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1. Introduction and Preliminaries

The following question concerning the stability of group homomorphisms was posed by
Ulam [1]:Under what conditions does there exist a group homomorphism near an approximate group
homomorphism?

Hyers [2] considered the case of approximately additive mappings f : E → E′, where
E and E′ are Banach spaces and f satisfies Hyers inequality

∥
∥f

(

x + y
) − f(x) − f

(

y
)∥
∥ ≤ ε (1.1)

for all x, y ∈ E.
In 1950, Aoki [3] provided a generalization of the Hyers’ theorem for additive

mappings and in 1978, Rassias [4] generalized the Hyers’ theorem for linear mappings by
allowing the Cauchy difference to be unbounded (see also [5]). The result of Rassias’ theorem
has been generalized by Forti [6, 7] and Gavruta [8]who permitted the Cauchy difference to
be bounded by a general control function. During the last three decades a number of papers
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have been published on the generalized Hyers-Ulam stability to a number of functional
equations and mappings (see [9–23]). We also refer the readers to the books [24–28].

Throughout this paper, let A be a unital C∗-algebra with unitary group U(A), unit e,
and norm | · |. Assume that X is a leftA-module and Y is a left BanachA-module. An additive
mapping T : X → Y is called A-linear if T(ax) = aT(x) for all a ∈ A and all x ∈ X. In this
paper, we investigate the stability problem for the following functional inequality:

∥
∥
∥
∥
αf

(
x + y

2α

)

+ βf

(
y + z

2β

)

+ γf

(
z + x

2γ

)∥
∥
∥
∥
≤ ∥
∥f

(

x + y + z
)∥
∥ (1.2)

on restricted domains of Banachmodules over aC∗-algebra, where α, β, γ are nonzero positive
real numbers. As an application we study the asymptotic behavior of a generalized additive
mapping.

2. Solutions of the Functional Inequality (1.2)

Theorem 2.1. Let X and M be left A-modules and let α, β, γ be nonzero real numbers. If a mapping
f : X → M with f(0) = 0 satisfies the functional inequality

∥
∥
∥
∥
αf

(
ax + ay

2α

)

+ βf

(
ay + az

2β

)

+ γaf

(
z + x

2γ

)∥
∥
∥
∥
≤ ∥
∥f

(

ax + ay + az
)∥
∥ (2.1)

for all x, y, z ∈ X and all a ∈ U(A), then f is A-linear.

Proof. Letting z = −x − y in (2.1), we get

αf

(
ax + ay

2α

)

+ βf

(

−ax
2β

)

+ γaf

(

− y

2γ

)

= 0 (2.2)

for all x, y ∈ X and all a ∈ U(A). Letting x = 0 (resp., y = 0) in (2.2), we get

αf
(ay

2α

)

+ γaf

(

− y

2γ

)

= 0,
(

resp., αf
(ax

2α

)

+ βf

(

−ax
2β

)

= 0
)

(2.3)

for all x, y ∈ X and all a ∈ U(A). Hence f(ay) = (−γ/α)af((−α/γ)y) and it follows from
(2.2) and (2.3) that and f((ax + ay)/2α) − f(ax/2α) − f(ay/2α) = 0 for all x, y ∈ X and all
a ∈ U(A). Therefore f(x + y) = f(x) + f(y) for all x, y ∈ X.Hence f(rx) = rf(x) for all x ∈ X

and all rational numbers r.
Now let a ∈ A (a/= 0) and letm be an integer number withm > 4|a|. Then by Theorem

1 of [29], there exist elements u1, u2, u3 ∈ U(A) such that (3/m)a = u1 + u2 + u3. Since f is
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additive and f(rbx) = (−γ/α)rbf((−α/γ)x) for all x ∈ X, all rational numbers r and all
b ∈ U(A), we have

f(ax) =
m

3
f

(
3
m
ax

)

=
m

3
f(u1x + u2x + u3x) =

m

3
[

f(u1x) + f(u2x) + f(u3x)
]

