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By using the fixed-point index theorem, we consider the existence of positive solutions for the
following nonlinear higher-order four-point singular boundary value problem on time scales
uΔn

(t)+g(t)f(u(t), uΔ(t), . . . , uΔn−2
(t)) = 0, 0 < t < T ; uΔi

(0) = 0, 0 ≤ i ≤ n−3; αuΔn−2
(0)−βuΔn−1

(ξ) = 0,
n ≥ 3; γuΔn−2

(T) + δuΔn−1
(η) = 0, n ≥ 3, where α > 0, β ≥ 0, γ > 0, δ ≥ 0, ξ, η ∈ (0, T), ξ < η, and

g : (0, T) → [0,+∞) is rd-continuous.

Copyright q 2009 J. Liu and Y. Sang. This is an open access article distributed under the Creative
Commons Attribution License, which permits unrestricted use, distribution, and reproduction in
any medium, provided the original work is properly cited.

1. Introduction

Time scales and time-scale notation are introduced well in the fundamental texts by Bohner
and Peterson [1, 2], respectively, as important corollaries. In, the recent years, many authors
have paid much attention to the study of boundary value problems on time scales (see, e.g.,
[3–17]). In particular, we would like to mention some results of Anderson et al. [3, 5, 6, 14,
16], DaCunha et al. [4], and Agarwal and O’Regan [7], which motivate us to consider our
problem.

In [3], Anderson and Karaca discussed the dynamic equation on time scales

(−1)nyΔ2n
(t) = f

(
t, yσ(t)

)
= 0, t ∈ (a, b),

αi+1y
Δ2i(

η
)
+ βi+1y

Δ2i+1
(a) = yΔ2i

(a), γi+1yΔ2i(
η
)
= yΔ2i

(σ(b)),
(1.1)

and the eigenvalue problem

(−1)nyΔ2n
(t) = λf

(
t, yσ(t)

)
= 0, t ∈ (a, b), (1.2)
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with the same boundary conditions where λ is a positive parameter. They obtained some
results for the existence of positive solutions by using the Krasnoselskii, the Schauder, and
the Avery-Henderson fixed-point theorem.

In [4], by using the Gatica-Oliker-Waltman fixed-point theorem, DaCunha, Davis, and
Singh proved the existence of a positive solution for the three-point boundary value problem
on a time scale T given by

yΔΔ(t) + f
(
x, y

)
= 0, x ∈ [0, 1]

T
,

y(0) = 0, y
(
p
)
= y

(
σ2(1)

)
,

(1.3)

where p ∈ (0, 1) ∩ T is fixed, and f(x, y) is singular at y = 0 and possibly at x = 0, y = ∞.
Anderson et al. [5] gave a detailed presentation for the following higher-order self-

adjoint boundary value problem on time scales:

Ly(t) =
n∑

i=0
(−1)n−i

(
piy

Δn−i−1∇
)∇n−i−1Δ

(t) = (−1)n
(
p0y

Δn−1∇
)∇n−1Δ

(t) + · · ·

−
(
pn−3yΔ2∇

)∇2Δ
(t) +

(
pn−2yΔ∇

)∇Δ
(t) −

(
pn−1yΔ

)∇
(t) + pn(t)y(t),

(1.4)

and got many excellent results.
In related papers, Sun [11] considered the following third-order two-point boundary

value problem on time scales:

uΔΔΔ(t) + f
(
t, u(t), uΔΔ(t)

)
= 0, t ∈ [a, σ(b)],

u(a) = A, u
(
σb

)
= B, uΔΔ(a) = C,

(1.5)

where a, b ∈ T and a < b. Some existence criteria of solution and positive solution are
established by using the Leray-Schauder fixed point theorem.

In this paper, we consider the existence of positive solutions for the following higher-
order four-point singular boundary value problem (BVP) on time scales

uΔn

(t) + g(t)f
(
u(t), uΔ(t), . . . , uΔn−2

(t)
)
= 0, 0 < t < T, (1.6)

uΔi

(0) = 0, 0 ≤ i ≤ n − 3,

αuΔn−2
(0) − βuΔn−1

(ξ) = 0, n ≥ 3,

γuΔn−2
(T) + δuΔn−1(

η
)
= 0, n ≥ 3,

(1.7)

where α > 0, β ≥ 0, γ > 0, δ ≥ 0, ξ, η ∈ (0, T), ξ < η, and g : (0, T) → [0,+∞) is rd-continuous.
In the rest of the paper, we make the following assumptions:

(H1) f ∈ C([0,+∞)n−1, [0,+∞))

(H2) 0 <
∫T
0g(t)Δt < +∞.
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In this paper, by constructing one integral equation which is equivalent to the BVP
(1.6) and (1.7), we study the existence of positive solutions. Our main tool of this paper is the
following fixed-point index theorem.

