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2 Departamento de Matemática, Universidade Federal de Pernambuco, Recife, PE 50540-740, Brazil

Correspondence should be addressed to Claudio Cuevas, cch@dmat.ufpe.br

Received 12 April 2010; Accepted 2 September 2010

Academic Editor: Rigoberto Medina

Copyright q 2010 H. R. Henrı́quez and C. Cuevas. This is an open access article distributed under
the Creative Commons Attribution License, which permits unrestricted use, distribution, and
reproduction in any medium, provided the original work is properly cited.

Approximate controllability for semilinear abstract discrete-time systems is considered. Specifi-
cally, we consider the semilinear discrete-time system xk+1 = Akxk + f(k, xk) +Bkuk , k ∈ N0, where
Ak are bounded linear operators acting on a Hilbert space X, Bk are X-valued bounded linear
operators defined on a Hilbert space U, and f is a nonlinear function. Assuming appropriate
conditions, we will show that the approximate controllability of the associated linear system
xk+1 = Akxk + Bkuk implies the approximate controllability of the semilinear system.

1. Introduction

In this paper we deal with the controllability problem for semilinear distributed discrete-time
control systems. In order to specify the class of systems to be considered, we setX for the state
space and U for the control space. We assume that X and U are Hilbert spaces. Moreover,
throughout this paper we denote by Ak : X → X bounded linear operators, Bk : U → X,
k ∈ N0, bounded linear maps that represent the control action, and f : N0 × X → X a map
such that f(k, ·) is continuous for each k ∈ N0. Furthermore,Ak, Bk, and f satisfy appropriate
conditions which will be specified later. We will study the controllability of control systems
described by the equation

xk+1 = Akxk + f(k, xk) + Bkuk, k ∈ N0, x0 ∈ X, (1.1)

where xk ∈ X, uk ∈ U.
The study of controllability is an important topic in systems theory. In particular,

the controllability of systems similar to (1.1) has been the object of several works. We only
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mention here [1–11] and the references cited therein. Specially, Leiva and Uzcategui [5] have
studied the exact controllability of the linear and semilinear system. However, it is well
known [12–16] that most of continuous distributed systems that arise in concrete situations
are not exactly controllable but only approximately controllable. A similar situation has been
established in [10] in relation with the discrete wave equation and in [11] in relation with the
discrete heat equation (see [17–22]). As mentioned in this paper, the lack of controllability is
related to the fact that the spaces in which the solutions of these systems evolve are infinite
dimensional.

For this reason, in this paper we study the approximate controllability of system
(1.1). Specifically, we will compare the approximate controllability of system (1.1) with the
approximate controllability of linear system

xk+1 = Akxk + Bkuk, k ∈ N0, x0 ∈ X, (1.2)

where xk ∈ X and uk ∈ U.
Throughout this paper, for Hilbert spacesX, Y , we denote byL(X,Y ) the Banach space

of bounded linear operators from X into Y , and we abbreviate this notation by L(X) for
X = Y . Moreover, for a linear operator Swe denote by R(S) the range space of S.

The following property of Hilbert spaces is essential for our treatment of controllabil-
ity.

Lemma 1.1. Let X be a Hilbert space, and let Y1, Y2 be closed subspaces of X such that X = Y1 + Y2.
Then there exists a bounded linear projection P : X → Y2 such that for each x ∈ X, x1 = x−Px ∈ Y1

and

‖x1‖ = min
{∥∥y

∥∥ : y ∈ Y1, x = y + z, z ∈ Y2
}
. (1.3)

In the next section we study the controllability of systems of type (1.1) when the
state space X is a Hilbert space and, in Section 3, we will apply our results to study the
controllability of a typical system.

2. Approximate Controllability

Throughout this section, we assume that X and U are Hilbert spaces endowed with an inner
product denoted generically by 〈·〉. In this case, for n ∈ N, Xn and Un are also Hilbert
spaces. The inner product in Xn is given by 〈〈x, y〉〉 =

∑n−1
i=0 〈xi, yi〉 for x = (xi)i=0,...,n−1,

y = (yi)i=0,...,n−1, and similarly forUn.
Let Φ be the evolution operator associated to the linear homogeneous equation

xk+1 = Akxk, k ∈ N0, x0 ∈ X. (2.1)

It is well known [4, 5] that

Φ
(
k, j

)
= Ak−1 · · ·Aj, k > j,

Φ(k, k) = I.
(2.2)
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Furthermore, the solution of (1.2) is given by

xn = Φ(n, 0)x0 +
n∑

k=1

Φ(n, k)Bk−1uk−1, n ∈ N. (2.3)

We will abbreviate the notation by writing x(x0, u) for this solution.
We define the bounded linear operator Sn : Un → X by

Sn(u) =
n∑

k=1

Φ(n, k)Bk−1uk−1. (2.4)

It is clear that xn(0, u) = Sn(u).
The system (1.2) is said to be exactly controllable (or simply controllable) on [0, n] if

R(Sn) = X.