= −m
3
γ

α
(u1 + u2 + u3)f

(

−α
γ
x

)

= −m
3
γ

α

3
m
af

(

−α
γ
x

)

= − γ
α
af

(

−α
γ
x

) (2.4)

for all x ∈ X. Replacing (−γ/α)x instead of x in the above equation, we have

f
(

− γ
α
ax

)

= − γ
α
af(x) (2.5)

for all x ∈ X. Since a is an arbitrary nonzero element in A in the previous paragraph, one
can replace (−α/γ)a instead of a in (2.5). Thus we have f(ax) = af(x) for all x ∈ X and all
a ∈ A (a/= 0). So f : X → Y is A-linear.

The following theorem is another version of Theorem 2.1 on a restricted domain when
α, β, γ > 0.

Theorem 2.2. Let X and M be left A-modules and let d, α, β, γ be nonzero positive real numbers.
Assume that a mapping f : X → M satisfies f(0) = 0 and the functional inequality (2.1) for all
x, y, z ∈ X with ‖x‖ + ‖y‖ + ‖z‖ ≥ d and all a ∈ U(A). Then f is A-linear.

Proof. Letting z = −x − y with ‖x‖ + ‖y‖ ≥ d in (2.1), we get

αf

(
ax + ay

2α

)

+ βf

(

−ax
2β

)

+ γaf

(

− y

2γ

)

= 0 (2.6)

for all a ∈ U(A). Let δ = max{|β|−1d, |γ |−1d} and let ‖x‖ + ‖y‖ ≥ δ. Then

∥
∥βx

∥
∥ +

∥
∥γy

∥
∥ ≥ min

{∣
∣β
∣
∣,
∣
∣γ
∣
∣
}(‖x‖ + ∥

∥y
∥
∥
) ≥ min

{∣
∣β
∣
∣,
∣
∣γ
∣
∣
}

δ ≥ d. (2.7)

Therefore replacing x and y by 2βx and 2γy in (2.6), respectively, we get

αf

(
βax + γay

α

)

+ βf(−ax) + γaf
(−y) = 0 (2.8)

for all x, y ∈ X with ‖x‖ + ‖y‖ ≥ δ and all a ∈ U(A).
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Similar to the proof of Theorem 3 of [30] (see also [31]), we prove that f satisfies (2.8)
for all x, y ∈ X and all a ∈ U(A). Suppose ‖x‖ + ‖y‖ < δ. If ‖x‖ + ‖y‖ = 0, let z ∈ X with
‖z‖ = δ, otherwise

z :=

⎧

⎪⎪⎪⎪⎪
⎨

⎪⎪⎪⎪⎪
⎩

(δ + ‖x‖) x

‖x‖ , if ‖x‖ ≥ ∥
∥y

∥
∥;

(

δ +
∥
∥y

∥
∥
) y
∥
∥y

∥
∥
, if

∥
∥y

∥
∥ ≥ ‖x‖.

(2.9)

Since α, β, γ > 0, it is easy to verify that

∥
∥
∥

(

2 + β−1γ
)

z + β−1γy
∥
∥
∥ +

∥
∥
∥βγ−1x −

(

1 + 2βγ−1
)

z
∥
∥
∥ ≥ δ,

‖x‖ + ‖z‖ ≥ δ,

∥
∥
∥2

(

1 + β−1γ
)

z
∥
∥
∥ +

∥
∥y

∥
∥ ≥ δ,

∥
∥
∥2

(

1 + β−1γ
)

z
∥
∥
∥ +

∥
∥
∥βγ−1x −

(

1 + 2βγ−1
)

z
∥
∥
∥ ≥ δ,

∥
∥
∥

(

2 + β−1γ
)

z + β−1γy
∥
∥
∥ + ‖z‖ ≥ δ.

