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The method of upper and lower solutions and the generalized quasilinearization technique for
second-order nonlinear m-point dynamic equations on time scales of the type xΔΔ(t) = f(t, xσ),
t ∈ [0, 1]

T
= [0, 1] ∩ T, x(0) = 0, x(σ2(1)) =

∑m−1
i=1 αix(ηi), ηi ∈ (0, 1)

T
,
∑m−1

i=1 αi ≤ 1, are developed.
A monotone sequence of solutions of linear problems converging uniformly and quadratically to
a solution of the problem is obtained.

1. Introduction

Many dynamical processes contain both continuous and discrete elements simultaneously.
Thus, traditional mathematical modeling techniques, such as differential equations or
difference equations, provide a limited understanding of these types of models. A simple
example of this hybrid continuous-discrete behavior appears in many natural populations:
for example, insects that lay their eggs at the end of the season just before the generation dies
out, with the eggs laying dormant, hatching at the start of the next season giving rise to a
new generation. For more examples of species which follow this type of behavior, we refer
the readers to [1].

Hilger [2] introduced the notion of time scales in order to unify the theory of
continuous and discrete calculus. The field of dynamical equations on time scales contain,
links and extends the classical theory of differential and difference equations, besides many
others. There are more time scales than just R (corresponding to the continuous case) and N

(corresponding to the discrete case) and hence many more classes of dynamic equations. An
excellent resource with an extensive bibliography on time scales was produced by Bohner
and Peterson [3, 4].
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Recently, existence theory for positive solutions of boundary value problems (BVPs)
on time scales has attracted the attention of many authors; see, for example, [5–12] and the
references therein for the existence theory of some two-point BVPs, and [13–16] for three-
point BVPs on time scales. For the existence of solutions of m-point BVPs on time scales, we
refer the readers to [17].

However, the method of upper and lower solutions and the quasilinearization
technique for BVPs on time scales are still in the developing stage and few papers are devoted
to the results on upper and lower solutions technique and themethod of quasilinearization on
time scales [18–21]. The pioneering paper onmultipoint BVPs on time scales has been the one
in [21] where lower and upper solutions were combined with degree theory to obtain very
wide-ranging existence results. Further, the authors of [21] studied existence results for more
general three-point boundary conditions which involve first delta derivatives and they also
developed some compatibility conditions. We are very grateful to the reviewer for directing
us towards this important work.

Recently, existence results via upper and lower solutions method and approximation
of solutions via generalized quasilinearization method for some three-point boundary value
problems on time scales have been studied in [16]. Motivated by the work in [16, 17], in this
paper, we extend the results studied in [16] to a class of m-point BVPs of the type

xΔΔ(t) = f(t, xσ(t)), t ∈ [0, 1]
T
,

x(0) = 0, x
(
σ2(1)

)
=

m−1∑

i=1

αix
(
ηi
)
,

(1.1)

where ηi ∈ (0, 1)
T
,
∑m−1

i=1 αi ≤ 1, and t is from a so-called time scale T (which is an arbitrary
closed subset ofR). Existence of at least one solution for (1.1) has already been studied in [17]
by the Krasnosel’skii and Zabreiko fixed point theorems. We obtain existence and uniqueness
results and develop a method to approximate the solutions.

Assume that T has a topology that it inherits from the standard topology on R and
define the time scale interval [0, 1]

T
= {t ∈ T : 0 ≤ t ≤ 1}. For t ∈ T, define the forward jump

operator σ : T → T by σ(t) = inf{s ∈ T : s > t} and the backward jump operator ρ : T → T

by ρ(t) = sup{s ∈ T : s < t}. If σ(t) > t, t is said to be right scattered, and if σ(t) = t, t is said to
be right dense. If ρ(t) < t, t is said to be left scattered, and if ρ(t) = t, t is said to be left dense.