Definition 2.1. System (1.2) is said to be approximately controllable on [0, n] if the spaceR(Sn)
is dense in X and approximately controllable in finite time if the space

⋃
n∈N0

R(Sn) is dense
in X.

If the system (1.2) is approximately controllable on [0, n] andX is a finite-dimensional
space, then the system (1.2) is controllable on [0, n].

We introduce the reachability set R0(n, x0) of system (1.2) as the set consisting of the
values xn(x0, u). Clearly, system (1.2) is approximately controllable on [0, n] if and only if
R0(n, x0) is dense in X for every x0 ∈ X. A weaker property of controllability is established
in the following definition.

Definition 2.2. System (1.2) is said to be approximately controllable to the origin on [0, n] if
0 ∈ R0(n, x0) for every x0 ∈ X and approximately controllable to the origin in finite time if
0 ∈ ⋃

n∈N0
R0(n, x0) for every x0 ∈ X.

On the other hand, for x0 ∈ X, (1.1) has a unique solution which satisfies the equation

xn = Φ(n, 0)x0 +
n∑

k=1

Φ(n, k)
[
Bk−1uk−1 + f(k − 1, xk−1)

]
, n ∈ N. (2.5)

Proceeding as in Definitions 2.1 and 2.2, we next consider the approximate controllability for
system (1.1). Let x = x(x0, f, u) be the solution of (1.1) with initial condition x0 and control
function u. We introduce the reachability set Rf(n, x0) of system (1.1) as the set consisting of
the values xn.

Definition 2.3. System (1.1) is said to be

(a) approximately controllable on [0, n] if Rf(n, 0) is dense in X,

(b) approximately controllable in finite time if
⋃

n∈N Rf(n, 0) is dense in X,

(c) approximately controllable to the origin on [0, n] if 0 ∈ Rf(n, x0) for every x0 ∈ X,

(d) approximately controllable to the origin in finite time if 0 ∈ ⋃
n∈N Rf(n, x0) for every

x0 ∈ X.
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We next introduce some additional notations. The operators Jn : Xn → Xn and Jn :
Xn → X are given by

Jn(x)k =
k∑

i=1

Φ(k, i)xi−1, k = 1, 2, . . . , n − 1; Jn(x)0 = 0,

Jn(x) =
n∑

i=1

Φ(n, i)xi−1.

(2.6)

It is clear that Jn and Jn are bounded linear operators. We set N(n) = ker(Jn). Moreover, we
denote by B̂n : Un → Xn the operator defined by B̂n(uk) = (Bkuk).

We denote by Xn
0 the space consisting of x ∈ Xn such that x0 = 0.

Next we will show that a modification of an argument of Sukavanam [23] can be
applied to compare the approximate controllability of systems (1.1) and (1.2).

For fixed n ∈ N and x ∈ Xn, we begin by defining the map Fn : Xn
0 → Xn by Fn(zk) =

(f(k, xk + zk))k=0,1,...,n−1. It is clear that F
n is a continuous map.

On the other hand, under the assumption that

N(n) + R
(
B̂n

)
= Xn, (2.7)

we denote by Pn the projection constructed as in Lemma 1.1 with Y2 = N(n) and Y1 = R(B̂n).
We introduce the space

Z =
{
z ∈ Xn

0 : z = Jn
(
y
)
, y ∈ N(n)

}
, (2.8)

and we define the map Γn : Z → Z by

Γn = Jn ◦ Pn ◦ Fn. (2.9)

We next study the existence of fixed points for Γn. In the following statement, we denote
γn = ‖Jn ◦ Pn‖.

Lemma 2.4. Assume that

∥∥f
(
k, y

) − f(k,w)
∥∥ ≤ Lk

∥∥y −w
∥∥, k ∈ N0, (2.10)

for all y,w ∈ X. If γn maxk=0,...,n−1Lk < 1, then Γn has a fixed point.
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Proof. It is easy to see that Γn is a contraction map. In fact, since Jn and Pn are bounded linear
maps, we have

‖Γn(zk) − Γn(wk)‖2 ≤ γ2n‖Fn(zk) − Fn(wk)‖2 ≤ γ2n

n−1∑

k=0

∥
∥f(k, zk) − f(k,wk)

∥
∥2

≤ γ2n

n−1∑

k=0

L2
k‖zk −wk‖2 ≤ γ2n

(
max

k=0,...,n−1
L2
k

)
‖(zk)k − (wk)k‖2,

(2.11)

which implies that Γn is a contraction.

In what follows we always assume that f satisfies the Lipschitz condition (2.10).

Under certain conditions we can modify our hypothesis N(n) + R(B̂n) = Xn.

Lemma 2.5. Assume that R(B̂n) ⊆ (R(B̂n) ∩N(n)) ⊕N(n)⊥ and the spaceN(n) +R(B̂n) is dense

in Xn. Then N(n) + R(B̂n) = Xn.

