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1. Introduction

Impulsive delay differential equations may express several real-world simulation processes
which depend on their prehistory and are subject to short-time disturbances. Such processes
occur in the theory of optimal control, population dynamics, biotechnologies, economics, and
so forth. Therefore, the study of this class of dynamical systems has gained prominence and
it is a rapidly growing field; see, for instance, the monographs [1–4] and the references cited
therein.

Recently, based on a fixed-point theorem in cones, Li et al. [5] investigated the
periodicity of the following scalar system:

ẏ(t) = −a(t)y(t) + g
(
t, y(t − τ(t))

)
, t /= tj , j ∈ Z,

y
(
t+j

)
= y
(
t−j
)
+ Ij
(
y
(
tj
))
,

(1.1)
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where a ∈ C(R, (0,∞)), τ ∈ C(R,R), g ∈ C(R×[0,∞), [0,∞)), Ij ∈ C([0,∞), [0,∞)), j ∈ Z, and
a(t), τ(t) are ω-periodic functions and g(t, y) is ω-periodic with respect to its first argument.
It is well known that system (1.1) includes many mathematical ecological models (see [6, 7]).

Also, by using Krasnoselskii’s fixed point theorem and upper and lower solutions
method, Zhu and Li [8] find some sets of positive values λ determining that there exist
positive T -periodic solutions to the higher-dimensional functional difference equation of the
form:

x(n + 1) = A(n)x(n) + λh(n)f(x(n − τ(n))), n ∈ Z, (1.2)

where A(n) = diag[a1(n), a2(n), . . . , am(n)], h(n) = diag[h1(n), h2(n), . . . , hm(n)], aj , hj : Z →
R

+, τ : Z → Z are T -periodic, j = 1, 2, . . . , m, T ≥ 1, λ > 0, x : Z → R
m, f : Rm

+ → R
m
+ , where

R
m
+ = {(x1, x2, . . . , xm)

T ∈ R
m, xj ≥ 0, j = 1, 2, . . . , m}.

Motivated by the above, in this paper, we consider the following system:

xΔ(t) = A(t)x(t) + f(t, xt), t /= tj , j ∈ Z, t ∈ T,

x
(
t+j

)
= x
(
t−j
)
+ Ij
(
x
(
tj
))
,

(1.3)

where T is an ω-periodic time scale, A(t) = (aij(t))n×n (t ∈ T) is a nonsingular matrix with
continuous real-valued functions as its elements, andA(t+ω) = A(t); f = (f1, f2, . . . , fn)

T is a
function defined on T×C(T,Rn) → R

n, satisfying f(t+ω, xt+ω) = f(t, xt), for all t ∈ T, where
xt ∈ C(T,Rn), and xt(s) = x(t+ s), for all s ∈ T; x(t+j ) and x(t−j ) represent the right and the left
limit of x(tj) in the sense of time scales; in addition, if tj is right-scattered, then x(t+j ) = x(tj),

whereas, if tj is left-scattered, then x(t−j ) = x(tj); Ij = (I1j , I
2
j , . . . , I

n
j )

T ∈ C(Rn,Rn), j ∈ Z.
We assume that there exists a positive integer p such that tj+p = tj + ω, Ij+p = Ij , j ∈ Z. For
each interval I of R, we denote IT = I ∩ T; without loss of generality, we also assume that
[0, ω)

T
∩ {tj , j ∈ Z} = {t1, t2, . . . , tp}.
To the best of our knowledge, there are few papers published on the existence of

periodic solutions for system (1.3). Our main aim of this paper is to use a multiple fixed
point theorem (Avery-Peterson fixed point theorem) for cones to establish the existence of
three positive periodic solutions of (1.3).

In this paper, for each x = (x1, x2, . . . , xn)
T ∈ C([0, ω]

T
,Rn), the norm of x is defined

as ‖x‖ = supt∈[0,ω]
T

|x(t)|0, where |x(t)|0 =
∑n

i=1 |xi(t)|, and when it comes to that x(t) is
continuous, delta derivative, delta integrable, and so forth; we mean that each element xi

is continuous, delta derivative, delta integrable, and so forth.
The organization of this paper is as follows. In Section 2, we introduce some notations

and definitions and state some preliminary results needed in later sections; then we give
Green’s function of (1.3), which plays an important role in this paper. In Section 3, we
establish our main results for positive periodic solutions by applying Avery-Peterson fixed
point theorem. In Section 4, an example is given to illustrate that our results are feasible and
more general.
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2. Preliminaries

In this section, we shall first recall some basic definitions and lemmas which are used in what
follows.

Let T be a nonempty closed subset (time scale) of R. The forward and backward jump
operators σ, ρ : T → T and the graininess μ : T → R

+ are defined, respectively, by

σ(t) = inf{s ∈ T : s > t}, ρ(t) = sup{s ∈ T : s < t}, μ(t) = σ(t) − t. (2.1)

A point t ∈ T is called left-dense if t > infT and ρ(t) = t, left-scattered if ρ(t) < t,
right-dense if t < supT and σ(t) = t, and right-scattered if σ(t) > t. If T has a left-scattered
maximum m, then T

k = T \ {m}; otherwise T
k = T. If T has a right-scattered minimum m,

then Tk = T \ {m}; otherwise Tk = T.
A function f : T → R is right-dense continuous provided that it is continuous at

right-dense point in T and its left-side limits exist at left-dense points in T. If f is continuous
at each right-dense point and each left-dense point, then f is said to be a continuous function
on T. The set of continuous functions f : T → Rwill be denoted by C(T) = C(T,R).

