ≤ 0, we conclude by applying Theorems 4.1,
4.3, and 4.4 to (wn,zn) for the corresponding quasimonotone function that (wn,zn)→
(u∗,v∗) as n→∞. This leads to relation (4.14). �

When f (l)(un,vn,un−s1 ,vn−s2 ) is independent of un−s1 or vn−s2 (or both) for l = 1 or
l = 2 (or both), all the requirements in (H1), (H2) with respect to the variables un−s1 and
vn−s2 are fulfilled. In particular, if f (l) ≡ f (l)(un,vn) is independent of (un−s1 ,vn−s2 ) for
both l = 1 and l = 2, then system (1.1) is reduced to the standard initial-value problem

un = un−1 + k f (1)
(
un,vn

)
, u0 = φ,

vn = vn−1 + k f (2)
(
un,vn

)
, v0 = ψ (n= 1,2, . . .).

(4.16)

In this situation, the definition of quasimonotone functions is reduced to the standard
one (i.e., with ∂ f (l)/∂us = ∂ f (l)/∂vs = 0 for l = 1,2 in (H2)), and condition (2.2) in (H1)
becomes

f (1)
(
M(1),v

)≤ 0≤ f (1)
(
δ(1),v

)
for δ(2) ≤ v ≤M(2),

f (2)(u,M(2))≤ 0≤ f (2)
(
u,δ(1)

)
for δ(1) ≤ u≤M(1).

(4.17)

In this special case, all the conclusions of Theorem 4.1 to Theorem 4.5 are directly appli-
cable to (4.16). Because of its usefulness in applications, we state the above results in the
following theorem.

Theorem 4.6. Let ( f (1), f (2)) ≡ ( f (1)(un,vn), f (2)(un,vn)) satisfy hypotheses (H1), (H2)
with condition (2.2) replaced by (4.17), and let k satisfy condition (3.20). If (u,v) = (u,v)
(≡ (u∗,v∗)), then (u∗,v∗) is the unique positive equilibrium in �, and for any (φ,ψ)∈�,
the corresponding solution (un,vn) of (4.16) converges to (u∗,v∗) as n→∞. Moreover, this
convergence property holds true for the solution (un,vn) corresponding to an arbitrary (φ,ψ)
if condition (4.13) holds for some n0 > 0.

5. Applications to Lotka-Volterra systems

In this section, we give some applications of the global stability results in the previous sec-
tion to the three Lotka-Volterra model problems (1.4), (1.5), and (1.6). It is clear that in
these models the reaction function ( f (1), f (2)) is quasimonotone nondecreasing, quasi-
monotone nonincreasing, and mixed quasimonotone, respectively, in �×� for every
M(l) ≥ δ(l) ≥ 0, l = 1,2. To apply the theorems in Section 4, we need

(i) to find some positive constants (M(1),M(2)), (δ(1),δ(2)) satisfying condition (2.2),
or the corresponding conditions (3.4), (3.5), and (3.6);
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(ii) to show that the limits (u,v), (u,v) in (4.5) or in (4.10) coincide;
(iii) to verify that the solution (un,vn) corresponding to an arbitrary nonnegative

(φn,ψn) with (φ0,ψ0) > (0,0) converges to (u∗,v∗) as n→∞.

To do this for each of the three models, we set

a(2) = a(2) + c(2), b
(1) = b(1) + c(1), ∆= a(1)b(2)− a(2)b

(1)
, (5.1)

and assume that k satisfies condition (3.20) with respect to the function ( f (1), f (2)) in
(1.4), (1.5), or (1.6). Our purpose is to obtain a sufficient condition on the four constants

a(1), b(2), a(2), and b
(1)
, so that a unique positive equilibrium solution exists and is a global

attractor in the positive cone R2
+.

5.1. The cooperative model. (i) In the cooperative model (1.4), the reaction function
( f (1), f (2)) is given by

f (1)
(
un,vn,vn−s2

)= α(1)un
(
1− a(1)un + b(1)vn + c(1)vn−s2

)
,

f (2)
(
un,vn,un−s1

)= α(2)vn
(
1+ a(2)un− b(2)vn + c(2)un−s1

)
.