Proof. Let x ∈ Xn. There exist sequences (ym)m in N(n) and (um)m in Un such that B̂num +
ym → x as m → ∞. Let Q : Xn → Xn be the orthogonal projection on N(n). Therefore,
(I − Q)B̂num + QB̂num + ym → x as m → ∞. Since (I − Q)B̂num ∈ R(B̂)n ∩ N(n)⊥ and
QB̂num +ym ∈ N(n), we can assert that the sequence (I −Q)B̂num converges to some element

y1 ∈ R(B̂n) and the sequence QB̂num + ym ∈ N(n) converges to some element y2 ∈ N(n).

Consequently, x = y2 + y1 ∈ N(n) + R(B̂n), which completes the proof.

Related to this result, it is worthwhile to point out that if Bk has a continuous left
inverse for each k ∈ N0, then the space R(B̂n) is closed. Moreover, if kerBk = {0} and the
range of Bk is a closed subspace, which occurs, for instance, when U is a finite dimensional
space, then Bk has a continuous left inverse.

Theorem 2.6. Assume that γn maxk=0,...,n−1Lk < 1 and condition (2.7) holds. Then R0(n, x0) ⊆
Rf(n, x0) for all x0 ∈ X.

Proof. Let u = (uk)k=0,1,...,n−1 be a control vector, and let x = (xk)k=0,1,...,n be the solution of (1.2)
with initial condition x0. In what follows, we apply our construction preceding Lemma 2.4
with the vector (xk)k=0,1,...,n−1. Let z = (zk)k=0,1,...,n−1 be a fixed point of Γn. Clearly z0 = 0 and
Jn(Pn(Fn(z))) = 0. We set zn = 0. We now apply Lemma 1.1 to Fn(z), with respect to spaces

Y1 = R(B̂n) and Y2 = N(n). We set qn = Fn(z)−Pn(Fn(z)) ∈ R(B̂n), and we define yk = zk+xk,
for k = 0, 1, . . . , n. It follows from this construction that xn = yn, and combining the properties
of x and z, we obtain that

yk = Γn(z)k + xk = Jn(Pn ◦ Fn(z))k + xk

= Jn
(
Fn(z) − qn

)
k + Φ(k, 0)x0 + Jn

(
B̂nu

)

k

= Φ(k, 0)x0 +
k∑

i=1

Φ(k, i)
[
f
(
i − 1, yi−1

) − qni−1 + Bi−1ui−1
]

(2.12)
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for k = 1, 2, . . . , n − 1. We can also see directly that (2.12) hods for k = n. We select a sequence
vm ∈ Un such that Bkv

m
k

→ qn as m goes to infinity and k = 0, 1, . . . , n − 1. We denote by ym

the solution of (2.12) when we substitute qn by B̂nvm. Hence, we can write

ym
k = Φ(k, 0)x0 +

k∑

i=1

Φ(k, i)
[
f
(
i − 1, ym

i−1
)
+ Bi−1

(
ui−1 − vm

i−1
)]
. (2.13)

This expression and (2.3) show that ym is the solution of the equation

pk+1 = Akpk + f
(
k, pk

)
+ Bk

(
uk − vm

k

)
(2.14)

with initial condition p0 = x0. Therefore, ym
n ∈ Rf(n, x0). Since the solution of (2.3) depends

continuously on f , we infer that ym
n converges to yn asm → ∞. Consequently, yn ∈ Rf(n, x0).

Hence, from our previous considerations, we can assert that

R0(n, x0) ⊆ Rf(n, x0), (2.15)

which completes the proof.

Now we are able to establish the following criteria for the approximate controllability
of system (1.1). The next property is an immediate consequence of Theorem 2.6.

Theorem 2.7. Assume that γn maxk=0,...,n−1Lk < 1, the control system (1.2) is approximately

controllable on [0, n] and the space N(n) + R(B̂n) = Xn. Then the system (1.1) is approximately
controllable on [0, n].

We are also in a position to establish the following result.

Theorem 2.8. Assume that the following conditions hold:

(a) the control system (1.2) is approximately controllable in finite time;

(b) for all n ∈ N, the space N(n) + R(B̂n) = Xn;

(c) for all n ∈ N, γn maxk=0,...,n−1Lk < 1.

Then system (1.1) is approximately controllable in finite time.

Proof. Proceeding as in the proof of Theorem 2.6, we can write

⋃

n∈N
R0(n, x0) ⊆

⋃

n∈N
Rf(n, x0) ⊆

⋃

n∈N
Rf(n, x0), (2.16)

which shows that
⋃

n∈N Rf(n, x0) is dense in X.

Similar results for approximate controllability to the origin can be established. On
the other hand, with appropriate hypotheses we can estimate the controls involved in
the strategies of controllability and approximate controllability. This property allows us to



Advances in Difference Equations 7

compare the controllability in spaces of infinite dimension with the controllability in spaces
of finite dimension.