For y : T → R and t ∈ T
k, we define the delta derivative of y(t), yΔ(t), to be the

number (if it exists) with the property that for a given ε > 0, there exists a neighborhood U
of t such that

∣∣∣
[
y(σ(t)) − y(s)

] − yΔ(t)[σ(t) − s]
∣∣∣ < ε|σ(t) − s| (2.2)

for all s ∈ U.
If y is continuous, then y is right-dense continuous, and y is delta differentiable at t,

then y is continuous at t.
Let y be right-dense continuous; if YΔ(t) = y(t), then we define the delta integral by

∫ t

a

y(s)Δs = Y (t) − Y (a). (2.3)

Definition 2.1 (see [9]). We say that a time scale T is periodic if there exists p > 0 such that if
t ∈ T, then t ± p ∈ T. For T/=R, the smallest positive p is called the period of the time scale.

Definition 2.2 (see [9]). Let T/=R be a periodic time scale with period p. We say that the
function f : T → R is periodic with period ω if there exists a natural number n such that
ω = np, f(t +ω) = f(t) for all t ∈ T and ω is the smallest number such that f(t +ω) = f(t).

If T is ω-periodic, then σ(t +ω) = σ(t) +ω and μ(t) is an ω-periodic function.

Definition 2.3 (see [10]). An n × n-matrix-valued function A on a time scale T is called
regressive (with respect to T) provided that

I + μ(t)A(t) (2.4)

is invertible for all t ∈ T
k.
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Definition 2.4 (see [10]). Let t0 ∈ T and assume that A is a regressive n × n-matrix-valued
function. The unique matrix-valued solution of the IVP

YΔ = A(t)Y, Y (t0) = I, (2.5)

where I denotes as usual the n × n-identity matrix, is called the matrix exponential function
(at t0) and is denoted by eA(·, t0).

Lemma 2.5 (see [10]). If A is a regressive n × n-matrix-valued functions on T, then

(i) e0(t, s) ≡ I and eA(t, t) ≡ I;

(ii) eA(σ(t), s) = (I + μ(t)A(t))eA(t, s);

(iii) eA(t, s) = e−1A (s, t);

(iv) eA(t, s)eA(s, r) = eA(t, r).

Lemma 2.6 (see [10]). Let A be a regressive n × n-matrix-valued function on T and suppose that
f : T → R

n is rd-continuous. Let t0 ∈ T and

yΔ = A(t)y + f(t), y(t0) = y0 (2.6)

has a unique solution y : T → R
n. Moreover, the solution is given by

y(t) = eA(t, t0)y0 +
∫ t

t0

eA(t, σ(τ))f(τ)Δτ. (2.7)

In what follows, we assume that

(P1) f(t, xt) is a continuous function of t for each x ∈ C(T,Rn),

(P2) for any L > 0 and ε > 0, there exists δ > 0, such that

{
x, y ∈ C(T,Rn), ‖x‖ ≤ L,

∥∥y
∥
∥ ≤ L,

∥∥x − y
∥∥ < δ

}
(2.8)

imply

∣∣f(t, xt) − f
(
t, yt

)∣∣
0 < ε, ∀t ∈ [0, ω]

T
, (2.9)

(P3) the coefficient matrix A is a regressive n × n-matrix-valued function on T.

Lemma 2.7. Let A be a regressive n × n-matrix-valued function on T, then the function x(t) is an
ω-periodic solution of (1.3), if and only if x(t) is an ω-periodic solution of the following:

x(t) =
∫ t+ω

t

G(t, s)f(s, xs)Δs +
∑

j:tj∈[t,t+ω)
T

G
(
t, tj
)
eA
(
σ
(
tj
)
, tj
)
Ij
(
x
(
tj
))
, (2.10)
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where

G(t, s) = [eA(0, ω) − I]−1eA(t, σ(s)) := (Gik)n×n. (2.11)

Proof. If x(t) is an ω-periodic solution of (1.3). For any t ∈ T, there exists j ∈ Z such that tj is
the first impulsive point after t. By using Lemma 2.6, for s ∈ [t, tj]T, we have

x(s) = eA(s, t)x(t) +
∫s

t

eA(s, σ(θ))f(θ, xθ)Δθ, (2.12)

then

x
(
tj
)
= eA

(
tj , t
)
x(t) +

∫ tj

t

eA
(
tj , σ(θ)

)
f(θ, xθ)Δθ. (2.13)

Again using Lemma 2.6 and the equality (2.13), for s ∈ (tj , tj+1]T, then

x(s) = eA
(
s, tj
)
x
(
t+j

)
+
∫ s

tj

eA(s, σ(θ))f(θ, xθ)Δθ

= eA
(
s, tj
)
x
(
tj
)
+
∫ s

tj

eA(s, σ(θ))f(θ, xθ)Δθ + eA
(
s, tj
)
Ij
(
x
(
tj
))

= eA(s, t)x(t) +
∫ s

t

eA(s, σ(θ))f(θ, xθ)Δθ + eA
(
s, tj
)
Ij
(
x
(
tj
))
.