(2.10)

Therefore

αf

(
βax + γay

α

)

+ βf(−ax) + γaf
(−y)

=
[

αf

(
βax + γay

α

)

+ βf
(

−
(

2 + β−1γ
)

az − β−1γay
)

+ γaf
((

1 + 2βγ−1
)

z − βγ−1x
)]

+
[

αf

(
βax + γaz

α

)

+ βf(−ax) + γaf(−z)
]

+

[

αf

(

2
(

β + γ
)

az + γay

α

)

+ βf
(

−2
(

1 + β−1γ
)

az
)

+ γaf
(−y)

]

−
[

αf

(
βax + γaz

α

)

+ βf
(

−2
(

1 + β−1γ
)

az
)

+ γaf
((

1 + 2βγ−1
)

z − βγ−1x
)]

−
[

αf

(

2
(

β + γ
)

az + γay

α

)

+ βf
(

−
(

2 + β−1γ
)

az − β−1γay
)

+ γaf(−z)
]

= 0.

(2.11)

Hence f satisfies (2.8) and we infer that f satisfies (2.2) for all x, y ∈ X and all a ∈ U(A). By
Theorem 2.1, f is A-linear.
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3. Generalized Hyers-Ulam Stability of (1.2) on a Restricted Domain

In this section, we investigate the stability problem for A-linear mappings associated to the
functional inequality (1.2) on a restricted domain. For convenience, we use the following
abbreviation for a given function f : X → Y and a ∈ U(A):

Daf
(

x, y, z
)

:= αf

(
ax + ay

2α

)

+ βf

(
ay + az

2β

)

+ γaf

(
z + x

2γ

)

(3.1)

for all x, y, z ∈ X.

Theorem 3.1. Let d, α, β, γ > 0, p ∈ (0, 1), and θ, ε ≥ 0 be given. Assume that a mapping f : X →
Y satisfies the functional inequality

f
∥
∥Daf

(

x, y, z
)∥
∥ ≤ ∥

∥f
(

ax + ay + az
)∥
∥ + θ + ε

(‖x‖p + ∥
∥y

∥
∥
p + ‖z‖p) (3.2)

for all x, y, z ∈ X with ‖x‖ + ‖y‖ + ‖z‖ ≥ d and all a ∈ U(A). Then there exist a unique A-linear
mapping T : X → Y and a constant C > 0 such that

∥
∥f(x) − T(x)

∥
∥ ≤ C +

24 × 2pαp−1ε
(2 − 2p)

‖x‖p (3.3)

for all x ∈ X.

Proof. Let z = −x − y with ‖x‖ + ‖y‖ ≥ d. Then (3.2) implies that

∥
∥
∥
∥
αf

(
ax + ay

2α

)

+ βf

(

−ax
2β

)

+ γaf

(

− y

2γ

)∥
∥
∥
∥
≤ ∥
∥f(0)

∥
∥ + θ + ε

(‖x‖p + ∥
∥y

∥
∥
p +

∥
∥x + y

∥
∥
p)

≤ ∥
∥f(0)

∥
∥ + θ + 2ε

(‖x‖p + ∥
∥y

∥
∥
p)
.

(3.4)

Thus

∥
∥
∥
∥
αf

(
ax + ay

α

)

+ βf

(

−ax
β

)

+ γaf

(

−y
γ

)∥
∥
∥
∥
≤ ∥
∥f(0)

∥
∥ + θ + 2p+1ε

(‖x‖p + ∥
∥y

∥
∥
p) (3.5)

for all x, y ∈ X with ‖x‖ + ‖y‖ ≥ d and all a ∈ U(A). Let δ = max{β−1d, γ−1d} and let
‖x‖ + ‖y‖ ≥ δ. Then ‖βx‖ + ‖γy‖ ≥ d. Therefore it follows from (3.5) that

∥
∥
∥
∥
αf

(
βax + γay

α

)

+ βf(−ax) + γaf
(−y)

∥
∥
∥
∥
≤ ∥
∥f(0)

∥
∥ + θ + 2p+1ε

(∥
∥βx

∥
∥
p +

∥
∥γy

∥
∥
p) (3.6)
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for all x, y ∈ X with ‖x‖ + ‖y‖ ≥ δ and all a ∈ U(A). For the case ‖x‖ + ‖y‖ < δ, let z be
an element of X which is defined in the proof of Theorem 2.2. It is clear that ‖z‖ ≤ 2δ. Using
(2.11) and (3.6), we get

