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A new existence and uniqueness theorem is given for solutions to differential equations involving
the Caputo fractional derivative with nonlocal initial condition in Banach spaces. An application
is also given.

1. Introduction

Fractional differential equations have played a significant role in physics, mechanics,
chemistry, engineering, and so forth. In recent years, there are many papers dealing with
the existence of solutions to various fractional differential equations; see, for example, [1–6].

In this paper, we discuss the existence of solutions to the nonlocal Cauchy problem for
the following fractional differential equations in a Banach space E:

cDαx(t) = f(t, x(t)), 0 ≤ t ≤ 1,

x(0) =
∫1

0
g(s)x(s)ds,

(1.1)

where cDα is the standard Caputo’s derivative of order 0 < α < 1, g ∈ L1([0, 1], R+), g(t) ∈
[0, 1), and f is a given E-valued function.
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2. Basic Lemmas

Let E be a real Banach space, and θ the zero element of E. Denote by C([0, 1], E) the
Banach space of all continuous functions x : [0, 1] → E with norm ‖x‖c = supt∈[0,1]‖x(t)‖.
Let L1([0, 1], E) be the Banach space of measurable functions x : [0, 1] → E which are
Lebesgue integrable, equipped with the norm ‖x‖L1 =

∫1
0‖x(s)‖ds. Let R+ = [0,+∞), R+ =

(0,+∞), and μ =
∫1
0g(s)ds.A function x ∈ C([0, 1], E) is called a solution of (1.1) if it satisfies

(1.1).
Recall the following defenition

Definition 2.1. Let B be a bounded subset of a Banach space X. The Kuratowski measure of
noncompactness of B is defined as

α(B) := inf
{
γ > 0; B admits a finite cover by sets of diameter ≤ γ

}
. (2.1)

Clearly, 0 ≤ α(B) < ∞. For details on properties of the measure, the reader is referred
to [2].

Definition 2.2 (see [7, 8]). The fractional integral of order q with the lower limit t0 for a
function f is defined as

Iqf(t) =
1

Γ
(
q
)
∫ t

t0

(t − s)q−1f(s)ds, t > t0, q > 0, (2.2)

where Γ is the gamma function.

Definition 2.3 (see [7, 8]). Caputo’s derivative of order q with the lower limit t0 for a function
f can be written as

cDqf(t) =
1

Γ
(
n − q

)
∫ t

t0

(t − s)n−q−1f (n)(s)ds, t > t0, q > 0, n =
[
q
]
+ 1. (2.3)

Remark 2.4. Caputo’s derivative of a constant is equal to θ.

Lemma 2.5 (see [7]). Let α > 0. Then we have

cDq(Iqf(t)) = f(t). (2.4)

Lemma 2.6 (see [7]). Let α > 0 and n = [α] + 1. Then

Iα
(cDαf(t)

)
= f(t) −

n−1∑
k=0

f (k)(0)
k!

tk. (2.5)
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Lemma 2.7 (see [9]). If H ⊂ C([0, 1], E) is bounded and equicontinuous, then

(a) αC(H) = α(H([0, 1]));

(b) α(H([0, 1])) = maxt∈[0,1]α(H(t)), whereH([0, 1]) = {x(t) : x ∈ H, t ∈ [0, 1]}.

Lemma 2.8.

Q(τ)
Γ(α)

< e,

∫ t
0(t − s)α−1ds

Γ(α)
< e, (2.6)

where Q(τ) =
∫1
τg(s)(s − τ)α−1ds, t, τ ∈ [0, 1].