A function f : T → R is said to be rd-continuous provided it is continuous at all right-
dense points of T and its left-sided limit exists at left-dense points of T. A function f : T → R

is said to be ld-continuous provided it is continuous at all left-dense points of T and its right-
sided limit exists at right-dense points of T. Define T

k = T − {m} if T has a left-scattered
maximum at m; otherwise T

k = T. For f : T → R and t ∈ T
k, the delta derivative fΔ(t) of f

at t (if exists) is defined by the following Given that ε > 0, there exists a neighborhood U of t
such that

∣
∣
∣
[
f
(
σ(t) − f(s)

)] − fΔ(t)[σ(t) − s]
∣
∣
∣ ≤ ε|σ(t) − s|, ∀s ∈ U. (1.2)

If there exists a function F : T → R such that FΔ(t) = f(t) for all t ∈ T, F is said to be the
delta antiderivative of f and the delta integral is defined by

∫b

a

f(τ)Δτ = F(b) − F(a), a, b ∈ T. (1.3)
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Definition 1.1. Define C2
rd([0, σ

2(1)]
T
) to be the set of all functions y : T → R such that

C2
rd

([
0, σ2(1)

]

T

)
=
{
y : y, yΔ ∈ C

([
0, σ2(1)

]

T

)
and yΔΔ ∈ Crd([0, 1]T)

}
. (1.4)

A solution of (1.1) is a function y ∈ C2
rd([0, σ

2(1)]
T
) which satisfies (1.1) for each t ∈ [0, 1]

T
.

Let us denote

Crd[[0, 1]T × R] =
{
y(t, x) : y(·, x) is Crd[0, 1]T for every x ∈ R and y(t, ·)
is continuous on R uniformly at each t ∈ [0, 1]

T

}
,

C2
rd([0, 1]T × R) =

{
y(t, x) : y(·, x), yx(·, x), yx(·, x) are Crd[0, 1]T

for every x ∈ R and y(t, ·), yx(t, ·), yxx(t, ·)
are continuous on R uniformly at each t ∈ [0, 1]

T

}
.

(1.5)

The purpose of this paper is to develop the method of upper and lower solutions and the
method of quasilinearization [22–26]. Under suitable conditions on f , we obtain a monotone
sequence of solutions of linear problems. We show that the sequence of approximants
converges uniformly and quadratically to a unique solution of the problem.

2. Upper and Lower Solutions Method

We write the BVP (1.1) as an equivalent Δ-integral equation

x(t) =
∫σ(b)

a

G(t, s)f(s, xσ(s))Δs, t ∈ [0, σ2(1)]
T
, (2.1)

where G(t, s) is a Green’s function for the problem

yΔΔ(t) =, t ∈ [0, 1]
T
,

y(0) = 0, y
(
σ2(1)

)
−

m−1∑

i=1

αix
(
ηi
)
= 0,

(2.2)

and it is given by [17]

G(t, s) =

⎧
⎪⎪⎪⎪⎪⎪⎨

⎪⎪⎪⎪⎪⎪⎩

t

[

1 +
1
T

[
k∑

i=1

αi

(
σ
(
ηi
) − σ(s)

) − σ(s)α
)
]]

, t ≤ s, σ
(
ηk

) ≤ s ≤ ηk+1,

σ(s) +
t

T

[
k∑

i=1

αi

(
σ
(
ηi
) − σ(s)

) − σ(s)α
)
]

, σ(s) ≤ t, σ
(
ηk

) ≤ s ≤ ηk+1,

(2.3)

where k = 0, 1, 2, . . . , m − 1, η0 = 0, and ηk+1 = σ2(1).
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Notice that G(t, s) > 0 on (0, σ2(1))
T
× (0, σ(1))

T
and is rd-continuous. Define an

operator N : C[0, σ2(1)]
T
→ C[0, σ2(1)]

T
by

(Nx)(t) =
∫σ(1)

0
G(t, s)f(s, xσ(s))Δs, t ∈ [0, σ2(1)]

T
. (2.4)

By a solution of (2.1), we mean a solution of the operator equation

(I −N)x = 0, that is, a fixed point of N, (2.5)

where I is the identity. If f ∈ C[[0, 1]
T
× R] and is bounded on [0, 1]

T
× R, then by Arzela-

Ascoli theorem N is compact and Schauder’s fixed point theorem yields a fixed point of N.
We discuss the case when f is not necessarily bounded on [0, σ2(1)]

T
× R.

Definition 2.1. We say that α ∈ C2
rd[0, σ

2(1)]
T
is a lower solution of the BVP (1.1), if

αΔΔ(t) ≥ f(t, ασ(t)), t ∈ [0, 1]
T
,

α(0) ≤ 0, α
(
σ2(1)

) ≤
m−1∑

i=1
αiα

(
ηi
)
.