Theorem 1.1 ([18]). Suppose E is a real Banach space,K ⊂ E is a cone, letΩr = {u ∈ K : ‖u‖ ≤ r}.
Let operator T : Ωr → K be completely continuous and satisfy Tx /=x, ∀x ∈ ∂Ωr . Then

(i) if ‖Tx‖ ≤ ‖x‖, ∀x ∈ ∂Ωr , then i(T,Ωr , K) = 1

(ii) if ‖Tx‖ ≥ ‖x‖, ∀x ∈ ∂Ωr , then i(T,Ωr , K) = 0.

The outline of the paper is as follows. In Section 2, for the convenience of the reader
we give some definitions and theorems which can be found in the references, and we present
some lemmas in order to prove our main results. Section 3 is developed in order to present
and prove our main results. In Section 4 we present some examples to illustrate our results.

2. Preliminaries and Lemmas

For convenience, we list the following definitions which can be found in [1, 2, 9, 14, 17]. A
time scale T is a nonempty closed subset of real numbersR. For t < supT and r > infT, define
the forward jump operator σ and backward jump operator ρ, respectively, by

σ(t) = inf{τ ∈ T : τ > t} ∈ T,

ρ(r) = sup{τ ∈ T : τ < r} ∈ T,
(2.1)

for all t, r ∈ T. If σ(t) > t, t is said to be right scattered, and if ρ(r) < r, r is said to be left
scattered; if σ(t) = t, t is said to be right dense, and if ρ(r) = r, r is said to be left dense. If T
has a right scattered minimum m, define Tκ = T − {m}; otherwise set Tκ = T. If T has a left
scattered maximum M, define Tκ = T − {M}; otherwise set Tκ = T. In this general time-scale
setting, Δ represents the delta (or Hilger) derivative [13, Definition 1.10],

zΔ(t) := lim
s→ t

z(σ(t)) − z(s)
σ(t) − s

= lim
s→ t

zσ(t) − z(s)
σ(t) − s

, (2.2)

where σ(t) is the forward jump operator, μ(t) := σ(t) − t is the forward graininess function,
and z◦σ is abbreviated as zσ . In particular, if T = R, then σ(t) = t and xΔ = x′, while if T = hZ
for any h > 0, then σ(t) = t + h and

xΔ(t) =
x(t + h) − x(t)

h
. (2.3)

A function f : T → R is right-dense continuous provided that it is continuous at each right-
dense point t ∈ T (a point where σ(t) = t) and has a left-sided limit at each left-dense point
t ∈ T. The set of right-dense continuous functions on T is denoted by Crd(T). It can be shown
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that any right-dense continuous function f has an antiderivative (a function Φ : T → Rwith
the property ΦΔ(t) = f(t) for all t ∈ T). Then the Cauchy delta integral of f is defined by

∫ t1

t0

f(t)Δt = Φ(t1) −Φ(t0), (2.4)

where Φ is an antiderivative of f on T. For example, if T = Z, then

∫ t1

t0

f(t)Δt =
t1−1∑

t=t0

f(t), (2.5)

and if T = R, then

∫ t1

t0

f(t)Δt =
∫ t1

t0

f(t)dt. (2.6)

Throughout we assume that t0 < t1 are points inT, and define the time-scale interval [t0, t1]T =
{t ∈ T : t0 ≤ t ≤ t1}. In this paper, we also need the the following theorem which can be found
in [1].

Theorem 2.1. If f ∈ Crd and t ∈ T
k, then

∫σ(t)

t

f(τ)Δτ = (σ(t) − t)f(t). (2.7)

In this paper, let

E =
{
u ∈ CΔn−2

rd [0, T] : uΔi

(0) = 0, 0 ≤ i ≤ n − 3
}
. (2.8)

Then E is a Banach space with the norm ‖u‖ = maxt∈[0,T]|uΔn−2
(t)|. Define a cone K by

K =
{
u ∈ E : uΔn−2

(t) ≥ 0, uΔn

(t) ≤ 0, t ∈ [0, T]
}
. (2.9)

Obviously, K is a cone in E. Set Kr = {u ∈ K : ‖u‖ ≤ r}. If uΔΔ ≤ 0 on [0, T], then we say u is
concave on [0, T].We can get the following.

