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Let X,Y be Banach modules over a C∗-algebra and let r1, . . . , rn ∈ R be given. We prove the
generalized Hyers-Ulam stability of the following functional equation in Banach modules over
a unital C∗-algebra:

∑n
j=1 f(−rjxj +

∑
1≤i≤n,i /= j rixi) + 2

∑n
i=1 rif(xi) = nf(

∑n
i=1 rixi). We show that

if
∑n

i=1 ri /= 0, ri, rj /= 0 for some 1 ≤ i < j ≤ n and a mapping f : X → Y satisfies the functional
equation mentioned above then the mapping f : X → Y is Cauchy additive. As an application,
we investigate homomorphisms in unital C∗-algebras.
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1. Introduction and Preliminaries

The stability problem of functional equations originated from a question of Ulam [1]
concerning the stability of group homomorphisms. Hyers [2] gave a first affirmative partial
answer to the question of Ulam for Banach spaces. Hyers’ theorem was generalized by Aoki
[3] for additive mappings and by Th. M. Rassias [4] for linear mappings by considering an
unbounded Cauchy difference.

Theorem 1.1 (Th. M. Rassias [4]). Let f : E → E′ be a mapping from a normed vector space E
into a Banach space E′ subject to the inequality

∥
∥f
(
x + y

) − f(x) − f
(
y
)∥
∥ ≤ ε

(‖x‖p + ∥∥y∥∥p) (1.1)
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for all x, y ∈ E, where ε and p are constants with ε > 0 and p < 1. Then the limit

L(x) = lim
n→∞

f(2nx)
2n

(1.2)

exists for all x ∈ E and L : E → E′ is the unique additive mapping which satisfies

∥
∥f(x) − L(x)

∥
∥ ≤ 2ε

2 − 2p
‖x‖p (1.3)

for all x ∈ E. If p < 0, then (1.1) holds for x, y /= 0 and (1.3) for x /= 0. Also, if for each x ∈ E the
mapping t 	→ f(tx) is continuous in t ∈ R, then L is R-linear.

Theorem 1.2 (J. M. Rassias [5–7]). Let X be a real normed linear space and Y a real Banach space.
Assume that f : X → Y is a mapping for which there exist constants θ ≥ 0 and p, q ∈ R such that
r = p + q /= 1 and f satisfies the functional inequality

∥
∥f
(
x + y

) − f(x) − f
(
y
)∥
∥ ≤ θ‖x‖p∥∥y∥∥q (1.4)

for all x, y ∈ X. Then there exists a unique additive mapping L : X → Y satisfying

∥
∥f(x) − L(x)

∥
∥ ≤ θ

|2r − 2| ‖x‖
r (1.5)

for all x ∈ X. If, in addition, f : X → Y is a mapping such that the transformation t → f(tx) is
continuous in t ∈ R for each fixed x ∈ X, then L is linear.

The paper of Th. M. Rassias [4] has provided a lot of influence in the development
of what we call the generalized Hyers-Ulam stability of functional equations. In 1994, a
generalization of Theorems 1.1 and 1.2 was obtained by Găvruţa [8], who replaced the
bounds ε(‖x‖p + ‖y‖p) and θ‖x‖p‖y‖q by a general control function ϕ(x, y).

The functional equation

f
(
x + y

)
+ f
(
x − y

)
= 2f(x) + 2f

(
y
)

(1.6)

is called a quadratic functional equation. In particular, every solution of the quadratic functional
equation is said to be a quadratic mapping. The generalized Hyers-Ulam stability problem for
the quadratic functional equation was proved by Skof [9] for mappings f : X → Y , where X
is a normed space and Y is a Banach space. Cholewa [10] noticed that the theorem of Skof is
still true if the relevant domain X is replaced by an Abelian group. Czerwik [11] proved the
generalized Hyers-Ulam stability of the quadratic functional equation. J. M. Rassias [12, 13]
introduced and investigated the stability problem of Ulam for the Euler-Lagrange quadratic
mappings (1.6) and

f(a1x1 + a2x2) + f(a2x1 − a1x2) =
(
a2
1 + a2

2

)[
f(x1) + f(x2)

]
. (1.7)
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Grabiec [14] has generalized these results mentioned above. In addition, J. M. Rassias
[15] generalized the Euler-Lagrange quadratic mapping (1.7) and investigated its stability
problem. Thus these Euler-Lagrange type equations (mappings) are called as Euler-
Lagrange-Rassias functional equations (mappings).

The stability problems of several functional equations have been extensively
investigated by a number of authors and there are many interesting results concerning this
problem (see [4–8, 12, 13, 15–55]).

Recently, C. Park and J. Park [45] introduced and investigated the following additive
functional equation of Euler-Lagrange type:

n∑

i=1

riL

⎛

⎝
n∑

j=1

rj
(
xi − xj

)
⎞

⎠ +

(
n∑

i=1

ri

)

L

(
n∑

i=1

rixi

)

=

(
n∑

i=1

ri

)
n∑

i=1

riL(xi), r1, . . . , rn ∈ (0,∞)

(1.8)

whose solution is said to be a generalized additive mapping of Euler-Lagrange type.
In this paper, we introduce the following additive functional equation of Euler-

Lagrange type which is somewhat different from (1.8):

n∑

j=1

f

⎛

⎝−rjxj +
∑

1≤i≤n,i /= j

rixi

⎞

⎠ + 2
n∑

i=1

rif(xi) = nf

(
n∑

i=1

rixi

)

, (1.9)

where r1, . . . , rn ∈ R. Every solution of the functional equation (1.9) is said to be a generalized
Euler-Lagrange type additive mapping.

We investigate the generalized Hyers-Ulam stability of the functional equation (1.9)
in Banach modules over a C∗-algebra. These results are applied to investigate C∗-algebra
homomorphisms in unital C∗-algebras.