Proof. A direct computation shows

Q(τ)
Γ(α)

=

∫1
τg(s)(s − τ)α−1ds∫∞

0 s
α−1e−sds

<

∫1
τ(s − τ)α−1ds∫∞
0 s

α−1e−sds

=

∫1−τ
0 sα−1ds∫∞

0 s
α−1e−sds

≤ e
∫1−τ
0 sα−1e−sds∫∞
0 s

α−1e−sds

< e

(2.7)

and

∫ t
0(t − s)α−1ds

Γ(α)
=

∫ t
0s

α−1ds∫∞
0 s

α−1e−sds
≤ e

∫ t
0s

α−1e−sds∫∞
0 s

α−1e−sds
< e. (2.8)

3. Main Results

(H1) f ∈ ([0, 1] × E, E), and there exist M > 0, pf(t) ≤ M for t ∈ [0, 1], pf ∈
L1([0, 1], R+) such that ‖f(t, x)‖ ≤ pf(t)‖x‖ for t ∈ [0, 1] and each x ∈ E.

(H2) For any t ∈ [0, 1] and R > 0, f(t, BR) = {f(t, x) : x ∈ BR} is relatively compact in E,
where BR = {x ∈ C([0, 1], E), ‖x‖C ≤ R}and

Λ1 =

(
2 − μ

)
e

1 − μ
M < 1. (3.1)
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Lemma 3.1. If (H1) holds, then the problem (1.1) is equivalent to the following equation:

x(t) =
1(

1 − μ
)
Γ(α)

∫1

0
Q(τ)f(τ, x(τ))dτ +

1
Γ(α)

∫ t

0
(t − s)α−1f(s, x(s))ds. (3.2)

Proof. By Lemma 2.6 and (1.1), we have

x(t) = x(0) +
1

Γ(α)

∫ t

0
(t − s)α−1f(s, x(s))ds. (3.3)

Therefore,

x(0) =
∫1

0
g(s)x(s)ds

=
∫1

0
g(s)

[
x(0) +

1
Γ(α)

∫s

0
(s − τ)α−1f(τ, x(τ))dτ

]
ds

=
∫1

0
g(s)dsx(0) +

1
Γ(α)

∫1

0
g(s)

∫s

0
(s − τ)α−1f(τ, x(τ))dτds.

(3.4)

So,

x(0) =
1(

1 − ∫1
0g(s)ds

)
Γ(α)

∫1

0
g(s)

∫ s

0
(s − τ)α−1f(τ, x(τ))dτds

=
1(

1 − μ
)
Γ(α)

∫1

0
f(τ, x(τ))

[∫1

τ

(s − τ)α−1g(s)ds

]
dτ

=
1(

1 − μ
)
Γ(α)

∫1

0
Q(τ)f(τ, x(τ))dτ,

(3.5)

and then

x(t) =
1(

1 − μ
)
Γ(α)

∫1

0
Q(τ)f(τ, x(τ))dτ +

1
Γ(α)

∫ t

0
(t − s)α−1f(s, x(s))ds. (3.6)
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Conversely, if x is a solution of (3.2), then for every t ∈ [0, 1], according to Remark 2.4
and Lemma 2.5, we have

cDαx(t)=cDα

[
1(

1 − μ
)
Γ(α)

∫1

0
Q(τ)f(τ, x(τ))dτ +

1
Γ(α)

∫ t

0
(t − s)α−1f(s, x(s))ds

]

=cDα

[
1(

1 − μ
)
Γ(α)

∫1

0
Q(τ)f(τ, x(τ))dτ

]

+cDα

[
1

Γ(α)

∫ t

0
(t − s)α−1f(s, x(s))ds

]

= θ+cDα(Iαf(t, x(t)))
= f(t, x(t)).

(3.7)

It is obvious that x(0) =
∫1
0g(s)x(s)ds. This completes the proof.

Theorem 3.2. If (H1) and (H2) hold, then the initial value problem (1.1) has at least one solution.

Proof. Define operator A : C([0, 1], E) → C([0, 1], E), by

(Ax)(t) =
1(

1 − μ
)
Γ(α)

∫1

0
Q(τ)f(τ, x(τ))dτ +

1
Γ(α)

∫ t

0
(t − s)α−1f(s, x(s))ds. (3.8)

Clearly, the fixed points of the operator A are solutions of problem (1.1).
It is obvious that BR is closed, bounded, and convex.