∥
∥
∥
∥
αf

(
βax + γay

α

)

+ βf(−ax) + γaf
(−y)

∥
∥
∥
∥

≤
∥
∥
∥
∥

[

αf

(
βax + γay

α

)

+ βf
(

−
(

2 + β−1γ
)

az − β−1γay
)

+ γaf
((

1 + 2βγ−1
)

z − βγ−1x
)]

∥
∥
∥
∥

+
∥
∥
∥
∥

[

αf

(
βax + γaz

α

)

+ βf(−ax) + γaf(−z)
]∥
∥
∥
∥

+

∥
∥
∥
∥
∥

[

αf

(

2
(

β + γ
)

az + γay

α

)

+ βf
(

−2
(

1 + β−1γ
)

az
)

+ γaf
(−y)

]∥
∥
∥
∥
∥

+
∥
∥
∥
∥

[

αf

(
βax + γaz

α

)

+ βf
(

−2
(

1 + β−1γ
)

az
)

+ γaf
((

1 + 2βγ−1
)

z − βγ−1x
)]

∥
∥
∥
∥

+

∥
∥
∥
∥
∥

[

αf

(

2
(

β + γ
)

az + γay

α

)

+ βf
(

−
(

2 + β−1γ
)

az − β−1γay
)

+ γaf(−z)
]∥
∥
∥
∥
∥

≤ 5
(∥
∥f(0)

∥
∥ + θ

)

+ 4p+1εδp[2
(

2β + γ
)p + 2p

(

β + γ
)p + γp

]

+ 6 × 2pε
(∥
∥βx

∥
∥
p +

∥
∥γy

∥
∥
p)

(3.7)

for all x, y ∈ X with ‖x‖ + ‖y‖ < δ and all a ∈ U(A). Hence

∥
∥
∥
∥
αf

(
βax + γay

α

)

+ βf(−ax) + γaf
(−y)

∥
∥
∥
∥
≤ K + 6 × 2pε

(∥
∥βx

∥
∥
p +

∥
∥γy

∥
∥
p) (3.8)

for all x, y ∈ X and all a ∈ U(A), where

K := 5
(∥
∥f(0)

∥
∥ + θ

)

+ 4p+1εδp[2
(

2β + γ
)p + 2p

(

β + γ
)p + γp

]

. (3.9)

Letting x = 0 and y = 0 in (3.8), respectively, we get

∥
∥
∥αf

(γay

α

)

+ βf(0) + γaf
(−y)

∥
∥
∥ ≤ K + 6 × 2pε

∥
∥γy

∥
∥
p
,

∥
∥
∥
∥
αf

(
βax

α

)

+ βf(−ax) + γaf(0)
∥
∥
∥
∥
≤ K + 6 × 2pε

∥
∥βx

∥
∥
p

(3.10)

for all x, y ∈ X and all a ∈ U(A). It follows from (3.8) and (3.10) that

∥
∥f

(

x + y
) − f(x) − f

(

y
)∥
∥ ≤ α−1[(β + γ

)∥
∥f(0)

∥
∥ + 3K + 12 × 2pε

(‖αx‖p + ∥
∥αy

∥
∥
p)] (3.11)
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for all x, y ∈ X. By the results of Hyers [2] and Rassias [4], there exists a unique additive
mapping T : X → Y given by T(x) = limn→∞2−nf(2nx) such that

∥
∥f(x) − T(x)

∥
∥ ≤ α−1[(β + γ

)∥
∥f(0)

∥
∥ + 3K

]

+
24 × 2pαp−1ε
(2 − 2p)

‖x‖p (3.12)

for all x ∈ X. It follows from the definition of T and (3.2) that T(0) = 0 and ‖DaT(x, y, z)‖ ≤
‖T(ax + ay + az)‖ for all x, y, z ∈ X with ‖x‖ + ‖y‖ + ‖z‖ ≥ d and all a ∈ U(A). Hence T is
A-linear by Theorem 2.2.