Theorem 2.9. Assume that the control system (1.2) is controllable on [0, n], condition (2.7) holds,
each operator Bk has a continuous left inverseCk, for k = 0, . . . , n−1, and γn maxk=0,...,n−1Lk < 1. Then
there exists constants M,N > 0 such that for every x ∈ X and ε > 0 there exists a control sequence
wk, k = 0, 1, . . . , n − 1, with ‖wk‖ ≤ M‖x‖ +N and ‖pn − x‖ ≤ ε, where pk, k = 0, 1, . . . , n − 1, is
the solution of (1.1) corresponding to wk.

Proof. It follows from the controllability of system (1.2) that Sn : Un → X is a surjective
bounded linear map. We infer that there exists a constant c1 > 0 such that for each x ∈ X
there exists (uk)k:=0,...,n−1 such that S(uk) = x and ‖(uk)‖ ≤ c1‖x‖. Let xk, k = 0, 1, . . . , n − 1,
be the solution of (1.2) corresponding to uk. Since Ak and Bk are uniformly bounded for
k = 0, 1, . . . , n − 1, we can conclude that there exists a constant c2 > 0 such that ‖xk‖ ≤ c2‖x‖
for k = 0, 1, . . . , n − 1. In the rest of this proof we apply the construction carried out in the
proof of Theorem 2.6. Let z be the fixed point of Γn. From

∥∥f(k, xk)
∥∥ ≤ Lkc2‖x‖ +

∥∥f(k, 0)
∥∥ (2.17)

we deduce that

‖z‖ ≤ ‖Γn(z) − Γn(0)‖ + ‖Γn(0)‖ ≤ γn max
k=0,...,n−1

Lk‖z‖ + c3‖x‖ + c4, (2.18)

which in turn implies that

‖z‖ ≤ 1
1 − γn maxk=0,...,n−1Lk

(c3‖x‖ + c4) (2.19)

which we abbreviate as

‖z‖ ≤ c5‖x‖ + c6. (2.20)

Proceeding in a similar way, we can obtain an estimate

‖Fn(z)‖ ≤ c7‖x‖ + c8. (2.21)

Hence, qn = Fn(z) − PnFn(z) can also be estimated as

∥∥qn
∥∥ ≤ c9‖x‖ + c10. (2.22)

We can choose a sequence vm
k such that ‖qn − Bkv

m
k ‖ ≤ 1 and ym

n → yn = xn = x as m → ∞.
Therefore, we can takem large enough such that ‖ym

n −x‖ ≤ ε. Since ym
n is the solution of (1.1)
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corresponding to controls wk = uk − vm
k , to complete the proof we only need to estimate

∥
∥vm

k

∥
∥ =

∥
∥CkBkv

m
k

∥
∥ ≤ ∥

∥Ck

(
Bkv

m
k − qn

)∥∥ +
∥
∥Ckq

n
∥
∥ ≤ ‖Ck‖

(
1 +

∥
∥qn

∥
∥), (2.23)

and the assertion is consequence of (2.22).

2.1. The Finite-Dimensional Case

Certainly condition (2.7) considered in our previous results is strong. However, the following
property holds.

Theorem 2.10. Assume that X is a space of finite dimension. Then the linear system (1.2) is
controllable on [0, n] if, and only if, condition (2.7) holds.

Proof. Since X has finite dimension, R(B̂n) = R(B̂n). Assume initially that system (1.2) is
controllable on [0, n]. Let x = (x0, x1, . . . , xn−1) ∈ Xn. Using the property of controllability, it
follows from [4, Corollary 2.3.1] that there exists (u0, u1, . . . , un−1) ∈ Un such that

n∑

i=1

Φ(n, i)Bi−1ui−1 =
n∑

i=1

Φ(n, i)xi−1. (2.24)

We define yi = xi − Biui for i = 0, 1, . . . , n − 1. This implies that

Jn
(
y
)
=

n∑

i=1

Φ(n, i)yi−1 =
n∑

i=1

Φ(n, i)xi−1 −
n∑

i=1

Φ(n, i)Bi−1ui−1 = 0, (2.25)

which shows that x ∈ N(n) + R(B̂n).
Conversely, assume that condition (2.7) holds; for z ∈ X we define x = (0, . . . , z) ∈ Xn.

Applying (2.7), we derive the existence of y ∈ N(n) and u = (uk)k ∈ Un such that x =
y + B̂n(u). The solution of (1.2) is given by

xn(0, u) = Sn(u) =
n∑

i=1

Φ(n, i)Bi−1ui−1 = Jn
(
B̂n(u)

)
= Jn

(
x − y

)
= Jn(x) = z, (2.26)

which completes the proof.

We will apply Theorem 2.10 to reduce the study of controllability of system (1.1) to the
controllability of systems with finite-dimensional state space.

Corollary 2.11. Assume that X is a space of finite dimension and that the linear system (1.2) is
controllable on [0, n]. Then there exists ε > 0 such that nonlinear system (1.1) is approximately
controllable on [0, n] when maxk=0,...,n−1Lk < ε.