Step 1. We prove that A is continuous.
Let

xn, x ∈ C([0, 1], E), ‖xn − x‖c −→ 0 (n −→ ∞). (3.9)

Then r = supn‖xn‖C < ∞ and ‖x‖C ≤ r. For each t ∈ [0, 1],

‖(Axn)(t) − (Ax)(t)‖ ≤ e

1 − μ

∫1

0

∥∥f(τ, xn(τ)) − f(τ, x(τ))
∥∥dτ

+
1

Γ(α)

∫ t

0
(t − s)(α−1)

∥∥f(s, xn(s)) − f(s, x(s))
∥∥ds.

(3.10)

It is clear that

f(t, xn(t)) −→ f(t, x(t)), as n −→ ∞, t ∈ [0, 1],
∥∥f(t, xn(t)) − f(t, x(t))

∥∥ ≤ 2Mr.
(3.11)
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It follows from (3.11) and the dominated convergence theorem that

‖(Axn) − (Ax)‖C −→ 0, as n −→ ∞. (3.12)

Step 2. We prove that A(BR) ⊂ BR.
Let x ∈ BR. Then for each t ∈ [0, 1], we have

‖(Ax)(t)‖ ≤ 1
1 − μ

∫1

0

Q(τ)
Γ(α)

∥∥f(τ, x(τ))∥∥dτ +
1

Γ(α)

∫ t

0
(t − s)α−1

∥∥f(s, x(s))∥∥ds

≤ 1
1 − μ

∫1

0

Q(τ)
Γ(α)

pf(τ)‖x(τ)‖dτ +
1

Γ(α)

∫ t

0
(t − s)α−1pf(s)‖x(s)‖ds

≤
(

e

1 − μ
M + eM

)
‖x‖C

< R.

(3.13)

Step 3. We prove that A(BR) is equicontinuous.
Let t1, t2 ∈ [0, 1], t1 < t2, and x ∈ BR. We deduce that

‖(Ax)(t2) − (Ax)(t1)‖

=
1

Γ(α)

∥∥∥∥∥
∫ t2

0
(t2 − s)α−1f(s, x(s))ds −

∫ t1

0
(t1 − s)α−1f(s, x(s))ds

∥∥∥∥∥

≤ 1
Γ(α)

∫ t1

0

∣∣∣(t2 − s)α−1 − (t1 − s)α−1
∣∣∣∥∥f(s, x(s))∥∥ds

+
1

Γ(α)

∫ t2

t1

(t2 − s)α−1
∥∥f(s, x(s))∥∥ds

≤
[∫ t1

0

∣∣∣(t2 − s)α−1 − (t1 − s)α−1
∣∣∣ds +

∫ t2

t1

(t2 − s)α−1ds

]
MR

Γ(α)

≤ [
2(t2 − t1)α +

(
tα2 − tα1

)] MR

Γ(α + 1)
.

(3.14)

As t1 → t2, the right-hand side of the above inequality tends to zero.

Step 4. We prove that A(BR) is relatively compact.
Let 5 ⊂ BR be arbitrarily given. Using the formula

∫b

a

y(t)dt ∈ (b − a)co
{
y(t) : t ∈ [0, 1]

}
(3.15)
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for y ∈ C([a, b], E) and (H2), we obtain

α((AV )(t)) ≤ α

(
co
{

Q(s)
(1 − u)Γ(α)

f(s, x(s)) : s ∈ [0, 1], x ∈ V

})

+ α

(
co

{
(t − s)α−1

Γ(α)
f(s, x(s)) : s ∈ [0, t], t ∈ [0, 1], x ∈ V

})

≤
{

Q(s)
(1 − u)Γ(α)

α
(
f(s, V (s))

)
: s ∈ [0, 1]

}

+

{
(t − s)α−1

Γ(α)
α
(
f(s, V (s))

)
: s ∈ [0, t], t ∈ [0, 1]

}

= 0.