We apply the result of Theorem 3.1 to study the asymptotic behavior of a generalized
additive mapping. An asymptotic property of additive mappings has been proved by Skof
[32] (see also [30, 33]).

Corollary 3.2. Let α, β, γ be nonzero positive real numbers. Assume that a mapping f : X → Y with
f(0) = 0 satisfies

∥
∥Daf

(

x, y, z
) − f

(

ax + ay + az
)∥
∥ −→ 0 as ‖x‖ + ∥

∥y
∥
∥ + ‖z‖ −→ ∞ (3.13)

for all a ∈ U(A), then f is A-linear.

Proof. It follows from (3.13) that there exists a sequence {δn}, monotonically decreasing to
zero, such that

∥
∥Daf

(

x, y, z
) − f

(

ax + ay + az
)∥
∥ ≤ δn (3.14)

for all x, y, z ∈ X with ‖x‖ + ‖y‖ + ‖z‖ ≥ n and all a ∈ U(A). Therefore

∥
∥Daf

(

x, y, z
)∥
∥ ≤ ∥

∥f
(

ax + ay + az
)∥
∥ + δn (3.15)

for all x, y, z ∈ Xwith ‖x‖+‖y‖+‖z‖ ≥ n and all a ∈ U(A). Applying (3.15) and Theorem 3.1,
we obtain a sequence {Tn : X → Y} of unique A-linear mappings satisfying

∥
∥f(x) − Tn(x)

∥
∥ ≤ 15α−1δn (3.16)

for all x ∈ X. Since the sequence {δn} is monotonically decreasing, we conclude

∥
∥f(x) − Tm(x)

∥
∥ ≤ 15α−1δm ≤ 15α−1δn (3.17)

for all x ∈ X and all m ≥ n. The uniqueness of Tn implies Tm = Tn for all m ≥ n. Hence letting
n → ∞ in (3.16), we obtain that f is A-linear.

The following theorem is another version of Theorem 3.1 for the case p > 1.
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Theorem 3.3. Let p > 1, d > 0, ε ≥ 0 be given and let α, β, γ be nonzero real numbers. Assume that
a mapping f : X → Y with f(0) = 0 satisfies the functional inequality

∥
∥Daf

(

x, y, z
)∥
∥ ≤ ∥

∥f
(

ax + ay + az
)∥
∥ + ε

(‖x‖p + ∥
∥y

∥
∥
p + ‖z‖p) (3.18)

for all x, y, z ∈ X with ‖x‖ + ‖y‖ + ‖z‖ ≤ d and all a ∈ U(A). Then there exists a unique A-linear
mapping φ : X → Y such that

∥
∥φ(x) − f(x)

∥
∥ ≤ (6 + 2p) × 2p|α|p−1ε

2p − 2
‖x‖p (3.19)

for all x ∈ X with ‖x‖ ≤ d/8|α| and φ(x) = limn→∞2nf(2−nx).

Proof. Letting z = −x − y in (3.18), we get

∥
∥
∥
∥
αf

(
ax + ay

2α

)

+ βf

(

−ax
2β

)

+ γaf

(

− y

2γ

)∥
∥
∥
∥
≤ ε

(‖x‖p + ∥
∥y

∥
∥
p +

∥
∥x + y

∥
∥
p) (3.20)

for all x, y ∈ X with ‖x‖ + ‖y‖ ≤ d/2 and all a ∈ U(A). Hence

∥
∥
∥
∥
αf

(
ax + ay

α

)

+ βf

(

−ax
β

)

+ γaf

(

−y
γ

)∥
∥
∥
∥
≤ 2pε

(‖x‖p + ∥
∥y

∥
∥
p +

∥
∥x + y

∥
∥
p) (3.21)

for all x, y ∈ X with ‖x‖ + ‖y‖ ≤ d/4 and all a ∈ U(A). It follows from (3.21) that

∥
∥
∥
∥
αf

(ax

α

)