(2.14)

Repeating the above process for s ∈ [t, t +ω]
T
, we have

x(s) = eA(s, t)x(t) +
∫s

t

eA(s, σ(θ))f(θ, xθ)Δθ +
∑

j:tj∈[t,s)T
eA
(
s, tj
)
Ij
(
x
(
tj
))
. (2.15)

Let s = t +ω in the above equality, we have

x(t +ω) = eA(t +ω, t)x(t) +
∫ t+ω

t

eA(t +ω, σ(θ))f(θ, xθ)Δθ

+
∑

j:tj∈[t,t+ω)
T

eA
(
t +ω, tj

)
Ij
(
x
(
tj
))
.

(2.16)

Noticing that x(t +ω) = x(t) and eA(t, t +ω) = eA(0, ω), we find that x satisfies (2.10).
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Let x be an ω-periodic solution of (2.10). If t /= ti, i ∈ Z, from (2.10), we have

xΔ(t) = G(σ(t), t +ω)f(t +ω, xt+ω) −G(σ(t), t)f(t, xt) +A(t)x(t)

= A(t)x(t) + f(t, xt).
(2.17)

If t = ti, i ∈ Z, then by (2.10), we get

x
(
t+i
) − x

(
t−i
)
=

∑

j:tj∈[t+i ,t+i +ω)
T

G
(
ti, tj
)
eA
(
σ
(
tj
)
, tj
)
Ij
(
x
(
tj
))

−
∑

j:tj∈[t−i ,t−i +ω)
T

G
(
ti, tj
)
eA
(
σ
(
tj
)
, tj
)
Ij
(
x
(
tj
))

= G(ti, ti +ω)eA(σ(ti +ω), ti +ω)Ii(x(ti +ω))

−G(ti, ti)eA(σ(ti), ti)Ii(x(ti))

= Ii(x(ti)).

(2.18)

So we know that x is also an ω-periodic solution of (1.3). This completes the proof of
Lemma 2.7.

Definition 2.8. Let X be a Banach space and let K be a closed nonempty subset of X; K is a
cone if:

(1) αu + βv ∈ K for all u, v ∈ K and all α, β ≥ 0;

(2) u,−u ∈ K imply u = 0.

Define Kr = {x ∈ K | ‖x‖ ≤ r}. Let α(x) denote the positive continuous concave
functional on K; that is, α : K → [0,+∞) is continuous and satisfying

α
(
λx + (1 − λ)y

) ≥ λα(x) + (1 − λ)α
(
y
)
, for any x, y ∈ K, 0 < λ < 1, (2.19)

and we denote set K(α, a, b) = {x | x ∈ K, a ≤ α(x), ‖x‖ ≤ b}.
Let γ and θ be nonnegative continuous convex functionals onK, let α be a nonnegative

continuous concave functional onK, and let ψ be a nonnegative continuous functional onK.
Then for positive real numbers a, b, c, and d, we define the following convex sets:

K
(
γ, d
)
=
{
x ∈ K | γ(x) < d

}
,

K
(
γ, α, b, d

)
=
{
x ∈ K | b ≤ α(x), γ(x) ≤ d

}
,

K
(
γ, θ, α, b, c, d

)
=
{
x ∈ K | b ≤ α(x), θ(x) ≤ c, γ(x) ≤ d

}
,

(2.20)

and a closed set R(γ, ψ, a, d) = {x ∈ K | a ≤ ψ(x), γ(x) < d}.
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The following fixed point theorem due to Avery and Peterson is important in the proof
of our main result.

Theorem 2.9 (Avery-Peterson [11]). Let γ and θ be nonnegative continuous convex functionals on
K, let α be a nonnegative continuous concave functional onK, and let ψ be a nonnegative continuous
functional on K satisfying ψ(ρx) ≤ ρψ(x) for 0 ≤ ρ ≤ 1, such that for some positive numbers E and
d,

α(x) ≤ ψ(x), ‖x‖ ≤ Eγ(x) (∗)

for all x ∈ K(γ, d). Suppose that H : K(γ, d) → K(γ, d) is completely continuous and there exist
positive numbers a, b, and c with a < b such that

(1) {x ∈ K(γ, θ, α, b, c, d) | α(x) > b}/= ∅ and α(Hx) > b for x ∈ K(γ, θ, α, b, c, d),

(2) α(Hx) > b, for x ∈ K(γ, α, b, d) with θ(Hx) > c,

(3) 0/∈R(γ, ψ, a, d) and ψ(Hx) < a for x ∈ R(γ, ψ, a, d) with ψ(x) = a.

ThenH has at least three fixed points x1, x2, x3 ∈ K(γ, d) such that

γ(xi) ≤ d for i = 1, 2, 3, b < α(x1),

a < ψ(x2), with α(x2) < b, ψ(x3) < a.
(2.21)

In order to obtain the existence of periodic solutions of system (1.3), we make the
following preparations.

Define

PC(T) =
{
x = (x1, x2, . . . , xn)T : T −→ R

n|xi|[tj ,tj+1)T ∈ C
((
tj , tj+1

)
T
,R
)

∃x
(
t−j
)
= x
(
tj
)
, x
(
t+j

)
, j ∈ Z, i = 1, 2, . . . , n

}
.