(2.6)

Similarly, β ∈ C2
rd[0, σ

2(1)]
T
is an upper solution of the BVP (1.1) if

βΔΔ(t) ≤ f
(
t, βσ(t)

)
, t ∈ [0, 1]

T
,

β(0) ≥ 0, β
(
σ2(1)

) ≥
m−1∑

i=1
αiβ

(
ηi
)
.

(2.7)

Theorem 2.2. (comparison result) Assume that α, β are lower and upper solutions of the boundary
value problem (1.1). If f(t, x) ∈ Crd[[0, 1]T × R] and is strictly increasing in x for each t ∈
[0, σ2(1)]

T
, then α ≤ β on [0, σ2(1)]

T
.

Proof. Define v(t) = α(t)− β(t), t ∈ [0, σ2(1)]
T
. Then v ∈ C2

rd[0, σ
2(1)]

T
and the BCs imply that

v(0) ≤ 0, v
(
σ2(1)

)
≤

m−1∑

i=1

αiv
(
ηi
)
. (2.8)

Assume that the conclusion of the theorem is not true. Then, v has a positive maximum at
some t0 ∈ [0, σ2(1)]

T
. Clearly, t0 > 0. If t0 ∈ (0, σ2(1))

T
, then, the point t0 is not simultaneously

left dense and right scattered; see, for example, [12]. Hence by Lemma 1 of [12],

vΔΔ(ρ(t0)
) ≤ 0. (2.9)

On the other hand, using the definitions of lower and upper solutions, we obtain

vΔΔ(ρ(t0)
)
= αΔΔ(ρ(t0)

) − βΔΔ(ρ(t0)
) ≥ f

(
ρ(t0), ασ(ρ(t0)

)) − f
(
ρ(t0), βσ

(
ρ(t0)

))
. (2.10)
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Since t0 is not simultaneously left dense and right scattered, it is left scattered and right
scattered, left dense and right dense, or left scattered and right dense. In either case σ(ρ(t0)) =
t0. Using the increasing property of f(t, x) in x, we obtain

vΔΔ(ρ(t0)
)
> 0, (2.11)

a contradiction. Hence v(t) has no positive local maximum.
If t0 = σ2(1), then v(σ2(1)) > 0. If any one of the ηi is such that v(ηi) = v(σ2(1)), then v

has a positive local maximum, a contradiction. Hence

v
(
ηi
)
< v

(
σ2(1)

)
, for each i = 1, 2, 3, . . . , m − 1. (2.12)

Moreover, if αi = 0 for each i = 1, 2, 3, . . . , m − 1, then, from the BCs

v
(
σ2(1)

)
≤

m−1∑

i=1

αiv
(
ηi
)
, (2.13)

we have v(σ2(1)) ≤ 0, a contradiction. Hence, αi /= 0 for some i = 1, 2, 3, . . . , m − 1, and
consequently, in view of (2.12) and the BCs, it follows that

v
(
σ2(1)

)
≤

m−1∑

i=1

αiv
(
ηi
)
<

m−1∑

i=1

αiv
(
σ2(1)

)
. (2.14)

Hence, [1 −∑m−1
i=1 αi]v(σ2(1)) < 0, which leads to

∑m−1
i=1 αi > 1, a contradiction.

Hence t0 /=σ2(1). Thus, v(t) ≤ 0 on [0, σ2(1)]
T
.

Corollary 2.3. Under the hypotheses of Theorem 2.2, the solutions of the BVP (1.1), if they exist, are
unique.

The following theorem establishes existence of solutions to the BVP (1.1) in the
presence of well-ordered lower and upper solutions.

Theorem 2.4. Assume that α, β are lower and upper solutions of the BVP (1.1) such that α ≤
β on [0, σ2(1)]

T
. If f(t, x) ∈ Crd[[0, 1]T × R], then the BVP (1.1) has a solution x such that

α ≤ x ≤ β, on [0, σ2(1)]
T
. (2.15)

The proof essentially is a minor modification of the ideas in [21] and so is omitted.

3. Generalized Approximations Technique

We develop the approximation technique and show that, under suitable conditions on
f , there exists a bounded monotone sequence of solutions of linear problems that
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converges uniformly and quadratically to a solution of the nonlinear original problem. If
(∂2/∂x2)f(t, x) ∈ C[[0, 1]

T
× R] and is bounded on [0, σ2(1)]

T
× [α, β], where

α = min
{
α(t), t ∈ [0, σ2(1)]

T

}
, β = max

{
β(t), t ∈ [0, σ2(1)]

T

}
, (3.1)

there always exists a function Φ such that

∂2

∂x2

[
f(t, x) + Φ(t, x)

] ≤ 0, on [0, 1]
T
×
[
α, β

]
, (3.2)

where Φ ∈ C2
rd([0, σ

2(1)]
T
× R), and it is such that (∂2/∂x2)Φ(t, x) ≤ 0 on [0, σ2(1)]

T
× [α, β].