+ βf

(

−ax
β

)∥
∥
∥
∥
≤ 2p+1ε‖x‖p,

∥
∥
∥
∥
αf

(ay

α

)

+ γaf

(

−y
γ

)∥
∥
∥
∥
≤ 2p+1ε

∥
∥y

∥
∥
p

(3.22)

for all x, y ∈ X with ‖x‖, ‖y‖ ≤ d/4 and all a ∈ U(A). Adding (3.21) to (3.22), we get

∥
∥
∥
∥
αf

(
ax + ay

α

)

− αf
(ax

α

)

− αf
(ay

α

)
∥
∥
∥
∥
≤ 2pε

(

3‖x‖p + 3
∥
∥y

∥
∥
p +

∥
∥x + y

∥
∥
p) (3.23)

for all x, y ∈ X with ‖x‖, ‖y‖ ≤ d/8 and all a ∈ U(A). Therefore

∥
∥f

(

x + y
) − f(x) − f

(

y
)∥
∥ ≤ 2p|α|p−1ε(3‖x‖p + 3

∥
∥y

∥
∥
p +

∥
∥x + y

∥
∥
p) (3.24)

for all x, y ∈ X with ‖x‖, ‖y‖ ≤ d/8|α|. Let x ∈ X with ‖x‖ ≤ d/8|α|. We may put y = x in
(3.24) to obtain

∥
∥f(2x) − 2f(x)

∥
∥ ≤ (6 + 2p) × 2p|α|p−1ε‖x‖p. (3.25)
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We can replace x by x/2n+1 in (3.25) for all nonnegative integers n. Then using a similar
argument given in [4], we have

∥
∥2n+1f

(

2−n−1x
) − 2nf(2−nx)

∥
∥ ≤ (6 + 2p) ×

(
2
2p

)n

|α|p−1ε‖x‖p. (3.26)

Hence we have the following inequality:

∥
∥
∥2n+1f

(

2−n−1x
)

− 2mf
(

2−mx
)
∥
∥
∥ ≤

n∑

k=m

∥
∥
∥2k+1f

(

2−k−1x
)

− 2kf
(

2−kx
)∥
∥
∥

≤ (6 + 2p)|α|p−1ε
n∑

k=m

(
2
2p

)k

‖x‖p
(3.27)

for all x ∈ X with ‖x‖ ≤ d/8|α| and all integers n ≥ m ≥ 0. Since Y is complete, (3.27)
shows that the limit T(x) = limn→∞2nf(2−nx) exists for all x ∈ X with ‖x‖ ≤ d/8|α|. Letting
m = 0 and n → ∞ in (3.27), we obtain that T satisfies inequality (3.19) for all x ∈ X with
‖x‖ ≤ d/8|α|. It follows from the definition of T and (3.24) that

T
(

x + y
)

= T(x) + T
(

y
)

(3.28)

for all x, y ∈ X with ‖x‖, ‖y‖, ‖x + y‖ ≤ d/8|α|. Hence

T
(x

2

)

=
1
2
T(x) (3.29)

for all x ∈ Xwith ‖x‖ ≤ d/8|α|. We extend the additivity of T to the whole spaceX by using an
extension method of Skof [34]. Let δ := d/8|α| and x ∈ X be given with ‖x‖ > δ. Let k = k(x)
be the smallest integer such that 2k−1δ < ‖x‖ ≤ 2kδ.We define the mapping φ : X → Y by

φ(x) :=

⎧

⎪⎪⎪⎨

⎪⎪⎪⎩

T(x), if ‖x‖ ≤ δ,

2kT
(

2−kx
)

, if ‖x‖ > δ.