(2.22)

Set

X = {x(t) : x(t) ∈ PC(T), x(t +ω) = x(t)} (2.23)

with the norm defined by ‖x‖ = supt∈[0,ω]
T

|x(t)|0, where |x(t)|0 =
∑n

i=1 |xi(t)|, then X is a
Banach space.
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For convenience, we introduce the following notations:

G(t, s)eA(σ(s), s) = [eA(0, ω) − I]−1eA(t, σ(s))eA(σ(s), s)

= [eA(0, ω) − I]−1eA(t, s)

= E(t, s)

:= (Eik)n×n, for t, s ∈ T, i, k = 1, 2, . . . , n,

A0 := min
1≤i,k≤n

inf
s,t∈[0,ω]

T

|Gik(t, s)|, B0 := max
1≤i,k≤n

sup
s,t∈[0,ω]

T

|Gik(t, s)|,

A1 := min
1≤i,k≤n

inf
s,t∈[0,ω]

T

|Eik(t, s)|, B1 := max
1≤i,k≤n

sup
s,t∈[0,ω]

T

|Eik(t, s)|,

A2 := min{A0, A1}, B2 := max{B0, B1},

A3 := min
1≤k≤n

inf
s,t∈[0,ω]

T

∣
∣
∣
∣
n∑

i=1
Gik(t, s)

∣
∣
∣
∣, B3 := max

1≤k≤n
sup

s,t∈[0,ω]
T

∣
∣
∣
∣
n∑

i=1
Gik(t, s)

∣
∣
∣
∣,

A4 := min
1≤k≤n

inf
s,t∈[0,ω]

T

∣∣∣∣
n∑

i=1
Eik(t, s)

∣∣∣∣, B4 := max
1≤k≤n

sup
s,t∈[0,ω]

T

∣∣∣∣
n∑

i=1
Eik(t, s)

∣∣∣∣,

A5 := min{A3, A4}, B5 := max{B3, B4}.

(2.24)

Hereafter, we assume that

(P4) Ai > 0, Bi > 0, i = 0, 1, . . . , 5,

(P5) Gikfk > 0, EikI
k
j > 0, for all i, k = 1, 2, . . . , n, j ∈ Z.

Let

K =
{
x = (x1, x2, . . . , xn)T ∈ X : xi ≥ δ‖xi‖, t ∈ [0, ω]

T
, i = 1, 2, . . . , n

}
, (2.25)

where δ = A2/B2 ∈ (0, 1) and A2, B2 are defined above. Obviously, K is a cone in X.
Now we claim that

eA(σ(s +ω), t +ω) = eA(σ(s), t). (2.26)

In fact

eA(σ(s +ω), t +ω) = eA(σ(s) +ω, t +ω) = eA(σ(s), t). (2.27)

Similarly, we can get eA(t +ω, σ(s +ω)) = eA(t, σ(s)), then G(t +ω, s +ω) = G(t, s).
Define a mapping H by

(Hx)(t) =
∫ t+ω

t

G(t, s)f(s, xs)Δs +
∑

j:tj∈[t,t+ω)
T

G
(
t, tj
)
eA
(
σ
(
tj
)
, tj
)
Ij
(
x
(
tj
))
, (2.28)
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that is,

(Hx)(t) =
∫ t+ω

t

G(t, s)f(s, xs)Δs +
∑

j:tj∈[t,t+ω)
T

E
(
t, tj
)
Ij
(
x
(
tj
))

(2.29)

for all x ∈ K, t ∈ T, where G(t, s) is defined by (2.11) and

(Hx)(t) = ((H1x)(t), (H2x)(t), . . . , (Hnx)(t))
T , (2.30)

where

(Hix)(t) =
∫ t+ω

t

n∑

k=1

Gikfk(s, xs)Δs +
∑

j:tj∈[t,t+ω)
T

n∑

k=1

EikI
k
j

(
x
(
tj
))
, i = 1, 2, . . . , n. (2.31)

In the following, we will give some lemmas concerning K and H defined by (2.25)
and (2.29), respectively.

Lemma 2.10. Assume that (P1) and (P3)–(P5) hold, thenH : K → K is well defined.

Proof. For any x ∈ K, it is clear that Hx ∈ PC(T). In view of (2.29), for t ∈ T, we obtain

(Hx)(t +ω) =
∫ t+2ω

t+ω
G(t +ω, s)f(s, xs)Δs +

∑

j:tj∈[t+ω,t+2ω)
T

G
(
t +ω, tj

)
eA
(
σ
(
tj
)
, tj
)
Ij
(
x
(
tj
))

=
∫ t+ω

t

G(t +ω, u +ω)f(u +ω, xu+ω)Δu

+
∑

k:tk∈[t,t+ω)
T

G(t +ω, tk +ω)eA(σ(tk +ω), tk +ω)Ik(x(tk +ω))

=
∫ t+ω

t

G(t, u)f(u, xu)Δu +
∑

k:tk∈[t,t+ω)
T

G(t, tk)eA(σ(tk), tk)Ik(x(tk))

= (Hx)(t).
(2.32)

That is, (Hx)(t +ω) = (Hx)(t), t ∈ T. SoHx ∈ X.
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For any x ∈ K, for all t ∈ [0, ω]
T
, we have

|Hix| =
∣
∣
∣
∣
∣
∣

∫ t+ω

t

n∑

k=1

GikfkΔs +
∑

j:tj∈[t,t+ω)
T

n∑

k=1

EikI
k
j

∣
∣
∣
∣
∣
∣

≤
∫ t+ω

t

n∑

k=1

|Gik|
∣
∣fk
∣
∣Δs +

∑

j:tj∈[t,t+ω)
T

n∑

k=1

|Eik|
∣
∣
∣Ikj
∣
∣
∣

≤ B2

⎛

⎝
∫ t+ω

t

n∑

k=1

∣
∣fk
∣
∣Δs +

∑

j:tj∈[t,t+ω)
T

n∑

k=1

∣
∣
∣Ikj
∣
∣
∣

⎞

⎠, i = 1, 2, . . . , n.