Throughout this paper, assume that A is a unital C∗-algebra with norm ‖ · ‖A and unit
e, that B is a unital C∗-algebra with norm ‖ · ‖B, and that X and Y are left Banach modules
over a unital C∗-algebraAwith norms ‖ · ‖X and ‖ · ‖Y , respectively. LetU(A) be the group of
unitary elements in A and let r1, . . . , rn ∈ R. For a given mapping f : X → Y, u ∈ U(A) and a
given μ ∈ C, we define Du,r1,...,rnf and Dμ,r1,...,rnf : Xn → Y by

Du,r1,...,rnf(x1, . . . , xn) :=
n∑

j=1

f

⎛

⎝−rjuxj +
∑

1≤i≤n,i /= j

riuxi

⎞

⎠ + 2
n∑

i=1

riuf(xi) − nf

(
n∑

i=1

riuxi

)

,

Dμ,r1,...,rnf(x1, . . . , xn) :=
n∑

j=1

f

⎛

⎝−μrjxj +
∑

1≤i≤n,i /= j

μrixi

⎞

⎠ + 2
n∑

i=1

μrif(xi) − nf

(
n∑

i=1

μrixi

)

(1.10)

for all x1, . . . , xn ∈ X.
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2. Generalized Hyers-Ulam Stability of the Functional Equation (1.9)
in Banach Modules Over a C∗-Algebra

Lemma 2.1. Let X and Y be linear spaces and let r1, . . . , rn be real numbers with
∑n

k=1 rk /= 0 and
ri, rj /= 0 for some 1 ≤ i < j ≤ n. Assume that a mapping L : X → Y satisfies the functional equation
(1.9) for all x1, . . . , xn ∈ X. Then the mapping L is Cauchy additive. Moreover, L(rkx) = rkL(x) for
all x ∈ X and all 1 ≤ k ≤ n.

Proof. Since
∑n

k=1 rk /= 0, putting x1 = · · · = xn = 0 in (1.9), we get L(0) = 0. Without loss of
generality, we may assume that r1, r2 /= 0. Letting x3 = · · · = xn = 0 in (1.9), we get

L(−r1x1 + r2x2) + L(r1x1 − r2x2) + 2r1L(x1) + 2r2L(x2) = 2L(r1x1 + r2x2) (2.1)

for all x1, x2 ∈ X. Letting x2 = 0 in (2.1), we get

2r1L(x1) = L(r1x1) − L(−r1x1) (2.2)

for all x1 ∈ X. Similarly, by putting x1 = 0 in (2.1), we get

2r2L(x2) = L(r2x2) − L(−r2x2) (2.3)

for all x1 ∈ X. It follows from (2.1), (2.2) and (2.3) that

L(−r1x1 + r2x2) + L(r1x1 − r2x2) + L(r1x1) + L(r2x2) − L(−r1x1) − L(−r2x2) = 2L(r1x1 + r2x2)
(2.4)

for all x1, x2 ∈ X. Replacing x1 and x2 by x/r1 and y/r2 in (2.4), we get

L
(−x + y

)
+ L
(
x − y

)
+ L(x) + L

(
y
) − L(−x) − L

(−y) = 2L
(
x + y

)
(2.5)

for all x, y ∈ X. Letting y = −x in (2.5), we get that L(−2x) + L(2x) = 0 for all x ∈ X. So the
mapping L is odd. Therefore, it follows from (2.5) that the mapping L is additive. Moreover,
let x ∈ X and 1 ≤ k ≤ n. Setting xk = x and xl = 0 for all 1 ≤ l ≤ n, l /= k, in (1.9) and using the
oddness of L,we get that L(rkx) = rkL(x).

Using the same method as in the proof of Lemma 2.1, we have an alternative result of
Lemma 2.1 when

∑n
k=1 rk = 0.

Lemma 2.2. Let X and Y be linear spaces and let r1, . . . , rn be real numbers with ri, rj /= 0 for some
1 ≤ i < j ≤ n. Assume that a mapping L : X → Y with L(0) = 0 satisfies the functional equation
(1.9) for all x1, . . . , xn ∈ X. Then the mapping L is Cauchy additive. Moreover, L(rkx) = rkL(x) for
all x ∈ X and all 1 ≤ k ≤ n.

We investigate the generalized Hyers-Ulam stability of a generalized Euler-Lagrange
type additive mapping in Banach spaces.

Throughout this paper, r1, . . . , rn will be real numbers such that ri, rj /= 0 for fixed 1 ≤ i < j
≤ n.
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Theorem 2.3. Let f : X → Y be a mapping satisfying f(0) = 0 for which there is a function
ϕ : Xn → [0,∞) such that

ϕ̃ij

(
x, y
)
:=

∞∑

k=0

1
2k

ϕ

⎛

⎜
⎜
⎝0, . . . , 2kx︸︷︷︸

ith

, 0, . . . , 2ky
︸︷︷︸

jth

, 0, . . . , 0

⎞

⎟
⎟
⎠ < ∞, (2.6)

lim
k→∞

1
2k

ϕ
(
2kx1, . . . , 2kxn

)
= 0, (2.7)

∥
∥De,r1,...,rnf(x1, . . . , xn)

∥
∥
Y ≤ ϕ(x1, . . . , xn) (2.8)

for all x, x1, . . . , xn ∈ X and y ∈ {0,±x}. Then there exists a unique generalized Euler-Lagrange type
additive mapping L : X → Y such that

∥
∥f(x) − L(x)

∥
∥
Y ≤ 1

4

{[

ϕ̃ij

(
x

ri
,
x

rj

)

+ 2ϕ̃ij

(
x

2ri
,− x

2rj

)]

+
[

ϕ̃ij

(
x

ri
, 0
)

+ 2ϕ̃ij

(
x

2ri
, 0
)]

+

[

ϕ̃ij

(

0,
x

rj

)

+ 2ϕ̃ij

(

0,− x

2rj

)]}

(2.9)

for all x ∈ X.Moreover, L(rkx) = rkL(x) for all x ∈ X and all 1 ≤ k ≤ n.