Proof. The assertion is an immediate consequence of Theorems 2.10 and 2.7.
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Next we specialize our developments to consider systems where the associated linear
system is invariant. Specifically, we will assume that Ak = A and Bk = B for k ∈ N0. That is to
say, we will be concerned with the nonlinear system

xk+1 = Axk + f(k, xk) + Buk, k ≥ 0, (2.27)

with linear part

xk+1 = Axk + Buk, k ≥ 0. (2.28)

In this situation, the subspaces R0(k, 0) are nondecreasing. Hence, we get the following
immediate consequence.

Proposition 2.12. Assume thatX is a space of finite dimension. If the system (2.28) is approximately
controllable in finite time, then it is controllable on [0, m], for somem ∈ N.

Proof. Since X =
⋃

k∈N R0(k, 0) =
⋃

k∈N R0(k, 0) and R0(k, 0) are closed subspaces, then there is
m ∈ N such that R0(m, 0) = X.

2.2. The Projections Pn

Next we will study a property of projections Pn. We begin with some remarks.

Remark 2.13. Let x = (xk)k ∈ Xn. Since

Jn(x) =
n∑

i=1

Φ(n, i)xi−1 =
n∑

i=1

An−ixi−1, (2.29)

we infer that x ∈ N(n) if, and only if,

n∑

i=1

An−ixi−1 = 0. (2.30)

Hence, if x ∈ N(n) andwe define x̃ = (x, 0) ∈ Xn+1 and ỹ = (0, x) ∈ Xn+1, then x̃, ỹ ∈ N(n+1).

Lemma 2.14. Assume that condition (2.7) holds for n and n + 1. Then

∥∥∥Pn+1(x0, x1, . . . , xn) − (x0, x1, . . . , xn)
∥∥∥≤‖Pn(x0, 0) − (x0, 0)‖ + ‖Pn(x1, . . . , xn) − (x1, . . . , xn)‖,

(2.31)

where (x0, 0) ∈ Xn.

Proof. We decompose x = (x0, x1, . . . , xn) = (x0, 0) + (0, x), where x = (x1, . . . , xn).

Let y = (x0, 0) ∈ Xn+1 and z = (x0, 0) ∈ Xn. Then z = Pnz + q, where q ∈ R(B̂n). We
set p̃ = (Pnz, 0) ∈ Xn+1 and q̃ = (q, 0) ∈ Xn+1. It follows from Remark 2.13 that y = p̃ + q̃,
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and p̃ ∈ N(n + 1) and q̃ ∈ R(B̂n+1). Therefore, using the properties of projections Pn and Pn+1

established in Lemma 1.1, we get

∥
∥
∥Pn+1y − y

∥
∥
∥ ≤ ∥

∥q̃
∥
∥ =

∥
∥q

∥
∥ = ‖Pnz − z‖. (2.32)

Similarly, since x ∈ Xn, we can decompose x = Pnx+q, where q ∈ R(B̂n). We set p̃ = (0, Pnz) ∈
Xn+1 and q̃ = (0, q) ∈ Xn+1. It follows from Remark 2.13 that (0, x) = p̃ + q̃, and p̃ ∈ N(n + 1)

and q̃ ∈ R(B̂n+1). Consequently, we have

∥
∥
∥Pn+1(0, x) − (0, x)

∥
∥
∥ ≤ ∥

∥q̃
∥
∥ =

∥
∥q

∥
∥ = ‖Pnx − x‖. (2.33)

Collecting these assertions, we get

∥∥∥Pn+1(x0, x1, . . . , xn) − (x0, x1, . . . , xn)
∥∥∥ ≤

∥∥∥Pn+1(x0, 0) − (x0, 0)
∥∥∥

+
∥∥∥Pn+1(0, x1, . . . , xn) − (0, x1, . . . , xn)

∥∥∥

≤ ‖Pn(x0, 0) − (x0, 0)‖

+ ‖Pn(x1, . . . , xn) − (x1, . . . , xn)‖.

(2.34)

We say that a sequence (Yn, πn)n∈N is an approximation scheme for X associated to
system (2.27) if Yn are finite-dimensional subspaces of X, πn : X → Yn are bounded linear
projections with R(πn) = Yn and ker(πn) = Qn, and the following conditions are fulfilled:

(i) the subspaces Yn and Qn are invariant under A;

(ii) the projections πn are uniformly bounded with ‖πn‖ ≤ ρ for all n ∈ N;

(iii) for all x ∈ X, πnx → x as n → ∞.

We consider the control systems

yk+1 = Ayk + πnf
(
k, yk

)
+ πnBuk, k ≥ 0, (2.35)

yk+1 = Ayk + πnBuk, k ≥ 0, (2.36)

in the space Yn. We set βn = ‖B − πnB‖.

Theorem 2.15. If the system (2.28) is approximately controllable in finite time, then the system (2.36)
is controllable on an interval [0, m(n)] for each n ∈ N.