(2.33)

So

‖Hix‖ = sup
t∈[0,ω]

T

|Hix| ≤ B2

⎛

⎝
∫ t+ω

t

n∑

k=1

∣∣fk
∣∣Δs +

∑

j:tj∈[t,t+ω)
T

n∑

k=1

∣∣∣Ikj
∣∣∣

⎞

⎠, i = 1, 2, . . . , n. (2.34)

And by (P5), we get

(Hix)(t) =
∫ t+ω

t

n∑

k=1

GikfkΔs +
∑

j:tj∈[t,t+ω)
T

n∑

k=1

EikI
k
j

=
∫ t+ω

t

n∑

k=1

|Gik|
∣∣fk
∣∣Δs +

∑

j:tj∈[t,t+ω)
T

n∑

k=1

|Eik|
∣∣∣Ikj
∣∣∣

≥ A2

⎛

⎝
∫ t+ω

t

n∑

k=1

∣∣fk
∣∣Δs +

∑

j:tj∈[t,t+ω)
T

n∑

k=1

∣∣∣Ikj
∣∣∣

⎞

⎠

=
A2

B2
B2

⎛

⎝
∫ t+ω

t

n∑

k=1

∣∣fk
∣∣Δs +

∑

j:tj∈[t,t+ω)
T

n∑

k=1

∣∣∣Ikj
∣∣∣

⎞

⎠

≥ δ‖Hix‖, i = 1, 2, . . . , n.

(2.35)

That is, Hx ∈ K. This completes the proof.

Lemma 2.11. Assume that (P1)–(P5) hold, thenH : K → K is completely continuous.

Proof. We first show thatH is continuous. By (P2), for any L > 0 and ε > 0, there exists a δ > 0
such that

{
x, y ∈ C(T,Rn), ‖x‖ ≤ L,

∥∥y
∥∥ ≤ L,

∥∥x − y
∥∥ < δ

}
(2.36)
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imply

∣
∣f(t, xt) − f

(
t, yt

)∣∣
0 <

ε

2B5ω
, (2.37)

and since Ij ∈ C(Rn,Rn), we have

∣
∣Ij(x) − Ij(y)

∣
∣
0 <

ε

2B5p
, j ∈ Z. (2.38)

If x, y,∈ K with ‖x‖ ≤ L, ‖y‖ ≤ L, ‖x − y‖ < δ, then

∣∣(Hx)(t) − (Hy)(t)
∣∣
0 ≤

n∑

i=1

∣∣∣∣∣∣

∫ t+ω

t

n∑

k=1

Gikfk(s, xs)Δs +
∑

j:tj∈[t,t+ω)
T

n∑

k=1

EikI
k
j

(
x
(
tj
))

−
∫ t+ω

t

n∑

k=1

Gikfk
(
s, ys

)
Δs +

∑

j:tj∈[t,t+ω)
T

n∑

k=1

EikI
k
j

(
y
(
tj
))
∣∣∣∣∣∣

≤
∫ t+ω

t

n∑

k=1

∣∣∣∣∣

n∑

i=1

Gik

∣∣∣∣∣
∣∣f(s, xs) − f

(
s, ys

)∣∣Δs

+
∑

j:tj∈[t,t+ω)
T

n∑

k=1

∣∣∣∣∣

n∑

i=1

Eik

∣∣∣∣∣

∣∣∣Ikj
(
x
(
tj
)) − Ikj

(
y
(
tj
))∣∣∣

< B5

⎛

⎝
∫ t+ω

t

∣∣f(s, xs) − f
(
s, ys

)∣∣
0Δs +

p∑

j=1

∣∣Ij(x) − Ij
(
y
)∣∣

0

⎞

⎠

< B5

(
ω

ε

2B5ω
+ p

ε

2B5p

)

= ε

(2.39)

for all t ∈ [0, ω]
T
, which yields ‖Hx − Hy‖ = supt∈[0,ω]

T

|(Hx)(t) − (Hy)(t)|0 < ε; thus H is
continuous.

Next, we show that H maps any bounded sets in K into relatively compact sets. Now
we first prove that f maps bounded sets into bounded sets. Indeed, let ε = 1, by (P2), for any
ν > 0, there exists δ > 0 such that {x, y ∈ C(T,Rn), ‖x‖ ≤ ν, ‖y‖ ≤ ν, ‖x−y‖ < δ, s ∈ [0, ω]

T
}

imply

∣∣f(s, xs) − f(s, ys)
∣∣
0 < 1,

∣∣Ij(x) − Ij(y)
∣∣
0 < 1, j ∈ Z.