(3.16)

It follows from (3.16) that α((AV )(t)) = 0 for t ∈ [0, 1]. This, together with Lemma 2.7,
yields that

αC(AV ) = 0. (3.17)

From (3.17), we see that A(BR) is relatively compact. Hence, A : BR → BR is completely
continuous. Finally, the Schauder fixed point theorem guarantees that A has a fixed point in
BR.

Theorem 3.3. Besides the hypotheses of Theorem 3.2, we suppose that there exists a constant L such
that

0 < L < Λ2, (3.18)
∥∥f(t, u) − f(t,w)

∥∥ ≤ L‖u −w‖, for every u,w ∈ BR, (3.19)

where

Λ2 =
1 − μ(
2 − μ

)
e
. (3.20)

Then, the solution x(t) of (1.1) is unique in BR.
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Proof. From Theorem 3.2, we know that there exists at least one solution x(t) in BR. We
suppose to the contrary that there exist two different solutions u(t) andw(t) in BR. It follows
from (3.8) that

‖u(t) −w(t)‖ ≤ e

1 − μ

∫1

0

∥∥f(τ, u(τ)) − f(τ,w(τ))
∥∥dτ

+
1

Γ(α)

∫ t

0
(t − s)α−1

∥∥f(s, u(s)) − f(s,w(s))
∥∥ds

≤ e

1 − μ

∫1

0
L‖u(τ) −w(τ)‖dτ

+
1

Γ(α)

∫ t

0
(t − s)α−1L‖u(s) −w(s)‖ds.

(3.21)

Therefore, we get

‖u −w‖C ≤ 2 − μ

1 − μ
eL‖u −w‖C. (3.22)

By (3.18), we obtain ‖u −w‖C = 0. So, the two solutions are identical in BR.

4. Example

Let

E = c0 = {x = (x1, . . . , xn, . . .) : xn −→ 0} (4.1)

with the norm ‖x‖ = supn|xn|. Consider the following nonlocal Cauchy problem for the
following fractional differential equation in E:

c

Dαxn(t) =
1 + t

100n2
xn(t), t ∈ [0, 1], 0 < α < 1,

xn(0) =
∫1

0

1
2
xn(s)ds.

(4.2)

Conclusion. Problem (4.2) has only one solution on [0, 1].

Proof. Write

fn(t, x) =
1 + t

100n2
xn, f =

(
f1, . . . , fn, . . .

)
,

g(s) =
1
2
, pf(t) =

1 + t

100n
.

(4.3)
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Then it is clear that

f ∈ C([0, 1] × E, E), pf(t) ≤ 1
50

= M,

pf ∈ L([0, 1], R+),
∥∥f(t, x)∥∥ ≤ pf‖x‖.

(4.4)

So, (H1) is satisfied.
In the same way as in Example 3.2.1 in [9], we can prove that f(t, BR) is relatively

compact in c0.
By a direct computation, we get

Λ1 =

(
2 − μ

)
e

1 − μ
M ≤

(
2 − μ

)
e

1 − μ

1
50

=
3e
50

< 1. (4.5)

Hence, condition (H2) is also satisfied.
Moreover, we have

∣∣fn(t, u) − fn(t,w)
∣∣ =

∣∣∣∣ 1 + t

100n2
un − 1 + t

100n2
wn

∣∣∣∣ ≤ 1
50

|un −wn|, (4.6)

so

∥∥f(t, u) − f(t,w)
∥∥ ≤ 1

50
‖u −w‖. (4.7)

Clearly,

Λ2 =
1 − μ(
2 − μ

)
e
=

1 − 1/2
3e/2

=
1
3e

. (4.8)

Therefore, L = 1/50 < 1/3e. Thus, our conclusion follows from Theorem 3.3.
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