Lemma 2.2. Suppose condition (H2) holds. Then there exists a constant θ ∈ (0, T/2) satisfies

0 <

∫T−θ

θ

g(t)Δt < +∞. (2.10)
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Furthermore, the function

A(t) =
∫ t

θ

(∫ t

s

g(s1)Δs1

)

Δs +
∫T−θ

t

(∫s

t

g(s1)Δs1

)
Δs, t ∈ [θ, T − θ] (2.11)

is a positive continuous function on [θ, T − θ], therefore A(t) has minimum on [θ, T − θ]. Then there
exists L > 0 such that A(t) ≥ L, t ∈ [θ, T − θ].

Lemma 2.3. Let u ∈ K and θ ∈ (0, T/2) in Lemma 2.2. Then

uΔn−2
(t) ≥ θ‖u‖, t ∈ [θ, T − θ]. (2.12)

Proof. Suppose τ = inf{ξ ∈ [0, T] : supt∈[0,T]u
Δn−2

(t) = uΔn−2
(ξ)}.

We will discuss it from three perspectives.

(i) τ ∈ [0, θ]. It follows from the concavity of uΔn−2
(t) that

uΔn−2
(t) ≥ uΔn−2

(τ) +
uΔn−2

(T) − uΔn−2
(τ)

T − τ
(t − τ), t ∈ [θ, T − θ], (2.13)

then

uΔn−2
(t) ≥ min

t∈[θ,T−θ]

[

uΔn−2
(τ) +

uΔn−2
(T) − uΔn−2

(τ)
T − τ

(t − τ)

]

= uΔn−2
(τ) +

uΔn−2
(T) − uΔn−2

(τ)
T − τ

(T − θ − τ)

=
T − θ − τ

T − τ
uΔn−2

(T) +
θ

T − τ
uΔn−2

(τ) ≥ θu(τ),

(2.14)

which means uΔn−2
(t) ≥ θ‖u‖, t ∈ [θ, T − θ].

(ii) τ ∈ [θ, T − θ]. If t ∈ [θ, τ], we have

uΔn−2
(t) ≥ uΔn−2

(τ) +
uΔn−2

(τ) − uΔn−2
(0)

τ
(t − τ), t ∈ [θ, τ], (2.15)

then

uΔn−2
(t) ≥ min

t∈[θ,T−θ]

[

uΔn−2
(τ) +

uΔn−2
(τ) − uΔn−2

(0)
τ

(t − τ)

]

=
θ

τ
uΔn−2

(τ) +
τ − θ

τ
uΔn−2

(0) ≥ θuΔn−2
(τ),

(2.16)
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If t ∈ [τ, T − θ], we have

uΔn−2
(t) ≥ uΔn−2

(τ) +
uΔn−2

(T) − uΔn−2
(τ)

T − τ
(t − τ), t ∈ [τ, T − θ], (2.17)

then

uΔn−2
(t) ≥ min

t∈[θ,T−θ]

[

uΔn−2
(τ) +

uΔn−2
(T) − uΔn−2

(τ)
T − τ

(t − τ)

]

=
θ

T − τ
uΔn−2

(τ) +
T − θ − τ

T − τ
uΔn−2

(T)

≥ θuΔn−2
(τ),

(2.18)

and this means uΔn−2
(t) ≥ θ‖u‖, t ∈ [θ, T − θ].

(iii) τ ∈ [T − θ, T]. Similarly, we have

uΔn−2
(t) ≥ uΔn−2

(τ) +
uΔn−2

(τ) − uΔn−2
(0)

τ
(t − τ), t ∈ [θ, T − θ], (2.19)

then

uΔn−2
(t) ≥ min

t∈[θ,T−θ]

[

u(τ) +
uΔn−2

(τ) − uΔn−2
(0)

τ
(t − τ)

]

=
θ

τ
uΔn−2

(τ) +
τ − θ

τ
uΔn−2

(0)

≥ θuΔn−2
(τ),

(2.20)

which means uΔn−2
(t) ≥ θ‖u‖, t ∈ [θ, T − θ].

From the above, we know uΔn−2
(t) ≥ θ‖u‖, t ∈ [θ, T − θ]. The proof is complete.