For example, let M = max{|fxx(t, x)| : (t, x) ∈ [0, σ2(1)]
T
× [α, β]}, then we choose Φ = −t −

(M/2)x2. Clearly,

∂2

∂x2

[
f(t, x) + Φ(t, x)

] ≤ 0, on [0, σ2(1)]
T
×
[
α, β

]
. (3.3)

Define F : [0, 1]
T
×R → R by F(t, x) = f(t, x) +Φ(t, x). Note that F ∈ C2

rd([0, σ
2(1)]

T
×R) and

∂2

∂x2
F(t, x) ≤ 0, on [0, 1]

T
×
[
α, β

]
. (3.4)

Theorem 3.1. Assume that

(A1) α, β are lower and upper solutions of the BVP (1.1) such that α ≤ β on [0, σ2(1)]
T
,

(A2) f ∈ C2
rd
([0, σ2(1)]

T
× R) and f is increasing in x for each t ∈ [0, σ2(1)]

T
.

Then, there exists a monotone sequence {wn} of solutions of linear problems converging uniformly
and quadratically to a unique solution of the BVP (1.1).

Proof. Conditions (A1) and (A2) ensure the existence of a unique solution x of the BVP (1.1)
such that

α(t) ≤ x(t) ≤ β(t), t ∈ [0, σ2(1)]
T
. (3.5)

In view of (3.4), we have

f(t, x) ≤ f
(
t, y

)
+ Fx

(
t, y

)(
x − y

) − [
Φ(t, x) −Φ

(
t, y

)]
, on [0, 1]

T
×
[
α, β

]
. (3.6)

The mean value theorem and the fact that Φx is nonincreasing in x on [α, β] for each t ∈
[0, σ2(1)]

T
yield

Φ(t, x) −Φ
(
t, y

)
= Φx(t, c)

(
x − y

) ≥ Φx

(
t, β

)(
x − y

)
, for x ≥ y, (3.7)
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where x, y ∈ [α, β] such that y ≤ c ≤ x. Substituting in (3.6), we have

f(t, x) ≤ f
(
t, y

)
+
[
Fx

(
t, y

) −Φx

(
t, β

)](
x − y

)
, for x ≥ y, (3.8)

on [0, σ2(1)]
T
× [α, β]. Define g : [0, σ2(1)]

T
× R

2 → R by

g
(
t, x, y

)
= f

(
t, y

)
+
[
Fx

(
t, y

) −Φx

(
t, β

)](
x − y

)
. (3.9)

We note that g(t, ., .) is continuous for each t ∈ [0, 1]
T
and g(., x, y) is rd-continuous for each

(x, y) ∈ R
2. Moreover, g satisfies the following relations on [0, 1]

T
× [α, β]:

gx
(
t, x, y

)
= Fx

(
t, y

) −Φx

(
t, β

)
≥ Fx

(
t, y

) −Φx

(
t, y

)
= fx

(
t, y

) ≥ 0, (3.10)

f(t, x) ≤ g
(
t, x, y

)
, for x ≥ y,

f(t, x) = g(t, x, x).
(3.11)

Now, we develop the iterative scheme to approximate the solution. As an initial approxima-
tion, we choose w0 = α and consider the linear problem

xΔΔ(t) = g
(
t, xσ(t), wσ

0 (t)
)
, t ∈ [0, 1]

T
,

x(0) = 0, x
(
σ2(1)

)
=

m−1∑

i=1

αix
(
ηi
)
.