Proof. For each 1 ≤ k ≤ n with k /= i, j, let xk = 0 in (2.8), tthen we get the following inequality

∥
∥f(−rixi + rjxj) + f(rixi − rjxj) − 2f(rixi + rjxj) + 2rif(xi) + 2rjf(xj)

∥
∥
Y

≤ ϕ

⎛

⎜
⎜
⎝0, . . . , 0, xi︸︷︷︸

ith

, 0, . . . , 0, xj
︸︷︷︸

jth

, 0, . . . , 0

⎞

⎟
⎟
⎠

(2.10)

for all xi, xj ∈ X. For convenience, set

ϕij

(
x, y
)
:= ϕ

⎛

⎜
⎜
⎝0, . . . , 0, x︸︷︷︸

ith

, 0, . . . , 0, y
︸︷︷︸

jth

, 0, . . . , 0

⎞

⎟
⎟
⎠ (2.11)

for all x, y ∈ X and all 1 ≤ i < j ≤ n. Letting xi = 0 in (2.10), we get

∥
∥f(−rjxj) − f(rjxj) + 2rjf(xj)

∥
∥
Y
≤ ϕij

(
0, xj

)
(2.12)

for all xj ∈ X. Similarly, letting xj = 0 in (2.10), we get

∥
∥f(−rixi) − f(rixi) + 2rif(xi)

∥
∥
Y ≤ ϕij(xi, 0) (2.13)
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for all xi ∈ X. It follows from (2.10), (2.12) and (2.13) that

∥
∥f(−rixi + rjxj) + f(rixi − rjxj) − 2f(rixi + rjxj) + f(rixi) + f(rjxj) − f(−rixi) − f(−rjxj)

∥
∥
Y

≤ ϕij

(
xi, xj

)
+ ϕij(xi, 0) + ϕij

(
0, xj

)

(2.14)

for all xi, xj ∈ X. Replacing xi and xj by x/ri and y/rj in (2.14), we get that

∥
∥f(−x + y) + f(x − y) − 2f(x + y) + f(x) + f(y) − f(−x) − f(−y)∥∥Y

≤ ϕij

(
x

ri
,
y

rj

)

+ ϕij

(
x

ri
, 0
)

+ ϕij

(

0,
y

rj

) (2.15)

for all x, y ∈ X. Putting y = x in (2.15), we get

∥
∥2f(x) − 2f(−x) − 2f(2x)

∥
∥
Y ≤ ϕij

(
x

ri
,
x

rj

)

+ ϕij

(
x

ri
, 0
)

+ ϕij

(

0,
x

rj

)

(2.16)

for all x ∈ X. Replacing x and y by x/2 and −x/2 in (2.15), respectively, we get

∥
∥f(x) + f(−x)∥∥Y ≤ ϕij

(
x

2ri
,− x

2rj

)

+ ϕij

(
x

2ri
, 0
)

+ ϕij

(

0,− x

2rj

)

(2.17)

for all x ∈ X. It follows from (2.16) and (2.17) that

∥
∥f(2x) − 2f(x)

∥
∥
Y ≤ ψ(x) (2.18)

for all x ∈ X,where

ψ(x) : =
1
2

{[

ϕij

(
x

ri
,
x

rj

)

+ 2ϕij

(
x

2ri
,− x

2rj

)]

+
[

ϕij

(
x

ri
, 0
)

+ 2ϕij

(
x

2ri
, 0
)]

+

[

ϕij

(

0,
x

rj

)

+ 2ϕij

(

0,− x

2rj

)]}

.

(2.19)

It follows from (2.6) that

∞∑

k=0

1
2k

ψ
(
2kx
)
=

1
2

{[

ϕ̃ij

(
x

ri
,
x

rj

)

+ 2ϕ̃ij

(
x

2ri
,− x

2rj

)]

+
[

ϕ̃ij

(
x

ri
, 0
)

+ 2ϕ̃ij

(
x

2ri
, 0
)]

+

[

ϕ̃ij

(

0,
x

rj

)

+ 2ϕ̃ij

(

0,− x

2rj

)]}

< ∞

(2.20)
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for all x ∈ X. Replacing x by 2kx in (2.18) and dividing both sides of (2.18) by 2k+1, we get

∥
∥
∥
∥

1
2k+1

f(2k+1x) − 1
2k

f(2kx)
∥
∥
∥
∥
Y

≤ 1
2k+1

ψ
(
2kx
)

(2.21)

for all x ∈ X and all k ∈ Z. Therefore, we have

∥
∥
∥
∥

1
2k+1

f(2k+1x) − 1
2m

f(2mx)
∥
∥
∥
∥
Y

≤
k∑

l=m

∥
∥
∥
∥

1
2l+1

f(2l+1x) − 1
2l
f(2lx)

∥
∥
∥
∥
Y

≤ 1
2

k∑

l=m

1
2l
ψ
(
2lx
)

(2.22)

for all x ∈ X and all integers k ≥ m. It follows from (2.20) and (2.22) that the sequence
{f(2kx)/2k} is Cauchy in Y for all x ∈ X, and thus converges by the completeness of Y. Thus
we can define a mapping L : X → Y by

L(x) = lim
k→∞

f
(
2kx
)

2k
(2.23)

for all x ∈ X. Letting m = 0 in (2.22) and taking the limit as k → ∞ in (2.22), we obtain the
desired inequality (2.9).

It follows from (2.7) and (2.8) that

‖De,r1,...,rnL(x1, . . . , xn)‖Y = lim
k→∞

1
2k

∥
∥
∥De,r1,...,rnf(2

kx1, . . . , 2kxn)
∥
∥
∥
Y

≤ lim
k→∞

1
2k

ϕ
(
2kx1, . . . , 2kxn

)
= 0

(2.24)

for all x1, . . . , xn ∈ X. Therefore, the mapping L : X → Y satisfies (1.9) and L(0) = 0. Hence
by Lemma 2.2, L is a generalized Euler-Lagrange type additive mapping and L(rkx) = rkL(x)
for all x ∈ X and all 1 ≤ k ≤ n.

To prove the uniqueness, let T : X → Y be another generalized Euler-Lagrange type
additive mapping with T(0) = 0 satisfying (2.9). By Lemma 2.2, the mapping T is additive.
Therefore, it follows from (2.9) and (2.20) that

‖L(x) − T(x)‖Y = lim
k→∞

1
2k

∥
∥
∥f(2kx) − T(2kx)

∥
∥
∥
Y
≤ 1

2
lim
k→∞

1
2k

∞∑

l=0

1
2l
ψ
(
2l+kx

)

=
1
2
lim
k→∞

∞∑

l=k

1
2l
ψ
(
2lx
)
= 0.