Lemma 2.4. Suppose that conditions (H1), (H2) hold, then u(t) is a solution of boundary value
problem (1.6), (1.7) if and only if u(t) ∈ E is a solution of the following integral equation:

u(t) =
∫ t

0

∫s1

0
· · ·

∫sn−3

0
w(sn−2)Δsn−2Δsn−3 · · ·Δs1, (2.21)
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where

w(t) =

⎧
⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎨

⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎩

β

α

∫δ

ξ

g(s)f
(
u(s), uΔ(s), . . . , uΔn−2

(s)
)
Δs

+
∫ t

0

∫δ

s

g(r)f
(
u(r), uΔ(r), . . . , uΔn−2

(r)
)
ΔrΔs, 0 ≤ t ≤ δ,

δ

γ

∫η

δ

g(s)f
(
u(s), uΔ(s), . . . , uΔn−2

(s)
)
Δs

+
∫1

t

∫s

δ

g(r)f
(
u(r), uΔ(r), . . . , uΔn−2

(r)
)
ΔrΔs, δ ≤ t ≤ T.

(2.22)

Proof. Necessity. By the equation of the boundary condition, we see that uΔn−1
(ξ) ≥ 0, uΔn−1

(η) ≤
0, then there exists a constant δ ∈ [ξ, η] ⊂ (0, T) such that uΔn−1

(δ) = 0. Firstly, by delta
integrating the equation of the problems (1.6) on (δ, t), we have

uΔn−1
(t) = uΔn−1

(δ) −
∫ t

δ

g(s)f
(
u(s), uΔ(s), . . . , uΔn−2

(s)
)
Δs, (2.23)

thus

uΔn−2
(t) = uΔn−2

(δ) −
∫ t

δ

(∫ s

δ

g(r)f
(
u(r), uΔ(r), . . . , uΔn−2

(r)
)
Δr

)
Δs. (2.24)

By uΔn−1
(δ) = 0 and the boundary condition (1.7), let t = η on (2.23), we have

uΔn−1(
η
)
= −

∫η

δ

g(s)f
(
u(s), uΔ(s), . . . , uΔn−2

(s)
)
Δs. (2.25)

By the equation of the boundary condition (1.7), we get

uΔn−2
(T) = −δ

γ

(
uΔn−1(

η
))

, (2.26)

then

uΔn−2
(T) =

δ

γ

∫η

δ

g(s)f
(
u(s), uΔ(s), . . . , uΔn−2

(s)Δs
)
. (2.27)

Secondly, by (2.24) and let t = T on (2.24), we have

uΔn−2
(δ) =

δ

γ

∫η

δ

g(s)f
(
u(s), uΔ(s), . . . , uΔn−2

(s)
)
Δs

+
∫T

δ

(∫s

δ

g(r)f
(
u(r), uΔ(r), . . . , uΔn−2

(r)
)
Δr

)
Δs.

(2.28)
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Then

uΔn−2
(t) =

δ

γ

∫η

δ

g(s)f
(
u(s), uΔ(s), . . . , uΔn−2

(s)
)
Δs

+
∫T

t

(∫ s

δ

g(r)f
(
u(r), uΔ(r), . . . , uΔn−2

(r)
)
Δr

)
Δs.

(2.29)

Then by delta integrating (2.29) for n − 2 times on (0, T), we have

u(t) =
∫ t

0

∫ s1

0
· · ·

∫sn−3

0

(
δ

γ

∫η

δ

g(s)f
(
u(s), uΔ(s), . . . , uΔn−2

(s)
)
Δs

)
Δsn−2 · · ·Δs2Δs1

+
∫ t

0

∫ s1

0
· · ·

∫sn−3

0

(∫T

sn−2

(∫s

δ

g(r)f
(
u(r), uΔ(r), . . . , uΔn−2

(r)
)
Δr

)
Δs

)

Δsn−2 · · ·Δs2Δs1.

(2.30)

Similarly, for t ∈ (0, δ), by delta integrating the equation of problems (1.6) on (0, δ), we have

u(t) =
∫ t

0

∫s1

0
· · ·

∫sn−3

0

(
δ

γ

∫δ

ξ

g(s)f
(
u(s), uΔ(s), . . . , uΔn−2

(s)
)
Δs

)

Δsn−2 · · ·Δs2Δs1

+
∫ t

0

∫ s1

0
· · ·

∫sn−3

0

(∫sn−2

0

(∫s

δ

g(r)f
(
u(r), uΔ(r), . . . , uΔn−2

(r)
)
Δr

)
Δs

)
Δsn−2 · · ·Δs2Δs1.