(2.40)
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Choose a positive integerN such that ν/N < δ. Let x ∈ C(T,Rn) and define xk(t) = x(t)k/N,
k = 0, 1, 2, . . . ,N. If ‖x‖ < ν, then

∥
∥
∥xk − xk−1

∥
∥
∥ = sup

t∈[0,ω]
T

∣
∣
∣
∣
x(t)k
N

− x(t)(k − 1)
N

∣
∣
∣
∣
0
≤ ‖x‖ 1

N
≤ ν

N
< δ. (2.41)

Thus

∣
∣
∣f(s, xk

s ) − f
(
s, xk−1

s

)∣∣
∣
0
< 1 (2.42)

for all s ∈ [0, ω]
T
, and

∣∣∣Ij
(
xk(tj

)) − Ij
(
xk(tj

))∣∣∣
0
< 1, j ∈ Z, (2.43)

and these yield

∣∣f(s, xs)
∣∣
0 =
∣∣∣f(s, xN

s )
∣∣∣
0

≤
N∑

k=1

∣∣∣f(s, xk
s ) − f

(
s, xk−1

s

)∣∣∣
0
+
∣∣f(s, 0)

∣∣
0

< N + sup
s∈[0,ω]

T

∣∣f(s, 0)
∣∣
0 =: W,

∣∣Ij
(
x
(
tj
))∣∣

0 =
∣∣∣Ij
(
xN(tj

))∣∣∣
0

≤
N∑

k=1

∣∣∣Ij
(
xN(tj

)) − Ij
(
xN−1(tj

))∣∣∣
0
+
∣∣Ij(0)

∣∣
0

< N +
∣
∣Ij(0)

∣
∣
0 =: U, j ∈ Z.

(2.44)

It follows from (2.30)–(2.44) that for t ∈ [0, ω]
T
,

‖Hx‖ = sup
t∈[0,ω]

T

n∑

i=1

|(Hix)(t)| ≤
n∑

i=1

B5

⎛

⎝
∫ω

0

∣∣fk
∣∣Δs +

p∑

j=1

∣∣∣Ikj
∣∣∣

⎞

⎠

= B5
(∣∣f
∣∣
0ω + p|I|0

) ≤ B5
(
Wω + pU

)
:= D.

(2.45)

Finally, for t ∈ T, we have

(Hx)Δ(t) = A(t)(Hx)(t) + f(t, xt). (2.46)
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So

∣
∣
∣(Hx)Δ(t)

∣
∣
∣
0
≤ |A(t)(Hx)(t)|0 +

∣
∣f(t, xt)

∣
∣
0 ≤ |A|D +W, (2.47)

where |A| = max1≤i≤nsupt∈[0,ω]
T

∑n
j=1 |aij(t)|.

Hence, {Hx : x ∈ K, ‖x‖ ≤ ν} is a family of uniformly bounded and equicontinuous
functions on [0, ω]

T
. By a theorem of Arzela-Ascoli, we know that the function H is

completely continuous. The proof is complete.

3. Main Result

Now, we fix η, l ∈ [0, ω]
T
, η ≤ l, and let the nonnegative continuous concave functional α, the

nonnegative continuous functionals θ, γ and the nonnegative continuous concave function ψ
be defined on the cone K by

α(x) = inf
t∈[η,l]

T

|x(t)|0, ψ(x) = θ(x) = sup
t∈[0,ω]

T

|x(t)|0, γ(x) = sup
t∈[0,ω]

T

|(Φx)(t)|0, (3.1)

respectively, where (Φx)(t) =
∫ω
0 h(t, s)x(s)Δs, h(t, s) ∈ C(T2,R).

The functionals defined above satisfy the following relations:

α(x) ≤ ψ(x) = θ(x), ∀x ∈ K. (3.2)

Lemma 3.1. For x ∈ K, there exists a constant E > 0 such that

sup
t∈[0,ω]

T

|x(t)|0 ≤ E sup
t∈[0,ω]

T

|(Φx)(t)|0. (3.3)

Proof. For x ∈ K, we have

sup
t∈[0,ω]

T

|(Φx)(t)|0 = sup
t∈[0,ω]

T

∫ω

0
|h(t, s)||x(s)|0Δs

≥ δ‖x‖ sup
t∈[0,ω]

T

∫ω

0
|h(t, s)|Δs

= Lδ sup
t∈[0,ω]

T

|x(t)|0,

(3.4)

where L := supt∈[0,ω]
T

∫ω
0 |h(t, s)|Δs. Setting E := 1/Lδ. This completes the proof.

Moreover, for each x ∈ K,

‖x‖ = sup
t∈[0,ω]

T

|x(t)|0 ≤
supt∈[0,ω]

T

|(Φx)(t)|0
Lδ

= Eγ(x). (3.5)
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We also find that ψ(ρx) = ρψ(x) for ∀ρ ∈ [0, 1]
T
, for all x ∈ K. Therefore, by (3.5) the condition

(∗) of Theorem 2.9 is satisfied. For convenience in the following discussion, we introduce the
following notations:

IM1 = max
0≤|u|0≤Ed

p∑

j=1

∣
∣Ij(u)

∣
∣
0, IM2 = max

0≤|u|0≤a

p∑

j=1

∣
∣Ij(u)

∣
∣
0, Im = min

b≤|u|0≤b/δ

p∑

j=1

∣
∣Ij(u)

∣
∣
0. (3.6)

To present our main result, we assume that there exist constants a, b, d > 0 with a <
b < b/δ < d/L such that

(S1) |f(t, u)|0 < d/B5Lω − IM1 /ω, for 0 ≤ |u|0 ≤ Ed, t ∈ [0, ω]
T
;

(S2) |f(t, u)|0 > b/A5ω − Im/ω, for b ≤ |u|0 ≤ b/δ, t ∈ [η, l]
T
;

(S3) |f(t, u)|0 < a/B5ω − IM2 /ω, for 0 ≤ |u|0 ≤ a, t ∈ [0, ω]
T
.