(5.2)

It is obvious that the above function is quasimonotone nondecreasing in �×� and sat-
isfies hypothesis (H2)(a). Moreover, the requirement on (M(1),M(2)), (δ(1),δ(2)) in (3.4)
(or (2.2)) becomes

α(1)M(1)
(
1− a(1)M(1) + b

(1)
M(2)

)
≤ 0≤ α(1)δ(1)

(
1− a(1)δ(1) + b

(1)
δ(2)
)
,

α(2)M(2)
(
1+ a(2)M(1)− b(2)M(2)

)
≤ 0≤ α(2)δ(2)

(
1+ a(2)δ(1)− b(2)δ(2)

)
.

(5.3)

The above inequalities are satisfied by a small (δ(1),δ(2)) > (0,0) if

a(1)M(1)− b
(1)
M(2) ≥ 1, −a(2)M(1) + b(2)M(2) ≥ 1. (5.4)

Assume ∆ > 0, where ∆ is given by (5.1). Then the system

a(1)u− b
(1)
v = 1, −a(2)u+ b(2)v = 1 (5.5)

has a unique positive solution given by

(
u∗,v∗

)=
(
b
(1)

+ b(2)

∆
,
a(1) + a(2)

∆

)
. (5.6)

We choose (M(1),M(2))= (ρu∗,ρv∗) for some ρ ≥ 1. It is obvious that (M(1),M(2)) satis-
fies (5.4) for any choice of ρ ≥ 1. This shows that the pair (M(1),M(2)), (δ(1),δ(2)) fulfills
the requirement in (3.4).
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(ii) Since hypotheses (H1) and (H2)(a) are satisfied, Theorem 4.1 implies that the so-
lutions (un,vn),(un,vn) converge to some limits (u,v), (u,v) that satisfy the relation

1− a(1)u+ b
(1)
v = 0, 1+ a(2)u− b(2)v = 0,

1− a(1)u+ b
(1)
v = 0, 1+ a(2)u− b(2)v = 0.

(5.7)

A subtraction of the above equations leads to

a(1)(u−u)− b
(1)
(v− v)= 0, −a(2)(u−u) + b(2)(v− v)= 0. (5.8)

It follows from ∆ 	= 0 that u−u= v− v = 0. This shows that (u,v)= (u,v)= (u∗,v∗) and
(u∗,v∗) is the unique positive equilibrium given by (5.6). By Theorem 4.1, the solution
(un,vn) corresponding to any (φn,ψn)∈� converges to (u∗,v∗) as n→∞.

(iii) To show the convergence of (un,vn) to (u∗,v∗) for an arbitrary nonnegative (φn,
ψn) with (φ0,ψ0) > (0,0), we choose ρ ≥ 1 such that (M(1),M(2))= (ρu∗,ρv∗)≥ (φn,ψn)
and satisfies the left-hand side inequalities in (5.3). This implies that (un,vn)≤(M(1),M(2))
for all n = 1,2, . . . . It is easy to see that if (φ0,ψ0) > (0,0), then (un,vn) is positive for ev-
ery n, and therefore there exists n0 > 0 and a sufficiently small (δ(1),δ(2)) > (0,0) such
that (un,vn)≥ (δ(1),δ(2)) for n0− s≤ n≤ n0. This ensures that (un,vn) satisfies condition
(4.13). The convergence of (un,vn) to (u∗,v∗) follows from Theorem 4.5. To summarize
the above conclusions, we have the following result.

Theorem 5.1. Let ∆≡ a(1)b(2)− a(2)b
(1)

> 0 and k satisfy condition (3.20), and let (u∗,v∗)
be the positive equilibrium given by (5.6). Then for any nonnegative (φn,ψn) with (φ0,ψ0) >
(0,0), the corresponding solution (un,vn) of (1.4) converges to (u∗,v∗) as n→∞.

5.2. The competition model. (i) In the competition model (1.5), the reaction function
( f (1), f (2)) is

f (1)
(
un,vn,vn−s2

)= α(1)un
(
1− a(1)un− b(1)vn− c(1)vn−s2

)
,

f (2)
(
un,vn,un−s1

)= α(2)vn
(
1− a(2)un− b(2)vn− c(2)un−s1

)
.