(2.31)

Therefore, for any t ∈ [0, T], u(t) can be expressed as the equation

u(t) =
∫ t

0

∫ s1

0
· · ·

∫sn−3

0
w(sn−2)Δsn−2Δsn−3 · · ·Δs1, (2.32)

where w(t) is expressed as (2.22).
Sufficiency. Suppose that

u(t) =
∫ t

0

∫s1

0
· · ·

∫sn−3

0
w(sn−2)Δsn−2Δsn−3 · · ·Δs1, (2.33)

then by (2.22), we have

uΔn−1
(t) =

⎧
⎪⎪⎪⎪⎨

⎪⎪⎪⎪⎩

∫δ

t

g(s)f
(
u(s), uΔ(s), . . . , uΔn−2

(s)
)
Δs ≥ 0, 0 ≤ t ≤ δ,

−
∫ t

δ

g(s)f
(
u(s), uΔ(s), . . . , uΔn−2

(s)
)
Δs ≤ 0, δ ≤ t ≤ T,

(2.34)
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So,

uΔn

(t) + g(t)f
(
u(t), uΔ(t), . . . , uΔn−2

(t)
)
= 0, 0 < t < T, (2.35)

which imply that (1.6) holds. Furthermore, by letting t = 0 and t = T on (2.22) and (2.34), we
can obtain the boundary value equations of (1.7). The proof is complete.

Now, we define a mapping T : K → CΔn−1
rd [0, T] given by

(Tu)(t) =
∫ t

0

∫s1

0
· · ·

∫ sn−3

0
w(sn−2)Δsn−2Δsn−3 · · ·Δs1, (2.36)

where w(t) is given by (2.22).

Lemma 2.5. Suppose that conditions (H1), (H2) hold, the solution u(t) of problem (1.6), (1.7)
satisfies

u(t) ≤ TuΔ(t) ≤ · · · ≤ Tn−3uΔn−3
(t), t ∈ [0, T], (2.37)

and for θ ∈ (0, T/2) in Lemma 2.2, one has

uΔn−3
(t) ≤ T

θ
uΔn−2

(t), t ∈ [θ, T − θ]. (2.38)

Proof. If u(t) is the solution of (1.6), (1.7), then uΔn−1
(t) is a concave function, and ui(t) ≥ 0, i =

0, 1, . . . , n − 2, t ∈ [0, T], thus we have

uΔi

(t) =
∫ t

0
uΔi+1

(s)Δs ≤ tuΔi+1
(t) ≤ TuΔi+1

(t), i = 0, 1, . . . , n − 4, (2.39)

that is,

u(t) ≤ TuΔ(t) ≤ · · · ≤ Tn−3uΔn−3
(t), t ∈ [0, T]. (2.40)

By Lemma 2.3, for t ∈ [θ, T − θ], we have

uΔn−2
(t) ≥ θ‖u‖, (2.41)

then uΔn−3
(t) =

∫ t
0u

Δn−2
(s)Δs ≤ tuΔn−2

(t) ≤ T‖u‖ ≤ (T/θ)uΔn−2
(t).The proof is complete.
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Lemma 2.6. T : K → K is completely continuous.

Proof. Because

(Tu)Δ
n−1
(t) = wΔ(t) =

⎧
⎪⎪⎪⎨

⎪⎪⎪⎩

∫δ

t

g(s)f
(
u(s), uΔ(s), . . . , uΔn−2

(s)
)
Δs ≥ 0, 0 ≤ t ≤ δ,

−
∫ t

δ

g(s)f
(
u(s), uΔ(s), . . . , uΔn−2

(s)
)
Δs ≤ 0, δ ≤ t ≤ T

(2.42)

is continuous, decreasing on [0, T], and satisfies (Tu)Δ
n−1
(δ) = 0. Then, Tu ∈ K for each u ∈ K

and (Tu)Δ
n−2
(δ) = maxt∈[0,T](Tu)

Δn−2
(t). This shows that TK ⊂ K. Furthermore, it is easy to

check that T : K → K is completely continuous by Arzela-ascoli Theorem.
For convenience, we set

θ∗ =
2
L
, θ∗ =

1
(
1 +

(
β/α

))(∫1
0g(r)Δr

) , (2.43)

where L is the constant from Lemma 2.2. By Lemma 2.5, we can also set

f0 = lim
un−1 → 0

max
0≤u1≤Tu2≤···≤Tn−2un−2≤(T/θ)un−1

f(u1, u2, . . . , un−1)
un−1

,

f∞ = lim
un−1 →∞

min
0≤u1≤Tu2≤···≤Tn−2un−2≤(T/θ)un−1

f(u1, u2, . . . , un−1)
un−1

.