Theorem 3.2. Under assumptions (S1)–(S3) and (P1)–(P5), system (1.3) has at least three positive
ω-periodic solutions x1, x2, and x3 satisfying

sup
t∈[0,ω]

T

|(Φxi)(t)|0 ≤ d, i = 1, 2, 3, b < inf
t∈[0,ω]

T

|x1(t)|0,

a < sup
t∈[0,ω]

T

|x2(t)|0, with inf
t∈[η,l]

T

|x2(t)|0 < b, sup
t∈[0,ω]

T

|x3(t)|0 < a.
(3.7)

Proof. For x ∈ K(γ, d), there is γ(x) = supt∈[0,ω]
T

|(Φx)(t)|0 ≤ d. From Lemma 3.1, we have
supt∈[0,ω]

T

|x(t)|0 ≤ Ed, that is 0 ≤ |x(t)|0 ≤ Ed, for t ∈ [0, ω]
T
. By assumption (S1), for x ∈ K,

there is Hx ∈ K, and

|(Hx)(t)|0 =
∣∣∣∣∣∣

∫ t+ω

t

G(t, s)f(s, xs)Δs +
∑

j:tj∈[t,t+ω)
T

E
(
t, tj
)
Ij
(
x
(
tj
))
∣∣∣∣∣∣
0

≤ B5

n∑

k=1

∫ t+ω

t

∣∣fk(s, xs)
∣∣Δs + B5

n∑

k=1

p∑

j=1

∣∣Ij
(
x
(
tj
))∣∣

= B5

∫ω

0

∣∣f(s, xs)
∣∣
0Δs + B5

p∑

j=1

∣∣Ij
(
x
(
tj
))∣∣

0

≤ B5

∫ω

0

(
d

B5Lω
− IM1

ω

)

Δs + B5I
M
1

≤ d

L
,

(3.8)
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then

γ(Hx)(t) = sup
t∈[0,ω]

T

|Φ(Hx)(t)|0 = sup
t∈[0,ω]

T

∫ω

0
|h(t, s)||(Hx)(s)|0Δs

≤ sup
t∈[0,ω]

T

{∫T

0
|h(t, s)|Δs

}

· d
L

= d.

(3.9)

Therefore, H : K(γ, d) → K(γ, d).
To check condition (1) of Theorem 2.9, we take |x̃|0 = b/δ. It is easy to see that x̃ ∈

K(γ, θ, α, b, b/δ, d), and α(x̃) = b/δ > b, and so {x ∈ K(γ, θ, α, b, b/δ, d) | α(x) > b}/= ∅.
Hence, for x ∈ K(γ, θ, α, b, b/δ, d), there is

inf
t∈[η,l]

T

|x(t)|0 ≥ b, sup
t∈[0,ω]

T

|x(t)|0 ≤
b

δ
, sup

t∈[0,ω]
T

|(Φx)(t)|0 ≤ d, (3.10)

that is, b ≤ |x(t)|0 ≤ b/δ, 0 ≤ |(Φx)(t)|0 ≤ d, for t ∈ [η, l]
T
.

Then, by assumption (S2), we have

α(Hx)(t) = inf
t∈[η,l]

T

⎧
⎨

⎩

∣∣∣∣∣∣

∫ t+ω

t

G(t, s)f(s, xs)Δs +
∑

j:tj∈[t,t+ω)
T

E
(
t, tj
)
Ij
(
x
(
tj
))
∣∣∣∣∣∣
0

⎫
⎬

⎭

≥ inf
t∈[0,ω]

T

⎧
⎨

⎩

∣∣∣∣∣∣

∫ t+ω

t

G(t, s)f(s, xs)Δs +
∑

j:tj∈[t,t+ω)
T

E
(
t, tj
)
Ij
(
x
(
tj
))
∣∣∣∣∣∣
0

⎫
⎬

⎭

≥ A5

∫ t+ω

t

∣∣f(s, xs)
∣∣
0Δs +A5

p∑

j=1

∣∣Ij
(
x
(
tj
))∣∣

0

> A5ω

(
b

A5ω
− Im

ω

)
+A5I

m

= b,

(3.11)

that is, α(Hx) > b for all x ∈ K(γ, θ, α, b, b/δ, d). This shows that condition (1) of Theorem 2.9
is satisfied.

Secondly, by the cone K we defined, we have α(Hx) ≥ δθ(Hx) > δ(b/δ) = b for all
x ∈ K(γ, α, b, d) with θ(Hx) > b/δ. Thus condition (2) of Theorem 2.9 is satisfied.

Finally, we show that condition (3) of Theorem 2.9 also holds. Clearly, as ψ(0) = 0 < a,
there holds 0/∈R(γ, ψ, a, d). Suppose that x ∈ R(γ, ψ, a, d)with ψ(x) = a, and this implies that
for t ∈ [0, ω]

T
, there is supt∈[0,ω]

T

|x(t)|0 = a, supt∈[0,ω]
T

|(Φx)(t)|0 ≤ d. Hence,

0 ≤ |x(t)|0 ≤ a, 0 ≤ |(Φx)(t)|0 ≤ d, for t ∈ [0, ω]
T
. (3.12)
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So by assumption (S3), we have

ψ(Hx) = sup
t∈[0,ω]

T

|(Hx)(t)|0

≤ B5

∫ω

0

∣
∣f(s, xs)

∣
∣
0Δs + B5

p∑

j=1

∣
∣Ij
(
x
(
tj
))∣∣

0

< B5

∫ω

0

(
a

B5ω
− IM2

ω

)

Δs + B5I
M
2

= a.