(5.9)

Since the above function ( f (1), f (2)) is quasimonotone nonincreasing, the requirement
on (M(1),M(2)), (δ(1),δ(2)) in (3.5) becomes

α(1)M(1)
(
1− a(1)M(1)− b

(1)
δ(2)
)
≤ 0≤ α(1)δ(1)

(
1− a(1)δ(1)− b

(1)
M(2)

)
,

α(2)M(2)
(
1− a(2)δ(1)− b(2)M(2)

)
≤ 0≤ α(2)δ(2)

(
1− a(2)M(1)− b(2)δ(2)

)
.

(5.10)

The above inequalities are satisfied by a sufficiently small (δ(1),δ(2)) > (0,0) and any (M(1),
M(2)) satisfying

1
a(1)

<M(1) <
1

a(2)
,

1
b(2)

<M(2) <
1

b
(1) , (5.11)

provided that a(1) > a(2) and b(2) > b
(1)
.
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(ii) By Theorem 4.3, the solutions (un,vn), (un,vn) converge to some positive equilib-
rium solutions (u,v), (u,v) that satisfy the relation

1− a(1)u− b
(1)
v = 0, 1− a(2)u− b(2)v = 0,

1− a(1)u− b
(1)
v = 0, 1− a(2)u− b(2)v = 0.

(5.12)

A subtraction of the above equations leads to the same relation as that in (5.8). Since

a(1) > a(2) and b(2) > b
(1)

imply ∆ > 0, we have u−u= v− v = 0. This shows that (u,v)=
(u,v)≡ (u∗,v∗), where

(
u∗,v∗

)=
(
b(2)− b

(1)

∆
,
a(1)− a(2)

∆

)
, (5.13)

and is the unique positive equilibrium of (1.5). By Theorem 4.3, the solution (un,vn)
corresponding to any (φn,ψn) in � (with (φ0,ψ0) > (0,0)) converges to (u∗,v∗) as n→∞.

(iii) To show the global attraction of (u∗,v∗), we consider the scalar (uncoupled and
without time delay) initial-value problems

Un =Un−1 + kα(1)Un
(
1− a(1)Un

)
, U0 = φ0,

Vn =Vn−1 + kα(2)Vn
(
1− b(2)Vn

)
, V0 = ψ0 (n= 1,2, . . .).

(5.14)

It is easily seen by a comparison between (1.5) and (5.14) that the positive solution
(un,vn) corresponding to an arbitrary nonnegative (φn,ψn) satisfies (un,vn) ≤ (Un,Vn).
Since by Corollary 4.2, Un → 1/a(1) and Vn → 1/b(2) as n→∞, we see from (5.11) that
there exists a large n0 such that un ≤M(1) and vn ≤M(2) for n≥ n0− s. On the other hand,
since (un,vn) > (0,0) when (φ0,ψ0) > (0,0), there exists n1 ≥ n0 and a sufficiently small
(δ(1),δ(2)) such that (un,vn) ≥ (δ(1),δ(2)) for n0 − s ≤ n ≤ n1. This ensures that (un,vn)
satisfies (4.13). The convergence of (un,vn) to (u∗,v∗) as n → ∞ follows again from
Theorem 4.5. This conclusion leads to the following.

Theorem 5.2. Let a(1) > a(2), b(2) > b
(1)

and k satisfy condition (3.20), and let (u∗,v∗) be
given by (5.13). Then for any nonnegative (φn,ψn) with (φ0,ψ0) > (0,0), the corresponding
solution (un,vn) of (1.5) converges to (u∗,v∗) as n→∞.

5.3. The prey-predator model. (i) In the prey-predator model (1.6), the reaction func-
tion ( f (1), f (2)) is

f (1)
(
un,vn,vn−s2

)= α(1)un
(
1− a(1)un− b(1)vn− c(1)vn−s2

)
,

f (2)
(
un,vn,un−s1

)= α(2)vn
(
1+ a(2)un− b(2)vn + c(2)un−s1

)
,

(5.15)

which is mixed quasimonotone. The requirement in (3.6) for the above function becomes

α(1)M(1)
(
1− a(1)M(1)− b

(1)
δ(2)
)
≤ 0≤ α(1)δ(1)

(
1− a(1)δ(1)− b

(1)
M(2)

)
,

α(2)M(2)
(
1+ a(2)M(1)− b(2)M(2)

)
≤ 0≤ α(2)δ(2)

(
1+ a(2)δ(1)− b(2)δ(2)

)
.