(2.44)

3. The Existence of Positive Solution

Theorem 3.1. Suppose that conditions (H1), (H2) hold. Assume that f also satisfies

(A1) f(u1, u2, . . . , un−1) ≥ mr, for θr ≤ un−1 ≤ r, 0 ≤ u1 ≤ Tu2 ≤ · · · ≤ Tn−2un−2 ≤
(T/θ)un−1,

(A2) f(u1, u2, . . . , un−1) ≤ MR, for 0 ≤ un−1 ≤ R, 0 ≤ u1 ≤ Tu2 ≤ · · · ≤ Tn−2un−2 ≤
(T/θ)un−1,

wherem ∈ (θ∗,+∞), M ∈ (0, θ∗).
Then, the boundary value problem (1.6), (1.7) has a solution u such that ‖u‖ lies between r

and R.

Theorem 3.2. Suppose that conditions (H1), (H2) hold. Assume that f also satisfies

(A3) f0 = ϕ ∈ [0, θ∗/4)

(A4) f∞ = λ ∈ (2θ∗/θ,+∞).

Then, the boundary value problem (1.6), (1.7) has a solution u such that ‖u‖ lies between r and R.
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Theorem 3.3. Suppose that conditions (H1), (H2) hold. Assume that f also satisfies

(A5) f∞ = λ ∈ [0, θ∗/4)

(A6) f0 = ϕ ∈ (2θ∗/θ,+∞).

Then, the boundary value problem (1.6), (1.7) has a solution u such that ‖u‖ lies between r and R.

Proof of Theorem 3.1. Without loss of generality, we suppose that r < R. For any u ∈ K, by
Lemma 2.3, we have

uΔn−2
(t) ≥ θ‖u‖, t ∈ [θ, T − θ]. (3.1)

We define two open subsets Ω1 and Ω2 of E:

Ω1 = {u ∈ K : ‖u‖ < r}, Ω2 = {u ∈ K : ‖u‖ < R}. (3.2)

For any u ∈ ∂Ω1, by (3.1) we have

r = ‖u‖ ≥ uΔn−2
(t) ≥ θ‖u‖ = θr, t ∈ [θ, T − θ]. (3.3)

For t ∈ [θ, T − θ] and u ∈ ∂Ω1, we will discuss it from three perspectives.

(i) If δ ∈ [θ, T − θ], thus for u ∈ ∂Ω1, by (A1) and Lemma 2.4, we have

2‖Tu‖ = 2(Tu)Δ
n−2
(δ)

≥
∫δ

0

(∫δ

s

g(r)f
(
u(r), uΔ(r), . . . , uΔn−1

(r)
)
Δr

)

Δs

+
∫T

δ

(∫s

δ

g(r)f
(
u(r), uΔ(r), . . . , uΔn−1

(r)
)
Δr

)
Δs

≥
∫δ

θ

(∫δ

s

g(r)f
(
u(r), uΔ(r), . . . , uΔn−1

(r)
)
Δr

)

Δs

+
∫T−θ

δ

(∫ s

δ

g(r)f
(
u(r), uΔ(r), . . . , uΔn−1

(r)
)
Δr

)
Δs

≥ mrA(δ) ≥ mrL > 2r = 2‖u‖.

(3.4)
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(ii) If δ ∈ (T − θ, T], thus for u ∈ ∂Ω1, by (A1) and Lemma 2.4, we have

‖Tu‖ = (Tu)Δ
n−2
(δ)

≥ β

α

∫δ

ξ

g(s)f
(
u(s), uΔ(s), . . . , uΔn−1

(s)
)
Δs

+
∫δ

0

∫δ

s

g(r)f
(
u(s), uΔ(s), . . . , uΔn−1

(s)
)
ΔrΔs

≥
∫T−θ

θ

(∫T−θ

s

g(r)f
(
u(r), uΔr, . . . , uΔn−1

(r)
)
Δr

)

Δs

≥ mrA(T − θ) ≥ mrL > 2r > r = ‖u‖.

(3.5)

(iii) If δ ∈ (0, θ), thus for u ∈ ∂Ω1, by (A1) and Lemma 2.4, we have

‖Tu‖ = (Tu)Δ
n−2
(δ)

≥ δ

γ

∫η

δ

g(s)f
(
u(s), uΔs, . . . , uΔn−1

(s)
)
Δs

+
∫1

δ

∫ s

δ

g(r)f
(
u(r), uΔr, . . . , uΔn−1

(r)Δr
)
Δs

≥
∫T−θ

θ

(∫ s

θ

g(r)f
(
u(r), uΔr, . . . , uΔn−1

(r)
)
Δr

)
Δs

≥ mrA(θ) ≥ mrL > 2r > r = ‖u‖.