(3.30)

Let x ∈ X be given with ‖x‖ > δ and let k = k(x) be the smallest integer such that 2k−1δ <
‖x‖ ≤ 2kδ. Then k−1 is the smallest integer satisfying 2k−2δ < ‖x/2‖ ≤ 2k−1δ. If k = 1, we have
φ(x/2) = T(x/2) and φ(x) = 2T(x/2). Therefore φ(x/2) = (1/2)φ(x). For the case k > 1, it
follows from the definition of φ that

φ
(x

2

)

= 2k−1T
(

2−(k−1)
x

2

)

=
1
2
· 2kT

(

2−kx
)

=
1
2
φ(x). (3.31)
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From the definition of φ and (3.29), we get that φ(x/2) = (1/2)φ(x) holds true for all x ∈ X.
Let x ∈ X and let k be an integer such that ‖x‖ ≤ 2kδ. Then

φ(x) = 2kφ
(

2−kx
)

= 2kT
(

2−kx
)

= lim
n→∞

2n+kf
(

2−(n+k)x
)

= lim
n→∞

2nf
(

2−nx
)

. (3.32)

It remains to prove that φ is A-linear. Let x, y ∈ X and let n be a positive integer such that
‖x‖, ‖y‖, ‖x + y‖ ≤ 2nδ. Since φ(x/2) = (1/2)φ(x) for all x ∈ X and T satisfies (3.28), we have

φ
(

x + y
)

= 2nφ
(
x + y

2n

)

= 2nT
(
x + y

2n

)

= 2n
[

T
( x

2n
)

+ T
( y

2n
)]

= 2n
[

φ
( x

2n
)

+ φ
( y

2n
)]

= φ(x) + φ
(

y
)

.

(3.33)

Hence φ is additive. Since φ(x) = limn→∞2nf(2−nx) for all x ∈ X, we have from (3.22) that
αφ(ay/α) = γaφ(y/γ)) for all y ∈ X and all a ∈ U(A). Letting a = e, we get αφ(y/α) =
γφ(y/γ)). Therefore φ(ay) = aφ(y) for all y ∈ X and all a ∈ U(A). This proves that φ is
A-linear. Also, φ satisfies inequality (3.19) for all x ∈ X with ‖x‖ ≤ d/8|α|, by the definition
of φ.

For the case p = 1 we use the Gajda’s example [35] to give the following
counterexample.

Example 3.4. Let φ : C → C be defined by

φ(x) :=

⎧

⎨

⎩

x, for |x| < 1,

1, for |x| ≥ 1.
(3.34)

Consider the function f : C → C by the formula

f(x) :=
∞∑

n=0

1
2n

φ(2nx). (3.35)

It is clear that f is continuous, bounded by 2 on C and

∣
∣f
(

x + y
) − f(x) − f

(

y
)∣
∣ ≤ 6

(|x| + ∣
∣y

∣
∣
)

(3.36)

for all x, y ∈ C (see [35]). It follows from (3.36) that the following inequality:

∣
∣f
(

x + y + z
) − f(x) − f

(

y
) − f(z)

∣
∣ ≤ 12

(|x| + ∣
∣y

∣
∣ + |z|) (3.37)

holds for all x, y, z ∈ C. First we show that

∣
∣f(λx) − λf(x)

∣
∣ ≤ 2(1 + |λ|)2|x| (3.38)
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for all x, λ ∈ C. If f satisfies (3.38) for all |λ| ≥ 1, then f satisfies (3.38) for all λ ∈ C. To see this,

let 0 < |λ| < 1 (the result is obvious when λ = 0). Then |f(λ−1x)−λ−1f(x)| ≤ 2(1 + |λ|−1)2|x| for
all x ∈ C. Replacing x by λx, we get that |f(λx) − λf(x)| ≤ 2|λ|2(1 + |λ|−1)2|x| = 2(1 + |λ|)2|x|
for all x ∈ C. Hence we may assume that |λ| ≥ 1. If λx = 0 or |λx| ≥ 1, then

∣
∣f(λx) − λf(x)

∣
∣ ≤ 2(1 + |λ|) ≤ 2|λ|(1 + |λ|)|x| ≤ 2(1 + |λ|)2|x|. (3.39)

Now suppose that 0 < |λx| < 1. Then there exists an integer k ≥ 0 such that

1
2k+1

≤ |λx| < 1
2k

. (3.40)