(5.16)
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It is easy to see that the above requirement is fulfilled by a sufficiently small (δ(1),δ(2)) >
(0,0) and any (M(1),M(2)) satisfying

M(1) >
1
a(1)

,
1 + a(2)M(1)

b(2)
≤M(2) <

1

b
(1) . (5.17)

The existence of (M(1),M(2)) satisfying the above relation is ensured if

(
b
(1)

b(2)

)(
1+ a(2)

a(1)

)
< 1. (5.18)

(ii) By Theorem 4.4, the solution ((un,vn),(un,vn)) of (3.28), (5.15) converges to some
limit ((u,v),(u,v)) that satisfies the relation

1− a(1)u− b
(1)
v = 0, 1+ a(2)u− b(2)v = 0,

1− a(1)u− b
(1)
v = 0, 1+ a(2)u− b(2)v = 0.

(5.19)

A subtraction of the above equations leads to relation (5.8). Since condition (5.18) en-
sures ∆ 	= 0, we conclude that u= u and v = v. This shows that (u,v)= (u,v)= (u∗,v∗),
where

(
u∗,v∗

)=
(
b(2)− b

(1)

∆∗
,
a(1) + a(2)

∆∗

)
(5.20)

with ∆∗ ≡ a(1)b(2) + a(2)b
(1)
. Notice from (5.18) that b

(1)
< b(2), so that (u∗,v∗) is a pos-

itive equilibrium of (1.6). By Theorem 4.4, the solution (un,vn) corresponding to any
(φn,ψn) in � converges to (u∗,v∗) as n→∞.

(iii) Let (un,vn) be the solution of (1.6) corresponding to an arbitrary nonnegative
(φn,ψn) with (φ0,ψ0) > (0,0). A comparison between the equation for un in (1.6) and
(5.14) for Un shows that un < Un for all n. This implies that there exists a large n1 such
that un ≤M(1) for n≥ n1 becauseUn→ 1/a(1) as n→∞ and 1/a(1) <M(1). Using the upper
boundM(1) of un in (1.6) for vn, we obtain

vn ≤ vn−1 +α(2)vn
(
1+ a(2)M(1)− b(2)vn

)
, v0 = ψ0. (5.21)

This implies that there exists n2 > 0 such that vn ≤ (1 + a(2)M(1))/b(2) ≤M(2) for n ≥ n2.
The above conclusions show that (un,vn)≤(M(1),M(2)) for n≥n0 where n0=max{n1,n2}.
It follows from the positivity of (un,vn) that condition (4.13) holds for some (δ(1),δ(2)) >
(0,0). The convergence of (un,vn) to (u∗,v∗) follows again from Theorem 4.5. In the
conclusion, we have the following.

Theorem 5.3. Let conditions (5.18), (3.20) be satisfied, and let (u∗,v∗) be given by (5.20).
Then for any nonnegative (φn,ψn) with (φ0,ψ0) > (0,0) the corresponding solution (un,vn)
of (1.6) converges to (u∗,v∗) as n→∞.
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Remark 5.4. The convergence of the solution (un,vn) to (u∗,v∗) for arbitrary nonnega-
tive initial functions (φn,ψn) (with (φo,ψ0) > (0,0)) in Theorems 5.1, 5.2, and 5.3 shows
that the positive equilibrium (u∗,v∗) in the corresponding model problems (1.4), (1.5),
and (1.6) is a global attractor of all positive solutions of (1.1). This implies that the trivial
equilibrium solution (0,0) and the semitrivial equilibrium solutions (1/a(1),0), (0,1/b(2))
are all unstable. Notice that the condition (φ0,ψ0) > (0,0) is needed to ensure the con-
vergence of (un,vn) to (u∗,v∗) because if φ0 = 0 (or ψ0 = 0), then the corresponding
component un (resp., vn) is identically zero for all n.
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