(3.6)

Therefore, no matter under which condition, we all have

‖Tu‖ ≥ ‖u‖, ∀u ∈ ∂Ω1. (3.7)

Then by Theorem 2.1, we have

i(T,Ω1, K) = 0. (3.8)
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On the other hand, for u ∈ ∂Ω2, we have u(t) ≤ ‖u‖ = R; by (A2)we know

‖Tu‖ = (Tu)Δ
n−1
(δ)

≤ β

α

∫δ

ξ

g(s)f
(
u(s), uΔ(s), . . . , uΔn−1

(s)
)
Δs

+
∫1

0

∫δ

s

g(r)f
(
u(r), uΔ(r), . . . , uΔn−1

(r)Δr
)
Δs

≤
(
1 +

β

α

)
MR

(∫1

0
g(r)Δr

)

≤ R = ‖u‖.

(3.9)

thus

‖Tu‖ ≤ ‖u‖, ∀u ∈ ∂Ω2. (3.10)

Then, by Theorem 2.1, we get

i(T,Ω2, K) = 1. (3.11)

Therefore, by (3.8), (3.11), r < R, we have

i
(
T,Ω2 \Ω1, K

)
= 1. (3.12)

Then operator T has a fixed point u ∈ (Ω1 \ Ω2), and r ≤ ‖u‖ ≤ R. Then the proof of
Theorem 3.1 is complete .

Proof of Theorem 3.2. First, by f0 = ϕ ∈ [0, θ∗/4), for ε = (θ∗/4) − ϕ, there exists an adequately
small positive number ρ, as 0 ≤ un−1 ≤ ρ, un−1 /= 0, we have

f(u1, u2, . . . , un−1) ≤
(
ϕ + ε

)
(un−1) ≤

(
θ∗
4

)
ρ =

θ∗
4
ρ. (3.13)

Then let R = ρ,M = θ∗/4 ∈ (0, θ∗), thus by (3.13)

f(u1, u2, . . . , un−1) ≤ MR, 0 ≤ un−1 ≤ R. (3.14)

So condition (A2) holds. Next, by condition (A4), f∞ = λ ∈ ((2θ∗/θ),+∞), then for ε =
λ − (2θ∗/θ), there exists an appropriately big positive number r /=R, as un−1 ≥ θr, we have

f(u1, u2, . . . , un−1) ≥ (λ − ε)(un−1) ≥
(
2θ∗

θ

)
(θr) = (2θ∗r). (3.15)
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Let m = 2θ∗ > θ∗, thus by (3.15), condition (A1) holds. Therefore by Theorem 3.1 we know
that the results of Theorem 3.2 hold. The proof of Theorem 3.2 is complete.

Proof of Theorem 3.3. Firstly, by condition (A6), f0 = ϕ ∈ ((2θ∗/θ),+∞), then for ε = ϕ −
(2θ∗/θ), there exists an adequately small positive number r, as 0 ≤ un−1 ≤ r, un−1 /= 0, we
have

f(u1, u2, . . . , un−1) ≥
(
ϕ − ε

)
un−1 =

2θ∗

θ
un−1, (3.16)

thus when θr ≤ un−1 ≤ r, we have

f(u1, u2, . . . , un−1) ≥ 2θ∗

θ
θr = 2θ∗r. (3.17)

Let m = 2θ∗ > θ∗, so by (3.17), condition (A1) holds.
Secondly, by condition (A5), f∞ = λ ∈ [0, θ∗/4), then for ε = (θ∗/4) − λ, there exists a

suitably big positive number ρ /= r, as un−1 ≥ ρ, we have

f(u1, u2, . . . , un−1) ≤ (λ + ε)(un−1) ≤ θ∗
4
un−1. (3.18)

If f is unbounded, by the continuity of f on [0, T] × [0,+∞)n−1, then there exist a constant
R (/= r) ≥ ρ, and a point (û1, û2, . . . , ûn−1) ∈ [0, T] × [0,+∞)n−1 such that

ρ ≤ ûn−1 ≤ R,

f(u1, u2, . . . , un−1) ≤ f(û1, û2, . . . , ûn−1), 0 ≤ un−1 ≤ R.
(3.19)

Thus, by ρ ≤ u0n−1 ≤ R, we know

f(u1, u2, . . . , un−1) ≤ f(û1, û2, . . . , ûn−1) ≤ θ∗
4
ûn−1 ≤ θ∗

4
R. (3.20)

Choose M = θ∗/4 ∈ (0, θ∗). Then, we have

f(u1, u2, . . . , un−1) ≤ MR, 0 ≤ un−1 ≤ R. (3.21)

If f is bounded, we suppose f(u1, u2, . . . , un−1) ≤ M, un−1 ∈ [0,+∞), M ∈ R+, there exists an
appropriately big positive number R > 4/θ∗M, then choose M = θ∗/4 ∈ (0, θ∗), we have

f(u1, u2, . . . , un−1) ≤ M ≤ θ∗
4
R = MR, 0 ≤ un−1 ≤ R. (3.22)

Therefore, condition (A2) holds. Thus, by Theorem 3.1, we know that the result of
Theorem 3.3 holds. The proof of Theorem 3.3 is complete.
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4. Application

In this section, in order to illustrate our results, we consider the following examples.