(2.25)

So L(x) = T(x) for all x ∈ X.
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Theorem 2.4. Let f : X → Y be a mapping satisfying f(0) = 0 for which there is a function
ϕ : Xn → [0,∞) satisfying (2.6), (2.7) and

∥
∥Du,r1,...,rnf(x1, . . . , xn)

∥
∥ ≤ ϕ(x1, . . . , xn) (2.26)

for all x1, . . . , xn ∈ X and all u ∈ U(A). Then there exists a unique A-linear generalized Euler-
Lagrange type additive mapping L : X → Y satisfying (2.9) for all x ∈ X. Moreover, L(rkx) =
rkL(x) for all x ∈ X and all 1 ≤ k ≤ n.

Proof. By Theorem 2.3, there exists a unique generalized Euler-Lagrange type additive
mapping L : X → Y satisfying (2.9) and moreover L(rkx) = rkL(x) for all x ∈ X and all
1 ≤ k ≤ n.

By the assumption, for each u ∈ U(A), we get

∥
∥
∥
∥
∥
∥
Du,r1,...,rnL(0, . . . , 0, x︸︷︷︸

ith

, 0 · · · , 0)
∥
∥
∥
∥
∥
∥
Y

= lim
k→∞

1
2k

∥
∥
∥
∥
∥
∥
Du,r1,...,rnf(0, . . . , 0, 2kx︸︷︷︸

ith

, 0 · · · , 0)
∥
∥
∥
∥
∥
∥
Y

≤ lim
k→∞

1
2k

ϕ

⎛

⎝0, . . . , 0, 2kx︸︷︷︸
ith

, 0 · · · , 0
⎞

⎠ = 0

(2.27)

for all x ∈ X. So

riuL(x) = L(riux) (2.28)

for all u ∈ U(A) and all x ∈ X. Since L(rix) = riL(x) for all x ∈ X and ri /= 0,

L(ux) = uL(x) (2.29)

for all u ∈ U(A) and all x ∈ X.
By the same reasoning as in the proofs of [41, 43],

L
(
ax + by

)
= L(ax) + L

(
by
)
= aL(x) + bL

(
y
)

(2.30)

for all a, b ∈ A (a, b /= 0) and all x, y ∈ X. Since L(0x) = 0 = 0L(x) for all x ∈ X, the unique
generalized Euler-Lagrange type additive mapping L : X → Y is an A-linear mapping.

Corollary 2.5. Let δ ≥ 0, {εk}k∈J and {pk}k∈J be real numbers such that εk ≥ 0 and 0 < pk < 1 for
all k ∈ J, where J ⊆ {1, 2, . . . , n}. Assume that a mapping f : X → Y with f(0) = 0 satisfies the
inequality

∥
∥Du,r1,...,rnf(x1, . . . , xn)

∥
∥
Y ≤ δ +

∑

k∈J
εk‖xk‖pkX (2.31)
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for all x1, . . . , xn ∈ X and all u ∈ U(A). Then there exists a unique A-linear generalized Euler-
Lagrange type additive mapping L : X → Y such that

∥
∥f(x) − L(x)

∥
∥
Y ≤

⎧
⎪⎪⎪⎪⎪⎪⎪⎨

⎪⎪⎪⎪⎪⎪⎪⎩

Mij(x), i, j ∈ J ;

Mi(x), i ∈ J, j /∈ J ;

Mj(x), j ∈ J, i /∈ J ;

M, i, j /∈ J.

(2.32)

for all x ∈ X, where

Mij(x) =
9
2
δ +

∑

k∈{i,j}

(
1 + 21−pk

)
εk

(2 − 2pk)rpkk
‖x‖pkX ,

Mi(x) =
9
2
δ +

(
1 + 21−pi

)
εi

(2 − 2pi)rpii
‖x‖piX,

Mj(x) =
9
2
δ +

(
1 + 21−pj

)
εj

(2 − 2pj )r
pj
j

‖x‖pjX , M =
9
2
δ.

(2.33)

Moreover, L(rkx) = rkL(x) for all x ∈ X and all 1 ≤ k ≤ n.

Proof. Define ϕ(x1, . . . , xn) := δ +
∑

k∈J εk‖xk‖pkX , and apply Theorem 2.4.

Corollary 2.6. Let δ, ε ≥ 0, p, q > 0 with λ = p + q < 1. Assume that a mapping f : X → Y with
f(0) = 0 satisfies the inequality

∥
∥Du,r1,...,rnf(x1, . . . , xn)

∥
∥
Y ≤ δ + ε‖xi‖pX

∥
∥xj

∥
∥q
X

(2.34)

for all x1, . . . , xn ∈ X and all u ∈ U(A). Then there exists a unique A-linear generalized Euler-
Lagrange type additive mapping L : X → Y such that

∥
∥f(x) − L(x)

∥
∥
Y ≤ 9

2
δ +

(
1 + 21−λ

)
ε

2
(
2 − 2λ

)
r
p

i r
q

j

‖x‖λX (2.35)

for all x ∈ X.Moreover, L(rkx) = rkL(x) for all x ∈ X and all 1 ≤ k ≤ n.

Proof. Define ϕ(x1, . . . , xn) := δ + ε‖xi‖pX‖xj‖qX. Applying Theorem 2.4, we obtain the desired
result.
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Theorem 2.7. Let f : X → Y be a mapping satisfying f(0) = 0 for which there is a function
φ : Xn → [0,∞) such that

φ̃ij

(
x, y
)
:=

∞∑

k=1

2kφ

⎛

⎜
⎜
⎜
⎝

0, . . . ,
x

2k︸︷︷︸
ith

, 0, . . . ,
y

2k︸︷︷︸
jth

, 0, . . . , 0

⎞

⎟
⎟
⎟
⎠

< ∞, (2.36)

lim
k→∞

2kφ
(
x1

2k
, . . . ,

xn

2k

)

= 0, (2.37)

∥
∥De,r1,...,rnf(x1, . . . , xn)

∥
∥
Y ≤ φ(x1, . . . , xn) (2.38)

for all x, x1, . . . , xn ∈ X and y ∈ {0,±x}. Then there exists a unique generalized Euler-Lagrange type
additive mapping L : X → Y such that

∥
∥f(x) − L(x)

∥
∥
Y ≤ 1

4

{[

φ̃ij

(
x

ri
,
x

rj

)

+ 2φ̃ij

(
x

2ri
,− x

2rj

)]

+
[

φ̃ij

(
x

ri
, 0
)

+ 2φ̃ij

(
x

2ri
, 0
)]

+

[

φ̃ij

(

0,
x

rj

)

+ 2φ̃ij

(

0,− x

2rj

)]}

(2.39)

for all x ∈ X.Moreover, L(rkx) = rkL(x) for all x ∈ X and all 1 ≤ k ≤ n.