(3.12)

Using (3.11) and the definition of lower and upper solutions, we get

g
(
t,wσ

0 (t), w
σ
0 (t)

)
= f

(
t,wσ

0 (t)
) ≤ wΔΔ

0 (t), t ∈ [0, 1]
T
,

g
(
t, βσ(t), wσ

0 (t)
) ≥ f

(
t, βσ(t)

) ≥ βΔΔ(t), t ∈ [0, 1]
T
,

(3.13)

which imply that w0 and β are lower and upper solutions of (3.12), respectively. Hence by
Theorem 2.4 and Corollary 2.3, there exists a unique solution w1 ∈ C2

rd[0, σ
2(1)]

T
of (3.12)

such that

w0(t) ≤ w1(t) ≤ β(t), on
[
0, σ2(1)

]

T

. (3.14)

Using (3.11) and the fact that w1 is a solution of (3.12), we obtain

wΔΔ
1 (t) = g

(
t,wσ

1 (t), w
σ
0 (t)

) ≥ f
(
t,wσ

1 (t)
)
, t ∈ [0, 1]

T
,

w1(0) = 0, w1

(
σ2(1)

)
=

m−1∑

i=1

αiw1
(
ηi
)
,

(3.15)
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which implies that w1 is a lower solution of the problem (1.1). Similarly, in view of (A1),
(3.11), and (3.15), we can show that w1 and β are lower and upper solutions of the problem

xΔΔ(t) = g
(
t, xσ(t), wσ

1 (t)
)
, t ∈ [0, 1]

T
,

x(0) = 0, x
(
σ2(1)

)
=

m−1∑

i=1

αix
(
ηi
)
.

(3.16)

Hence by Theorem 2.4 and Corollary 2.3, there exists a unique solutionw2 ∈ C2
rd[0, σ

2(1)]
T
of

the problem (3.16) such that

w1(t) ≤ w2(t) ≤ β(t), on
[
0, σ2(1)

]

T

. (3.17)

Continuing in the above fashion, we obtain a bounded monotone sequence {wn} of
solutions of linear problems satisfying

w0(t) ≤ w1(t) ≤ w2(t) ≤ w3(t) ≤ · · · ≤ wn(t) ≤ β(t), on [0, σ2(1)]
T
, (3.18)

where the element wn of the sequence is a solution of the linear problem

xΔΔ(t) = g
(
t, xσ(t), wσ

n−1(t)
)
, t ∈ [0, 1]

T
,

x(0) = 0, x
(
σ2(1)

)
=

m−1∑

i=1

αix
(
ηi
)
,

(3.19)

and is given by

wn(t) =
∫σ(1)

0
G(t, s)g

(
s,wσ

n(s), w
σ
n−1(s)

)
Δs, t ∈

[
0, σ2(1)

]

T

. (3.20)

By standard arguments as in [19], the sequence converges to a solution of (1.1).
Now, we show that the convergence is quadratic. Set vn+1(t) = x(t) − wn+1(t), t ∈

[0, σ2(1)]
T
, where x is a solution of (1.1). Then, vn+1(t) ≥ 0 on [0, σ2(1)]

T
and the boundary

conditions imply that

vn+1(0) = 0, vn+1

(
σ2(1)

)
=

m−1∑

i=1

αivn+1
(
ηi
)
. (3.21)
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Now, in view of the definitions of F and g, we obtain

vΔΔ
n (t) = f(t, xσ(t)) − g

(
s,wσ

n(t), w
σ
n−1(t)

)

= [F(t, xσ(t)) −Φ(t, xσ(t))]

−
[
f
(
t,wσ

n−1(t)
)
+
(
Fx

(
t,wσ

n−1(t)
) −Φx

(
t, β

))(
wσ

n(t) −wσ
n−1(t)

)]

=
[
F(t, xσ(t)) − F

(
t,wσ

n−1(t)
) − Fx

(
t,wσ

n−1(t)
)(
wσ

n(t) −wσ
n−1(t)

)]

−
[
Φ(t, xσ(t)) −Φ

(
t,wσ

n−1(t)
) −Φx

(
t, β

)(
wσ

n(t) −wσ
n−1(t)

)]
, t ∈ [0, 1]

T
.