(3.13)

So, condition (3) of Theorem 2.9 is satisfied.
Therefore, by Theorem 2.9, we obtain that the operator H has at least three fixed

points. This completes the proof.

4. An Example

Consider the following system with time delays

xΔ(t) = A(t)x(t) + f(t, xt), t /= tj , t ∈ T,

x
(
t+j

)
= x
(
t−j
)
+ Ij
(
x
(
tj
))
,

(4.1)

where

A(t) =

[
2 1

−1 4

]

,
∣∣f(t, xt)

∣
∣
0 =

⎧
⎪⎪⎪⎪⎨

⎪⎪⎪⎪⎩

|sin 2πt|
10

+
|x1(t − τ(t))| + |x2(t − ϑ(t))|

100
, |x|0 ≤ 65,

3000 +
|x1(t − τ(t))|

5 × 106 + |sin 2πt| +
|x2(t − ϑ(t))|

5 × 106 + |cos 2πt| , |x|0 > 65,

(4.2)

τ, ϑ ∈ C(T,R) are ω-periodic functions and

Ij
(
x
(
tj
))

=
(
0.01
∣∣sin
(
x1
(
tj
))∣∣, 0.01

∣∣cos
(
x2
(
tj
))∣∣)T , j = 1, 2, . . . , 10, (4.3)

and then

0 < IM1 , IM2 , Im ≤ 0.2. (4.4)
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From above, we can get

eA(t, t0) = e3(t, t0)

[
1 0

0 1

]

+ e3(t, t0)
∫ t

t0

1
1 + 3μ(s)

Δs

[−1 1

−1 1

]

,

eA(t, σ(s)) = eA(t, s)
(
I + μ(s)A(s)

)−1
, eA(σ(t), t) = I + μ(t)A(t).

(4.5)

Case 1. T = R, and ω = 1,

eA(t, s) = e3(t−s)
[
1 − (t − s) (t − s)

−(t − s) 1 + (t − s)

]

, eA(t, σ(s)) = eA(t, s), eA(σ(t), t) = I,

G(t, s) = (eA(0, ω) − I)−1eA(t, s), E(t, s) = (eA(0, ω) − I)−1eA(t, s).
(4.6)

By a direct calculation, we can get

A2 = 0.0027, B2 = 43.3828, A5 = 0.0579, B5 = 61.2006, (4.7)

then δ = 6.2237 × 10−5, choose a = 65, b = 70, L = 1, d = 2 × 106, and then

∣∣f(t, xt)
∣∣
0 <

1
10

+ 0.65 = 0.75 < 1.0621 − IM1 , for |x|0 ∈ [0, 65],

∣∣f(t, xt)
∣∣
0 < 3000 + 6.428 × 103 < 3.27 × 104 − IM2 , for |x|0 ∈

[
0, 3.214 × 1010

]
,

∣∣f(t, xt)
∣∣
0 > 3000 +

70
5 × 106 + 2

> 1290 − Im, for |x|0 ∈
[
70, 1.1247 × 106

]
.

(4.8)

According to Theorem 3.2, when T = R, system (4.1) exists at least three positive
periodic solutions x̂1, x̂2, x̂3, and supt∈[0,ω]

T

|x̂3(t)|0 < 65 < supt∈[0,ω]
T

|x̂2(t)|0, inft∈[η,l]
T
|x̂2(t)|0 <

70 < inft∈[0,ω]
T
|x̂1(t)|0.

Case 2. T = Z, and ω = 1,

eA(t, s) = 4(t−s)

⎡

⎢⎢
⎣

1 − (t − s)
4

(t − s)
4

− (t − s)
4

1 +
(t − s)

4

⎤

⎥⎥
⎦, eA(t, σ(s)) = eA(t, s)(I +A(s))−1,

eA(σ(t), t) = I +A(t), G(t, s) = (eA(0, ω) − I)−1eA(t, s)(I +A)−1,

E(t, s) = (eA(0, ω) − I)−1eA(t, s).

(4.9)

By a direct calculation, we can get

A2 = 0.0208, B2 = 4.4443, A5 = 0.0286, B5 = 4.6666, (4.10)
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then δ = 0.0047, choose a = 50, b = 80, L = 1, d = 2 × 104, and then

∣
∣f(t, xt)

∣
∣
0 <

1
10

+ 0.5 = 0.6 < 10.714 − IM1 , for |x|0 ∈ [0, 50],

∣
∣f(t, xt)

∣
∣
0 < 3000 + 0.8511 = 3000.8511 < 4285.776 − IM2 , for |x|0 ∈

[
0, 4.2553 × 106

]
,

∣
∣f(t, xt)

∣
∣
0 > 3000 +

80
5 × 106 + 2

> 2797.203 − Im, for |x|0 ∈
[
80, 1.7021 × 104

]
.

(4.11)

According to Theorem 3.2, when T = Z, system (4.1) exists at least three positive
periodic solutions x̃1, x̃2, x̃3, and supt∈[0,ω]

T

|x̃3(t)|0 < 50 < supt∈[0,ω]
T

|x̃2(t)|0, inft∈[η,l]
T
|x̃2(t)|0 <

80 < inft∈[0,ω]
T
|x̃1(t)|0.
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