Proof. By a similar method to the proof of Theorem 2.3, we have the following inequality

∥
∥f(2x) − 2f(x)

∥
∥
Y ≤ Ψ(x) (2.40)

for all x ∈ X,where

Ψ(x) : =
1
2

{[

φij

(
x

ri
,
x

rj

)

+ 2φij

(
x

2ri
,− x

2rj

)]

+
[

φij

(
x

ri
, 0
)

+ 2φij

(
x

2ri
, 0
)]

+

[

φij

(

0,
x

rj

)

+ 2φij

(

0,− x

2rj

)]}

.

(2.41)

It follows from (2.36) that

∞∑

k=1

2kΨ
(

x

2k

)

=
1
2

{[

φ̃ij

(
x

ri
,
x

rj

)

+ 2φ̃ij

(
x

2ri
,− x

2rj

)]

+
[

φ̃ij

(
x

ri
, 0
)

+ 2φ̃ij

(
x

2ri
, 0
)]

+

[

φ̃ij

(

0,
x

rj

)

+ 2φ̃ij

(

0,− x

2rj

)]}

< ∞

(2.42)
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for all x ∈ X. Replacing x by x/2k+1 in (2.40) and multiplying both sides of (2.40) by 2k, we
get

∥
∥
∥
∥2

k+1f

(
x

2k+1

)

− 2kf
(

x

2k

)∥
∥
∥
∥
Y

≤ 2kΨ
(

x

2k+1

)

(2.43)

for all x ∈ X and all k ∈ Z. Therefore, we have

∥
∥
∥
∥2

k+1f

(
x

2k+1

)

− 2mf
( x

2m
)∥∥
∥
∥
Y

≤
k∑

l=m

∥
∥
∥
∥2

l+1f

(
x

2l+1

)

− 2lf
(
x

2l

)∥
∥
∥
∥
Y

≤
k∑

l=m

2lΨ
(

x

2l+1

) (2.44)

for all x ∈ X and all integers k ≥ m. It follows from (2.42) and (2.44) that the sequence
{2kf(x/2k)} is Cauchy in Y for all x ∈ X, and thus converges by the completeness of Y. Thus
we can define a mapping L : X → Y by

L(x) = lim
k→∞

2kf
(

x

2k

)

(2.45)

for all x ∈ X. Letting m = 0 in (2.44) and taking the limit as k → ∞ in (2.44), we obtain the
desired inequality (2.39).

The rest of the proof is similar to the proof of Theorem 2.3.

Theorem 2.8. Let f : X → Y be a mapping with f(0) = 0 for which there is a function φ : Xn →
[0,∞) satisfying (2.36), (2.37) and

∥
∥Du,r1,...,rnf(x1, . . . , xn)

∥
∥ ≤ φ(x1, . . . , xn) (2.46)

for all x1, . . . , xn ∈ X and all u ∈ U(A). Then there exists a unique A-linear generalized Euler-
Lagrange type additive mapping L : X → Y satisfying (2.39) for all x ∈ X. Moreover, L(rkx) =
rkL(x) for all x ∈ X and all 1 ≤ k ≤ n.

Proof. The proof is similar to the proof of Theorem 2.4.

Corollary 2.9. Let {εk}k∈J and {pk}k∈J be real numbers such that εk ≥ 0 and pk > 1 for all k ∈ J,
where J ⊆ {1, 2, . . . , n}. Assume that a mapping f : X → Y with f(0) = 0 satisfies the inequality

∥
∥Du,r1,...,rnf(x1, . . . , xn)

∥
∥
Y ≤
∑

k∈J
εk‖xk‖pkX (2.47)



12 Advances in Difference Equations

for all x1, . . . , xn ∈ X and all u ∈ U(A). Then there exists a unique A-linear generalized Euler-
Lagrange type additive mapping L : X → Y such that

∥
∥f(x) − L(x)

∥
∥
Y ≤

⎧
⎪⎪⎪⎪⎪⎪⎪⎨

⎪⎪⎪⎪⎪⎪⎪⎩

Nij(x), i, j ∈ J ;

Ni(x), i ∈ J, j /∈ J ;

Nj(x), j ∈ J, i /∈ J ;

N, i, j /∈ J.

(2.48)

for all x ∈ X, where

Nij(x) =
∑

k∈{i,j}

(
1 + 21−pk

)
εk

(2pk − 2)rpkk
‖x‖pkX ,

Ni(x) =

(
1 + 21−pi

)
εi

(2pi − 2)rpii
‖x‖piX,

Nj(x) =

(
1 + 21−pj

)
εj

(2pj − 2)r
pj
j

‖x‖pjX .

(2.49)

Moreover, L(rkx) = rkL(x) for all x ∈ X and all 1 ≤ k ≤ n.

Proof. Define φ(x1, . . . , xn) :=
∑

k∈J εk‖xk‖pkX . Applying Theorem 2.8, we obtain the desired
result.

Corollary 2.10. Let ε ≥ 0, p, q > 0 with λ = p + q > 1. Assume that a mapping f : X → Y with
f(0) = 0 satisfies the inequality

∥
∥Du,r1,...,rnf(x1, . . . , xn)

∥
∥
Y ≤ ε‖xi‖pX

∥
∥xj

∥
∥q
X

(2.50)

for all x1, . . . , xn ∈ X and all u ∈ U(A). Then there exists a unique A-linear generalized Euler-
Lagrange type additive mapping L : X → Y such that

∥
∥f(x) − L(x)

∥
∥
Y ≤

(
1 + 21−λ

)
ε

2
(
2λ − 2

)
r
p

i r
q

j

‖x‖λX (2.51)

for all x ∈ X.Moreover, L(rkx) = rkL(x) for all x ∈ X and all 1 ≤ k ≤ n.

Proof. Define φ(x1, . . . , xn) := ε‖xi‖pX‖xj‖qX. Applying Theorem 2.8, we obtain the desired
result.