Example 4.1. Consider the following boundary value problem on the specific time scale T =
[0, 1/3] ∪ {1/2, 2/3, 1}:

uΔΔΔ(t) + tuΔ

[
((16/L) + 1)e2u

Δ − (16/L)
u + 5euΔ + e2uΔ

]

= 0, t ∈ [0, 1]
T
,

u(0) = 0,

uΔ(0) − uΔΔ
(
1
4

)
= 0, uΔ(1) + δuΔΔ

(
1
2

)
= 0,

(4.1)

where

α = γ = 1, β = 1, δ ≥ 0, ξ =
1
4
, η =

1
2
, θ =

1
4
, T = 1, (4.2)

and L is the constant defined in Lemma 2.2,

g(t) = t, f
(
u, uΔ

)
= uΔ

[
((16/L) + 1)e2u

Δ − (16/L)
u + 5euΔ + e2uΔ

]

. (4.3)

Then obviously

f0 = ϕ = lim
uΔ → 0+

max
0≤u≤4uΔ

f
(
u, uΔ)

uΔ
=

1
6
,

f∞ = λ = lim
uΔ →∞

min
0≤u≤4uΔ

f
(
u, uΔ)

uΔ
=

16
L

+ 1,

(4.4)

By Theorem 2.1, we have

∫1

0
g(t)Δt =

∫1/3

0
g(t)dt +

∫σ(1/3)

1/3
g(t)Δt +

∫σ(1/2)

1/2
g(t)Δt +

∫σ(2/3)

2/3
g(t)Δt =

5
12

, (4.5)

so conditions (H1), (H2) hold.
By simple calculations, we have

θ∗ =
1

(
1 +

(
β/α

))(∫1
0g(r)Δr

) =
6
5
, (4.6)

then θ∗/4 = 3/10, that is, ϕ ∈ [0, θ∗/4), so condition (A3) holds.
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For θ = 1/4, it is easy to see that

λ ∈
(
2θ∗

θ
,+∞

)
, (4.7)

so condition (A4) holds. Then by Theorem 3.2, BVP (4.1) has at least one positive solution.

Example 4.2. Consider the following boundary value problem on the specific time scale T =
[0, 1/3] ∪ [1/2, 1].

uΔΔΔ(t) + tuΔ

[
(1/4)eu

Δ
+ sinuΔ + 16/L
u + euΔ

]

= 0, t ∈ [0, 1]
T
,

u(0) = 0,

uΔ(0) − uΔΔ
(
1
4

)
= 0, uΔ(1) + δuΔΔ

(
1
2

)
= 0,

(4.8)

where

α = γ = 1, β = 1, δ ≥ 0, ξ =
1
4
, η =

1
2
, θ =

1
4
, T = 1, (4.9)

and L is the constant from Lemma 2.2,

g(t) = t, f
(
u, uΔ

)
= uΔ

[
(1/4)eu

Δ
+ sinuΔ + 16/L
u + euΔ

]

. (4.10)

Then obviously

f0 = ϕ = lim
uΔ → 0+

max
0≤u≤4uΔ

f
(
u, uΔ)

uΔ
=

16
L

+
1
4
,

f∞ = λ = lim
uΔ →∞

min
0≤u≤4uΔ

f
(
u, uΔ)

uΔ
=

1
4
,

(4.11)

By Theorem 2.1, we have

∫1

0
g(t)Δt =

∫1/3

0
g(t)dt +

∫σ(1/3)

1/3
g(t)Δt +

∫1

1/2
g(t)dt =

35
72

, (4.12)

so conditions (H1), (H2) hold. By simple calculations, we have

θ∗ =
1

(
1 +

(
β/α

))(∫1
0g(r)dr

) =
36
35

, (4.13)

then θ∗/4 = 9/35, that is, λ ∈ [0, θ∗/4), so condition (A5) holds.
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For θ = 1/4, it is easy to see that

ϕ ∈
(
2θ∗

θ
,+∞

)
, (4.14)

then condition (A6) holds. Thus by Theorem 3.3, BVP (4.8) has at least one positive solution.
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