(3.22)

Using the mean value theorem repeatedly and the fact that Φxx ≤ 0 on [0, 1]
T
× [α, β], we

obtain

Φ(t, xσ(t)) −Φ
(
t,wσ

n−1(t)
) ≤ Φx

(
t,wσ

n−1(t)
)(
xσ(t) −wσ

n−1(t)
)
,

F(t, xσ(t)) − F
(
t,wσ

n−1(t)
) − Fx

(
t,wσ

n−1(t)
)(
wσ

n(t) −wσ
n−1(t)

)

= Fx

(
t,wσ

n−1(t)
)(
xσ(t) −wσ

n−1(t)
)
+
Fxx(t, ξ)

2
(
xσ(t) −wσ

n−1(t)
)2

− Fx

(
t,wσ

n−1(t)
)(
wσ

n(t) −wσ
n−1(t)

)

= Fx

(
t,wσ

n−1(t)
)
(xσ(t) −wσ

n(t)) +
Fxx(t, ξ)

2
(
xσ(t) −wσ

n−1(t)
)2

≥ Fx

(
t,wσ

n−1(t)
)
(xσ(t) −wσ

n(t)) − d‖vn−1‖2,

(3.23)

where wσ
n−1(t) ≤ ξ ≤ xσ(t), d = max{|Fxx(t, x)|/2 : (t, x) ∈ [0, σ2(1)]

T
× [α, β]}, and ‖v‖ =

max{v(t) : t ∈ [0, σ2(1)]
T
}. Hence (3.22) can be rewritten as

vΔΔ
n (t) ≥ Fx

(
t,wσ

n−1(t)
)
(xσ(t) −wσ

n(t)) − d‖vn−1‖2

−Φx

(
t,wσ

n−1(t)
)(
xσ(t) −wσ

n−1(t)
)
+ Φx

(
t, β

)(
wσ

n(t) −wσ
n−1(t)

)

= fx
(
t,wσ

n−1(t)
)
(xσ(t) −wσ

n(t)) − d‖vn−1‖2

+
[
Φx

(
t, β

)
−Φx

(
t,wσ

n−1(t)
)](

wσ
n(t) −wσ

n−1(t)
)

= fx
(
t,wσ

n−1
)
(xσ(t) −wσ

n(t)) − d‖vn−1‖2 + Φxx(t, ξ1)
(
β −wσ

n−1(t)
)(

wσ
n(t) −wσ

n−1(t)
)

≥ fx
(
t,wσ

n−1
)
(xσ(t) −wσ

n(t)) − d‖vn−1‖2 + Φxx(t, ξ1)
(
β −wσ

n−1(t)
)(

xσ
n(t) −wσ

n−1(t)
)

≥ −d‖vn−1‖2 − d1

∣
∣
∣β −wσ

n−1(t)
∣
∣
∣
∣
∣xσ(t) −wσ

n−1(t)
∣
∣, t ∈ [0, 1]

T
, (3.24)
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wherewσ
n−1(t) ≤ ξ1 ≤ wσ

n(t), d1 = max{|Φxx| : (t, x) ∈ [0, 1]
T
× [α, β]}, and we used the fact that

fx ≥ 0 on [0, 1]
T
× [α, β]. Choose r > 1 such that

∣
∣βσ(t) −wσ

n−1(t)
∣
∣ ≤ r

∣
∣xσ(t) −wσ

n−1(t)
∣
∣, on [0, 1]

T
. (3.25)

Therefore, we obtain

vΔΔ
n (t) ≥ −d2‖vn−1‖2, t ∈ [0, 1]

T
, (3.26)

where d2 = d + rd1.
By comparison result, vn(t) ≤ z(t), t ∈ [0, 1]

T
, where z(t) is the unique solution of the

linear BVP

zΔΔ(t) = d2‖vn−1‖2, t ∈ [a, b]
T
,

z(0) = 0, z
(
σ2(1)

)
=

m−1∑

i=1

αiz
(
ηi
)
.

(3.27)

Hence,

vn(t) ≤ z(t) = d2

∫σ(1)

0
G(t, s)‖vn−1‖2Δs ≤ d3‖vn−1‖2, (3.28)

where d3 = d2 max{∫σ(1)0 |G(t, s)|Δs : t ∈ [0, σ2(1)]
T
}. Taking the maximum over [0, 1]

T
, we

obtain

‖vn‖ ≤ d3‖vn−1‖2, (3.29)

which shows the quadratic convergence.

Acknowledgement

The authors are thankful to reviewers for their valuable comments and suggestions.

References

[1] F. B. Christiansen and T. M. Fenchel, “Theories of Populations in Biological Communities, Ecological
Studies,” vol. 20, Springer, Berlin, Germany, 1977.

[2] S. Hilger, “Analysis on measure chains—a unified approach to continuous and discrete calculus,”
Results in Mathematics, vol. 18, no. 1-2, pp. 18–56, 1990.

[3] M. Bohner and A. Peterson, Dynamic Equations on Time Scales: An Introduction with Applications,
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