Remark 2.11. In Theorems 2.7 and 2.8 and Corollaries 2.9 and 2.10 one can assume that
∑n

k=1 rk /= 0 instead of f(0) = 0.

For the case p1 = · · · = pn = 1 in Corollaries 2.5 and 2.9, using an idea from the example
of Gajda [56], we have the following counterexample.
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Example 2.12. Let φ : C → C be defined by

φ(x) :=

⎧
⎨

⎩

x for |x| < 1;

1 otherwise.
(2.52)

Consider the function f : C → C by the formula

f(x) :=
∞∑

n=0

2−nφ(2nx). (2.53)

It is clear that f is continuous and bounded by 2 on C. We prove that

∣
∣Dμ,r1,...,rnf(x1, . . . , xn)

∣
∣ ≤ 8

(

n +
n∑

i=1

|ri|
)

n∑

i=1

(|ri| + 1)|xi| (2.54)

for all x1, . . . , xn ∈ C and all μ ∈ U(C) = {λ ∈ C : |λ| = 1}. If ∑n
i=1(|ri| + 1)|xi| = 0 or

∑n
i=1(|ri| + 1)|xi| ≥ 1, then

∣
∣Dμ,r1,...,rnf(x1, . . . , xn)

∣
∣ ≤ 4n + 4

n∑

i=1

|ri| ≤ 4

(

n +
n∑

i=1

|ri|
)

n∑

i=1

(|ri| + 1)|xi|. (2.55)

Now suppose that 0 <
∑n

i=1(|ri| + 1)|xi| < 1. Then there exists a nonnegative integer k such
that

1
2k+1

≤
n∑

i=1

(|ri| + 1)|xi| < 1
2k

. (2.56)

Therefore

2k

∣
∣
∣
∣
∣
∣
−μrjxj +

∑

1≤i≤n,i /= j

μrixi

∣
∣
∣
∣
∣
∣
, 2k
∣
∣
∣
∣
∣

n∑

i=1

μrixi

∣
∣
∣
∣
∣
, 2k|x1|, . . . , 2k|xn| ∈ (−1, 1). (2.57)

Hence

2m

∣
∣
∣
∣
∣
∣
−μrjxj +

∑

1≤i≤n,i /= j

μrixi

∣
∣
∣
∣
∣
∣
, 2m
∣
∣
∣
∣
∣

n∑

i=1

μrixi

∣
∣
∣
∣
∣
, 2m|x1|, . . . , 2m|xn| ∈ (−1, 1) (2.58)
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for all m = 0, 1, . . . , k. From the definition of f and (2.56), we have

∣
∣Dμ,r1,...,rnf(x1, . . . , xn)

∣
∣ ≤ 4

(

n +
n∑

i=1

|ri|
) ∞∑

m=k+1

1
2m

= 8

(

n +
n∑

i=1

|ri|
)

1
2k+1

≤ 8

(

n +
n∑

i=1

|ri|
)

n∑

i=1

(|ri| + 1)|xi|.

(2.59)

Therefore f satisfies (2.54). Let L : C → C be an additive mapping such that

∣
∣f(x) − L(x)

∣
∣ ≤ β|x| (2.60)

for all x ∈ C. Then there exists a constant c ∈ C such that L(x) = cx for all rational numbers
x. So we have

∣
∣f(x)

∣
∣ ≤ (β + |c|)|x| (2.61)

for all rational numbers x. Let m ∈ N with m > β + |c|. If x is a rational number in (0, 21−m),
then 2nx ∈ (0, 1) for all n = 0, 1, . . . , m − 1. So

f(x) ≥
m−1∑

n=0

2−nφ(2nx) = mx >
(
β + |c|)|x| (2.62)

which contradicts with (2.61).

3. Homomorphisms in Unital C∗-Algebras

In this section, we investigate C∗-algebra homomorphisms in unital C∗-algebras.
We will use the following lemma in the proof of the next theorem.

Lemma 3.1 (see [43]). Let f : A → B be an additive mapping such that f(μx) = μf(x) for all
x ∈ A and all μ ∈ S

1 := {λ ∈ C : |λ| = 1}. Then the mapping f : A → B is C-linear.
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Theorem 3.2. Let ε ≥ 0 and {pk}k∈J be real numbers such that pk > 0 for all k ∈ J, where J ⊆
{1, 2, . . . , n} and |J | ≥ 3. Let f : A → B be a mapping with f(0) = 0 for which there is a function
ϕ : An → [0,∞) satisfying (2.7) and

∥
∥Dμ,r1,...,rnf(x1, . . . , xn)

∥
∥
B
≤ ε
∏

k∈J
‖xk‖pkA , (3.1)

∥
∥
∥f(2ku∗) − f(2ku)∗

∥
∥
∥
B
≤ ϕ

⎛

⎝2ku, . . . , 2ku
︸ ︷︷ ︸

n times

⎞

⎠, (3.2)

∥
∥
∥f(2kux) − f(2ku)f(x)

∥
∥
∥
B
≤ ϕ

⎛

⎝2kux, . . . , 2kux
︸ ︷︷ ︸

n times

⎞

⎠ (3.3)

for all x, x1, . . . , xn ∈ A, for all u ∈ U(A), all k ∈ N and all μ ∈ S
1. Then the mapping f : A → B is

a C∗-algebra homomorphism.

Proof. Since |J | ≥ 3, letting μ = 1 and xk = 0 for all 1 ≤ k ≤ n, k /= i, j, in (3.1), we get

f
(−rixi + rjxj

)
+ f
(
rixi − rjxj

)
+ 2rif(xi) + 2rjf

(
xj

)
= 2f

(
rixi + rjxj

)
(3.4)

for all xi, xj ∈ A. By the same reasoning as in the proof of Lemma 2.1, the mapping f is
additive and f(rkx) = rkf(x) for all x ∈ A and k = i, j. So by letting xi = x and xk = 0 for all
1 ≤ k ≤ n, k /= i, in (3.1), we get that f(μx) = μf(x) for all x ∈ A and all μ ∈ S