Proof. We consider a fixed n ∈ N. It is immediate from our definition of approximation scheme
that if y0 = πnx0 and we consider the same values of uk in (2.28) and (2.36), then yk = πnxk
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for all k ∈ N0. Let y ∈ Yn. It follows from the previous remark, that if we select uk such that
xk → y as k → ∞, then

∥
∥yk − y

∥
∥ =

∥
∥πn

(
xk − y

)∥∥ ≤ ρ
∥
∥xk − y

∥
∥, (2.37)

which shows that yk → πny = y as k → ∞. Hence, system (2.36) is approximately
controllable in finite time. The assertion is now a consequence of Proposition 2.12.

To simplify the writing of the text, next we will assume that dim(Yn) = n and Yn ⊆
Yn+1. Furthermore, we take an orthonormal basis {ϕ1, . . . , ϕn} of Yn, and πn is the orthogonal
projection. We can establish the following property.

Lemma 2.16. Assume that condition (2.7) holds in Yn
n for all n ∈ N. Then there are constants cn > 0

such that

∥∥Pn(y0, y1, . . . , yn−1
) − (

y0, y1, . . . , yn−1
)∥∥ ≤

n−1∑

i=0

n∑

j=1

cj
∣∣〈yi, ϕj

〉∣∣, (2.38)

for all yi ∈ Yn, i = 0, . . . , n − 1.

Proof. We proceed by using mathematical induction. The assertion holds for n = 1. In fact,
since y0 ∈ Y1 and N(1) = {0}, then y0 = 〈y0, ϕ1〉ϕ1 = π1Bu0 and

∥∥∥P 1y0 − y0

∥∥∥ ≤ ‖π1Bu0‖ =
∣∣〈y0, ϕ1

〉∣∣. (2.39)

Assume now that the assertion is fulfilled for n. We will prove that the assertion holds for
n + 1. For yi ∈ Yn+1, i = 0, 1, . . . , n, we decompose yi = yi + 〈yi, ϕn+1〉ϕn+1, where yi ∈ Yn. We
abbreviate the notation by writing zi = 〈yi, ϕn+1〉ϕn+1. Consequently, applying Lemma 2.14,
we get

∥∥∥Pn+1(y0, y1, . . . , yn

) − (
y0, y1, . . . , yn

)∥∥∥

≤
∥∥∥Pn+1(y0, y1, . . . , yn

) − (
y0, y1, . . . , yn

)∥∥∥ +
∥∥∥Pn+1(z0, z1, . . . , zn) − (z0, z1, . . . , zn)

∥∥∥

≤ ∥∥Pn(y0, 0
) − (

y0, 0
)∥∥ +

∥∥Pn(y1, . . . , yn

) − (
y1, . . . , yn

)∥∥

+
∥∥∥Pn+1(z0, z1, . . . , zn) − (z0, z1, . . . , zn)

∥∥∥

≤
n∑

j=1

cj
∣∣〈y0, ϕj

〉∣∣ +
n∑

i=1

n∑

j=1

cj
∣∣〈yi, ϕj

〉∣∣ +
∥∥∥Pn+1(z0, z1, . . . , zn) − (z0, z1, . . . , zn)

∥∥∥

=
n∑

j=1

cj
∣∣〈y0, ϕj

〉∣∣ +
n∑

i=1

n∑

j=1

cj
∣∣〈yi, ϕj

〉∣∣ +
∥∥∥Pn+1(z0, z1, . . . , zn) − (z0, z1, . . . , zn)

∥∥∥

=
∥∥∥Pn+1(z0, z1, . . . , zn) − (z0, z1, . . . , zn)

∥∥∥ +
n∑

i=0

n∑

j=1

cj
∣∣〈yi, ϕj

〉∣∣.

(2.40)
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On the other hand, since Pn+1−I is a bounded linear map on Yn+1
n+1 , then there exists a constant

cn+1 > 0 such that

∥
∥
∥Pn+1(z0, z1, . . . , zn) − (z0, z1, . . . , zn)

∥
∥
∥ ≤ cn+1‖(z0, z1, . . . , zn)‖

= cn+1

(
n∑

i=0

∣
∣〈zi, ϕn+1

〉∣∣2
)1/2

≤ cn+1
n∑

i=0

∣
∣〈zi, ϕn+1

〉∣∣

= cn+1
n∑

i=0

∣
∣〈yi, ϕn+1

〉∣∣,

(2.41)

and substituting these estimates in (2.40), we get that the assertion is fulfilled for n + 1.

Lemma 2.17. Assume that
√
2‖A‖ < 1, condition (2.7) holds in Yn

n for all n ∈ N, and that the
function f in (2.35) satisfies the Lipschitz conditions

∣∣〈f
(
i, y

) − f(i, w), ϕk

〉∣∣ ≤ Li,k

∥∥y −w
∥∥, (2.42)

where Li,k > 0. If

⎛

⎜
⎝

n−1∑

i=0

⎛

⎝
n∑

j=1

cjLi,j

⎞

⎠

2
⎞

⎟
⎠

1/2

+

⎛

⎝
n∑

j=1

max
i:0,...,n−1

L2
i,j

⎞

⎠

1/2

<

(
1 − 2‖A‖2

)1/2

√
2

, (2.43)

then the map Γn defined in Yn
n is a contraction.