Therefore

2k|x|, 2k|λx| ∈ (−1, 1). (3.41)

Hence

2m|x|, 2m|λx| ∈ (−1, 1) (3.42)

for all m = 0, 1, . . . , k. From the definition of f and (3.40), we have

∣
∣f(λx) − λf(x)

∣
∣ =

∣
∣
∣
∣
∣

∞∑

n=k+1

1
2n

[

φ(2nλx) − λφ(2nx)

∣
∣
∣
∣
∣

≤ (1 + |λ|)
∞∑

n=k+1

1
2n

=
1 + |λ|
2k

≤ 2|λ|(1 + |λ|)|x| ≤ 2(1 + |λ|)2|x|.
(3.43)

Therefore f satisfies (3.38). Now we prove that

∣
∣Dμf

(

x, y, z
) − f

(

μx + μy + μz
)∣
∣

≤
(

16 + |α|−1(1 + |α|)2 + ∣
∣β
∣
∣
−1(1 +

∣
∣β
∣
∣
)2 +

∣
∣γ
∣
∣
−1(1 +

∣
∣γ
∣
∣
)2
) (|x| + ∣

∣y
∣
∣ + |z|)

(3.44)

for all x, y, z ∈ C and all μ ∈ T
1 := {λ ∈ C : |λ| = 1}, where

Dμf
(

x, y, z
)

:= αf

(
μx + μy

2α

)

+ βf

(
μy + μz

2β

)

+ γμf

(
z + x

2γ

)

. (3.45)
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It follows from (3.37) and (3.38) that

∣
∣Dμf

(

x, y, z
) − f

(

μx + μy + μz
)∣
∣

≤
∣
∣
∣
∣
αf

(
μx + μy

2α

)

− f

(
μx + μy

2

)∣
∣
∣
∣
+
∣
∣
∣
∣
βf

(
μy + μz

2β

)

− f

(
μy + μz

2

)∣
∣
∣
∣

+
∣
∣
∣
∣
γμf

(
z + x

2γ

)

− μf
(z + x

2

)
∣
∣
∣
∣
+
∣
∣
∣
∣
μf

(z + x

2

)

− f

(
μz + μx

2

)∣
∣
∣
∣

+
∣
∣
∣
∣
f

(
μx + μy

2

)

+ f

(
μy + μz

2

)

+ f

(
μz + μx

2

)

− f
(

μx + μy + μz
)
∣
∣
∣
∣

≤
(

6 + |α|−1(1 + |α|)2
)∣
∣x + y

∣
∣ +

(

6 +
∣
∣β
∣
∣
−1(1 +

∣
∣β
∣
∣
)2
)∣
∣y + z

∣
∣ +

(

10 +
∣
∣γ
∣
∣
−1(1 +

∣
∣γ
∣
∣
)2
)

|x + z|

≤
(

16 + |α|−1(1 + |α|)2 + ∣
∣β
∣
∣
−1(1 +

∣
∣β
∣
∣
)2 +

∣
∣γ
∣
∣
−1(1 +

∣
∣γ
∣
∣
)2
)(|x| + ∣

∣y
∣
∣ + |z|)

(3.46)

for all x, y, z ∈ C and all μ ∈ T
1. Thus f satisfies inequality (3.18) for p = 1. Let T : C → C be

a linear functional such that

∣
∣f(x) − T(x)

∣
∣ ≤ M|x| (3.47)

for all x ∈ C, where M is a positive constant. Then there exists a constant c ∈ C such that
T(x) = cx for all rational numbers x. So we have

∣
∣f(x)

∣
∣ ≤ (M + |c|)|x| (3.48)

for all rational numbers x. Letm ∈ Nwithm > M+ |c|. If x0 ∈ (0, 2−m+1)∩Q, then 2nx0 ∈ (0, 1)
for all n = 0, 1, . . . , m − 1. So

f(x0) ≥
m−1∑

n=0

1
2n

φ(2nx0) = mx0 > (M + |c|)x0, (3.49)

which contradicts (3.48).
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