1. Therefore, by
Lemma 3.1, the mapping f is C-linear. Hence it follows from (2.7), (3.2) and (3.3) that

∥
∥f(u∗) − f(u)∗

∥
∥
B = lim

k→∞
1
2k

∥
∥
∥f(2ku∗) − f(2ku)∗

∥
∥
∥
B

≤ lim
k→∞

1
2k

ϕ

⎛

⎝2ku, . . . , 2ku
︸ ︷︷ ︸

n times

⎞

⎠ = 0,

∥
∥f(ux) − f(u)f(x)

∥
∥
B = lim

k→∞
1
2k

‖f
(
2kux

)
− f
(
2ku
)
f(x)‖B

≤ lim
k→∞

1
2k

ϕ

⎛

⎝2kux, . . . , 2kux
︸ ︷︷ ︸

n times

⎞

⎠ = 0

(3.5)

for all x ∈ A and all u ∈ U(A). So f(u∗) = f(u)∗ and f(ux) = f(u)f(x) for all x ∈ A and all
u ∈ U(A). Since f isC-linear and each x ∈ A is a finite linear combination of unitary elements
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(see [57]), that is, x =
∑m

k=1 λkuk,where λk ∈ C and uk ∈ U(A) for all 1 ≤ k ≤ n, we have

f(x∗) = f

(
m∑

k=1

λku
∗
k

)

=
m∑

k=1

λkf
(
u∗
k

)
=

m∑

k=1

λkf(uk)∗

=

(
m∑

k=1

λkf(uk)

)∗
= f

(
m∑

k=1

λkuk

)∗
= f(x)∗,

f
(
xy
)
= f

(
m∑

k=1

λkuky

)

=
m∑

k=1

λkf
(
uky
)

=
m∑

k=1

λkf(uk)f
(
y
)
= f

(
m∑

k=1

λkuk

)

f
(
y
)
= f(x)f

(
y
)

(3.6)

for all x, y ∈ A. Therefore, the mapping f : A → B is a C∗-algebra homomorphism, as
desired.

The following theorem is an alternative result of Theorem 3.2.

Theorem 3.3. Let ε ≥ 0 and {pk}k∈J be real numbers such that pk > 0 for all k ∈ J, where J ⊆
{1, 2, . . . , n} and |J | ≥ 3. Let f : A → B be a mapping with f(0) = 0 for which there is a function
ϕ : An → [0,∞) satisfying (2.37) and

∥
∥Dμ,r1,...,rnf(x1, . . . , xn)

∥
∥
B
≤ ε
∏

k∈J
‖xk‖pkA

∥
∥
∥
∥f

(
u∗

2k

)

− f

(
u

2k

)∗∥∥
∥
∥
B

≤ φ

⎛

⎜
⎜
⎝

u

2k
, . . . ,

u

2k︸ ︷︷ ︸
n times

⎞

⎟
⎟
⎠,

∥
∥
∥
∥f

(
ux

2k

)

− f

(
u

2k

)

f(x)
∥
∥
∥
∥
B

≤ φ

⎛

⎜
⎜
⎝

ux

2k
, . . . ,

ux

2k︸ ︷︷ ︸
n times

⎞

⎟
⎟
⎠

(3.7)

for all x, x1, . . . , xn ∈ A, for all u ∈ U(A), all k ∈ N and all μ ∈ S
1. Then the mapping f : A → B is

a C∗-algebra homomorphism.

Remark 3.4. In Theorems 3.2 and 3.3, one can assume that
∑n

k=1 rk /= 0 instead of f(0) = 0.

Theorem 3.5. Let f : A → B be a mapping with f(0) = 0 for which there is a function ϕ : An →
[0,∞) satisfying (2.6), (2.7), (3.2), (3.3) and

∥
∥Dμ,r1,...,rnf(x1, . . . , xn)

∥
∥
B
≤ ϕ(x1, . . . , xn), (3.8)

for all x1, . . . , xn ∈ A and all μ ∈ S
1. Assume that limk→∞(1/2k)f(2ke) is invertible. Then the

mapping f : A → B is a C∗-algebra homomorphism.
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Proof. Consider the C∗-algebras A and B as left Banach modules over the unital C∗-algebra
C. By Theorem 2.4, there exists a unique C-linear generalized Euler-Lagrange type additive
mapping H : A → B defined by

H(x) = lim
k→∞

1
2k

f
(
2kx
)

(3.9)

for all x ∈ A. Therefore, by (2.7), (3.2) and (3.3), we get

∥
∥H(u∗) −H(u)∗

∥
∥
B = lim

k→∞
1
2k

∥
∥
∥f(2ku∗) − f

(
2ku
)∗∥∥
∥
B

≤ lim
k→∞

1
2k

ϕ

⎛

⎝2ku, . . . , 2ku
︸ ︷︷ ︸

n times

⎞

⎠ = 0,

∥
∥H(ux) −H(u)f(x)

∥
∥
B = lim

k→∞
1
2k

∥
∥
∥f(2kux) − f(2ku)f(x)

∥
∥
∥
B

≤ lim
k→∞

1
2k

ϕ

⎛

⎝2kux, . . . , 2kux
︸ ︷︷ ︸

n times

⎞

⎠ = 0

(3.10)

for all u ∈ U(A) and for all x ∈ A. SoH(u∗) = H(u)∗ andH(ux) = H(u)f(x) for all u ∈ U(A)
and all x ∈ A. Therefore, by the additivity of H we have

H(ux) = lim
k→∞

1
2k

H
(
2kux

)
= H(u) lim

k→∞
1
2k

f
(
2kx
)
= H(u)H(x) (3.11)

for all u ∈ U(A) and all x ∈ A. SinceH isC-linear and each x ∈ A is a finite linear combination
of unitary elements, that is, x =

∑m
k=1 λkuk, where λk ∈ C and uk ∈ U(A) for all 1 ≤ k ≤ n, it

follows from (3.11) that

H
(
xy
)
= H

(
m∑

k=1

λkuky

)

=
m∑

k=1

λkH
(
uky
)

=
m∑

k=1

λkH(uk)H
(
y
)
= H

(
m∑

k=1

λkuk

)

H
(
y
)
= H(x)H

(
y
)
,

H(x∗) = H

(
m∑

k=1

λku
∗
k

)

=
m∑

k=1

λkH
(
u∗
k

)
=

m∑

k=1

λkH(uk)∗

=

(
m∑

k=1

λkH(uk)

)∗
= H

(
m∑

k=1

λkuk

)∗
= H(x)∗

(3.12)

for all x, y ∈ A. Since H(e) = limk→∞(1/2k)f(2ke) is invertible and

H(e)H
(
y
)
= H
(
ey
)
= H(e)f

(
y
)

(3.13)
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for all y ∈ A,H(y) = f(y) for all y ∈ A, therefore, the mapping f : A → B is a C∗-algebra
homomorphism.