Proof. It follows from our definition that

∥∥Jn
(
y
)∥∥2 =

n−1∑

k=1

∥∥∥∥∥

k∑

i=1

Ak−iyi−1

∥∥∥∥∥

2

≤
n−1∑

k=1

k∑

i=1

2k−i+1
∥∥∥Ak−iyi−1

∥∥∥
2

= 2
n−2∑

j=0

2j‖A‖2j
n−2−j∑

i=1

∥∥yi−1
∥∥2

≤ 2
n−2∑

j=0

2j‖A‖2j∥∥y∥∥2

≤ 2

1 − 2‖A‖2
∥∥y

∥∥2
.

(2.44)
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On the other hand, since

Pn(Fn(y
) − Fn(w)

)
= (Pn − I)

(
Fn(y

) − Fn(w)
)
+
(
Fn(y

) − Fn(w)
)

(2.45)

applying Lemma 2.16 and the definition of Fn, we have

∥
∥Pn(Fn(y

) − Fn(w)
)∥∥ =

∥
∥(Pn − I)

(
Fn(y

) − Fn(w)
)∥∥ +

∥
∥(Fn(y

) − Fn(w)
)∥∥

≤
n−1∑

i=0

n∑

j=1

cj
∣
∣〈πn

(
f
(
i, xi + yi

) − f(i, xi +wi)
)
, ϕj

〉∣∣

+

⎛

⎝
n−1∑

i=0

n∑

j=1

∣
∣〈πn

(
f
(
i, xi + yi

) − f(i, xi +wi)
)
, ϕj

〉∣∣2
⎞

⎠

1/2

≤
n−1∑

i=0

n∑

j=1

cjLi,j

∥∥yi −wi

∥∥ +

⎛

⎝
n−1∑

i=0

n∑

j=1

L2
i,j

∥∥yi −wi

∥∥2

⎞

⎠

1/2

≤

⎛

⎜
⎝

n−1∑

i=0

⎛

⎝
n∑

j=1

cjLi,j

⎞

⎠

2
⎞

⎟
⎠

1/2

∥∥y −w
∥∥

+

⎛

⎝ max
i=0,1...,n−1

n∑

j=1

L2
i,j

⎞

⎠

1/2
∥∥y −w

∥∥.

(2.46)

In view of

Γn
(
y
) − Γn(w) = Jn ◦ Pn(Fn(y

) − Fn(w)
)

(2.47)

collecting the above estimate, we get the assertion.

Using now Theorem 2.15 and Lemma 2.17 we can emphasize the assertion of
Corollary 2.11.

Corollary 2.18. Under the conditions of Lemma 2.17, if the system (2.28) is approximately
controllable in finite time, then the system (2.35) is approximately controllable on [0, n] for each
n ∈ N.

Remark 2.19. Under the above conditions, we can apply Theorem 2.9 in the space Yn.
Consequently, there exist constants Mn and Nn such that for every xn ∈ Yn and ε > 0, there
exists a sequence of controls un

k for k = 0, 1 . . . , n such that ‖un
k‖ ≤ Mn‖xn‖ + Mn = M′

n,
‖yn

k‖ ≤ Nn‖xn‖+Nn = N ′
n, and ‖yn

n −xn‖ ≤ ε, where yn
k is the solution of (2.35) corresponding

to controls un
k
. Furthermore, we denote L = supk≥0Lk < ∞, where Lk are the constants
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involved in (2.10), and we assume that

∥
∥f

(
k, y

) − πnf
(
k, y

)∥∥ ≤ νn
∥
∥y

∥
∥, k = 0, 1, . . . , n, y ∈ Yn. (2.48)

Finally, we are in a position to establish the following result of controllability.

Theorem 2.20. Assume that there exists an approximation scheme (Yn, πn) and the system (2.28) is
approximately controllable in finite time. If, in addition,

√
2‖A‖ < 1, ‖A‖ + L < 1, and νnNn → 0

and βnMn → 0 as n → ∞, then the system (2.27) is also approximately controllable in finite time.

Proof. Let x ∈ X and xn = πnx. It follows from Corollary 2.18 that system (2.35) is
approximately controllable on [0, n]. Since πnx → x as n → ∞, for ε > 0, we chose n ∈ N

such that ‖x − xn‖ ≤ ε. It follows from Remark 2.19 that there exists a sequence of controls
un
k
for k = 0, 1, . . . , n such that ‖un

k
‖ ≤ Mn‖xn‖ + Mn = M′

n, ‖yn
k
‖ ≤ Nn‖xn‖ + Nn = N ′

n and
‖yn

n − xn‖ ≤ ε, where yn
k
is the solution of (2.35) corresponding to controls un

k
.