The following theorem is an alternative result of Theorem 3.5.

Theorem 3.6. Let f : A → B be a mapping with f(0) = 0 for which there is a function φ : An →
[0,∞) satisfying (2.36), (2.37), (3.7) and

∥
∥Dμ,r1,...,rnf(x1, . . . , xn)

∥
∥
B
≤ φ(x1, . . . , xn), (3.14)

for all x1, . . . , xn ∈ A and all μ ∈ S
1. Assume that limk→∞2kf(e/2k) is invertible. Then the mapping

f : A → B is a C∗-algebra homomorphism.

Corollary 3.7. Let {εk}k∈J and {pk}k∈J be real numbers such that εk ≥ 0 and pk > 1 (0 < pk < 1)
for all k ∈ J, where J ⊆ {1, 2, . . . , n}. Assume that a mapping f : A → B with f(0) = 0 satisfies the
inequalities

∥
∥Dμ,r1,...,rnf(x1, . . . , xn)

∥
∥
B
≤ ∑

k∈J
εk‖xk‖pkA ,

∥
∥
∥
∥f

(
u∗

2m

)

− f
( u

2m
)∗∥∥
∥
∥
B

≤
∑

k∈J

εk
2mpk

(

resp.,
∥
∥f(2mu∗) − f(2mu)∗

∥
∥
B ≤
∑

k∈J
εk2mpk

)

,

∥
∥
∥f
(ux

2m
)
− f
( u

2m
)
f(x)

∥
∥
∥
B
≤
∑

k∈J

εk
2mpk

‖x‖pkA
(

resp.,
∥
∥f(2mux) − f(2mu)f(x)

∥
∥
B ≤
∑

k∈J
εk2mpk‖x‖pkA

)

,

(3.15)

for all x1, . . . , xn ∈ A, all u ∈ U(A), all m ∈ N and all μ ∈ S
1. Assume that

limk→∞2kf(e/2k) (resp., limk→∞(1/2k)f(2ke)) is invertible. Then the mapping f : A → B is
a C∗-algebra homomorphism.

Proof. The result follows from Theorem 3.6 (resp., Theorem 3.5).

Remark 3.8. In Theorem 3.6 and Corollary 3.7, one can assume that
∑n

k=1 rk /= 0 instead of
f(0) = 0.

Theorem 3.9. Let f : A → B be a mapping with f(0) = 0 for which there is a function ϕ : An →
[0,∞) satisfying (2.6), (2.7), (3.2), (3.3) and

∥
∥Dμ,r1,...,rnf(x1, . . . , xn)

∥
∥
B
≤ ϕ(x1, . . . , xn), (3.16)
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for μ = i, 1 and all x1, . . . , xn ∈ A. Assume that limk→∞(1/2k)f(2ke) is invertible and for each fixed
x ∈ A the mapping t 	→ f(tx) is continuous in t ∈ R. Then the mapping f : A → B is a C∗-algebra
homomorphism.

Proof. Put μ = 1 in (3.16). By the same reasoning as in the proof of Theorem 2.3, there exists a
unique generalized Euler-Lagrange type additive mapping H : A → B defined by

H(x) = lim
k→∞

f
(
2kx
)

2k
(3.17)

for all x ∈ A. By the same reasoning as in the proof of [4], the generalized Euler-Lagrange
type additive mapping H : A → B is R-linear.

By the same method as in the proof of Theorem 2.4, we have

∥
∥
∥
∥
∥
∥
∥
Dμ,r1,...,rnH(0, . . . , 0, x︸︷︷︸

jth

, 0, . . . , 0)

∥
∥
∥
∥
∥
∥
∥
Y

= lim
k→∞

1
2k

∥
∥
∥
∥
∥
∥
∥
Dμ,r1,...,rnf(0, . . . , 0, 2kx︸︷︷︸

jth

, 0, . . . , 0)

∥
∥
∥
∥
∥
∥
∥
Y

≤ lim
k→∞

1
2k

ϕ

⎛

⎜
⎝0, . . . , 0, 2kx︸︷︷︸

jth

, 0, . . . , 0

⎞

⎟
⎠ = 0

(3.18)

for all x ∈ A. So

rjμH(x) = H
(
rjμx
)

(3.19)

for all x ∈ A. Since H(rjx) = rjH(x) for all x ∈ X and rj /= 0,

H
(
μx
)
= μH(x) (3.20)

for μ = i, 1 and for all x ∈ A.
For each element λ ∈ C we have λ = s + it,where s, t ∈ R. Thus

H(λx) = H(sx + itx) = sH(x) + tH(ix)

= sH(x) + itH(x) = (s + it)H(x) = λH(x)
(3.21)

for all λ ∈ C and all x ∈ A. So

H
(
ζx + ηy

)
= H(ζx) +H

(
ηy
)
= ζH(x) + ηH

(
y
)

(3.22)
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for all ζ, η ∈ C and all x, y ∈ A.Hence the generalized Euler-Lagrange type additive mapping
H : A → B is C-linear. The rest of the proof is the same as in the proof of Theorem 3.5.

The following theorem is an alternative result of Theorem 3.9.

Theorem 3.10. Let f : A → B be a mapping with f(0) = 0 for which there is a function φ : An →
[0,∞) satisfying (2.36), (2.37), (3.7) and

∥
∥Dμ,r1,...,rnf(x1, . . . , xn)

∥
∥
B
≤ φ(x1, . . . , xn), (3.23)

for μ = i, 1 and all x, x1, . . . , xn ∈ A. Assume that limk→∞2kf(e/2k) is invertible and for each fixed
x ∈ A the mapping t 	→ f(tx) is continuous in t ∈ R. Then the mapping f : A → B is a C∗-algebra
homomorphism.

Remark 3.11. In Theorem 3.10, one can assume that
∑n

k=1 rk /= 0 instead of f(0) = 0.
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