We denote xn
k for the solution of system

xk+1 = Axk + f(k, xk) + Bun
k, k = 0, . . . , n − 1, (2.49)

and we set znk = xn
k − yn

k . It follows from (2.35) and (2.49) that

znk+1 = Aznk + f
(
k, xn

k

) − πnf
(
k, yn

k

)
+ (B − πnB)un

k, (2.50)

which implies that

∥∥znk+1
∥∥ ≤ (‖A‖ + L)

∥∥znk
∥∥ +

∥∥f
(
k, yn

k

) − πnf
(
k, yn

k

)∥∥ +
∥∥(B − πnB)un

k

∥∥

≤ (‖A‖ + L)
∥∥znk

∥∥ + νnN
′
n + βnM

′
n.

(2.51)

Consequently, ‖zn
k
‖ ≤ (1/(1 − ‖A‖ − L))(νnN ′

n + βnM
′
n). Hence,

‖xn
n − x‖ ≤ 1

1 − ‖A‖ − L

(
νnN

′
n + βnM

′
n

)
+
∥∥yn

n − xn∥∥ +
∥∥x − xn∥∥

≤ 1
1 − ‖A‖ − L

(
νnN

′
n + βnM

′
n

)
+ 2ε.

(2.52)

Consequently, xn
n → x as n → ∞, which completes the proof.

3. Application

We complete this paper with an application of the results established in Section 2.
In this application we are concerned with a general class of systems that satisfy the

conditions considered previously. Specifically, we consider a control system of type (1.1)with
state space X of infinite dimension and operators Ak = A and Bk = B for k ∈ N0.
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We assume that A is a bounded self-adjoint operator with distinct eigenvalues λn,
n ∈ N, and {ϕn : n ∈ N} is an orthonormal basis of X consisting of eigenvectors of A
corresponding to eigenvalues λn, respectively.

We take as control space U = R, and B : U → X is given by Bu = bu, where b ∈ X
is a vector such that 〈b, ϕn〉/= 0, for all n ∈ N. It is clear that condition (2.7) does not hold
in this case. In fact, since the space R(B̂n) is closed, if we assume that condition (2.7) is
fulfilled, then for every x ∈ Xn there is û = (u0, u1, . . . , un−1) ∈ Un such that Jnx = JnB̂

n(û). In
particular, for an arbitrary y ∈ X and x = (0, . . . , 0, y) and applying Remark 2.13, we obtain
that y =

∑n
i=1 A

n−ibui−1. However, this means that X is a finite-dimensional space, which is a
contradiction. Let f : N0 ×X → X be given by

f(k, x) =
∞∑

j=1

gj(k, x)ϕj, (3.1)

where gj : N0 × X → R are functions such that gj(k, 0) = 0 and the following Lipschitz
conditions

∣∣gj
(
k, y

) − gj(k,w)
∣∣ ≤ Lk,j

∥∥y −w
∥∥ (3.2)

are verified for all j ∈ N, k ∈ N0, and y,w ∈ X. We assume that

L = sup
0≤k<∞

⎛

⎝
∞∑

j=1

L2
k,j

⎞

⎠

1/2

< ∞. (3.3)

We denote νn = supk≥0(
∑∞

j=n+1 L
2
k,j
)1/2.

Let Yn = Span{ϕ1, . . . , ϕn}, and let πn : X → Yn be the orthogonal projection on Yn. We
set Bn = πn ◦ B. Since Yn is invariant under A, we can consider the system

xk+1 = Axk + Bnu(t), k ∈ N0, (3.4)

with xk ∈ Yn, which is the restriction of system (1.2) on Yn. It is well known that system (3.4)
is exactly controllable on [0, τ], for every τ > 0. Furthermore,

βn = ‖B − πnB‖ =

⎛

⎝
∞∑

j=n+1

∣∣〈b, ϕj

〉∣∣2
⎞

⎠

1/2

. (3.5)

Let cj , j ∈ N, be the constants introduced in Lemma 2.16, and let Mn,Nn be the constants
introduced in Remark 2.19. At this point it is worth to note that the constants cj for j = 1, . . . , n
and Mn,Nn depend on Bn and gj(k, ·) for k = 0, 1, . . . , n − 1 and j = 1, . . . , n while βn and νn
depend on 〈b, ϕj〉 and Lk,j , respectively, for j ≥ n+1.We can establish the following immediate
consequence of Theorem 2.20.
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Proposition 3.1. Assume that the system (2.28) is approximately controllable in finite time. If, in
addition,

√
2‖A‖ < 1, ‖A‖ + L < 1,

⎛

⎜
⎝

∞∑

i=0

⎛

⎝
∞∑

j=1

cjLi,j

⎞

⎠

2
⎞

⎟
⎠

1/2

+

⎛

⎝
∞∑

j=1

max
i≥0

L2
i,j

⎞

⎠

1/2

<

(
1 − 2‖A‖2

)1/2

√
2

, (3.6)

and νnNn → 0 and βnMn → 0, as n → ∞, then the system (2.27) is also approximately controllable
in finite time.
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