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1 Department of Mathematics, University of Sarajevo, 71 000 Sarajevo, Bosnia and Herzegovina
2 Department of Mathematics, University of Rhode Island, Kingston, RI 02881-0816, USA

Correspondence should be addressed to M. R. S. Kulenović, kulenm@math.uri.edu
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We investigate global dynamics of the following systems of difference equations xn+1 = (α1 +
β1xn)/yn, yn+1 = (α2 + γ2yn)/(A2 + xn), n = 0, 1, 2, . . ., where the parameters α1, β1, α2, γ2, and
A2 are positive numbers and initial conditions x0 and y0 are arbitrary nonnegative numbers such
that y0 > 0. We show that this system has rich dynamics which depend on the part of parametric
space. We show that the basins of attractions of different locally asymptotically stable equilibrium
points are separated by the global stable manifolds of either saddle points or of nonhyperbolic
equilibrium points.
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1. Introduction and Preliminaries

In this paper, we study the global dynamics of the following rational system of difference
equations:

xn+1 =
α1 + β1xn

yn
,

yn+1 =
α2 + γ2yn

A2 + xn
,

n = 0, 1, 2, . . . , (1.1)

where the parameters α1, β1, α2, γ2, andA2 are positive numbers and initial conditions x0 ≥
0 and y0 > 0 are arbitrary numbers. System (1.1) was mentioned in [1] as a part of Open
Problem 3 which asked for a description of global dynamics of three specific competitive
systems. According to the labeling in [1], system (1.1) is called (21, 29). In this paper, we
provide the precise description of global dynamics of system (1.1). We show that system
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(1.1) has a variety of dynamics that depend on the value of parameters. We show that system
(1.1) may have between zero and two equilibrium points, which may have different local
character. If system (1.1) has one equilibrium point, then this point is either locally saddle
point or non-hyperbolic. If system (1.1) has two equilibrium points, then the pair of points is
the pair of a saddle point and a sink. Themajor problem is determining the basins of attraction
of different equilibrium points. System (1.1) gives an example of semistable non-hyperbolic
equilibrium point. The typical results are Theorems 4.1 and 4.5 below.

System (1.1) is a competitive system, and our results are based on recent results
developed for competitive systems in the plane; see [2, 3]. In the next section, we present
some general results about competitive systems in the plane. The third section deals with
some basic facts such as the non-existence of period-two solution of system (1.1). The fourth
section analyzes local stability which is fairly complicated for this system. Finally, the fifth
section gives global dynamics for all values of parameters.

Let I and J be intervals of real numbers. Consider a first-order system of difference
equations of the form

xn+1 = f
(
xn, yn

)
,

yn+1 = g
(
xn, yn

)
,

n = 0, 1, 2, . . . , (1.2)

where f : I × J → I, g : I × J → J, and (x0, y0) ∈ I × J.
When the function f(x, y) is increasing in x and decreasing in y and the function

g(x, y) is decreasing in x and increasing in y, the system (1.2) is called competitive. When the
function f(x, y) is increasing in x and increasing in y and the function g(x, y) is increasing
in x and increasing in y, the system (1.2) is called cooperative. A map T that corresponds
to the system (1.2) is defined as T(x, y) = (f(x, y), g(x, y)). Competitive and cooperative
maps, which are called monotone maps, are defined similarly. Strongly competitive systems of
difference equations or maps are those for which the functions f and g are coordinate-wise
strictly monotone.

If v = (u, v) ∈ R
2, we denote with Q�(v), � ∈ {1, 2, 3, 4}, the four quadrants in R

2

relative to v, that is, Q1(v) = {(x, y) ∈ R
2 : x ≥ u, y ≥ v}, Q2(v) = {(x, y) ∈ R

2 : x ≤ u, y ≥
v}, and so on. Define the South-East partial order �se on R

2 by (x, y)�se(s, t) if and only if
x ≤ s and y ≥ t. Similarly, we define the North-East partial order �ne on R

2 by (x, y)�ne(s, t)
if and only if x ≤ s and y ≤ t. For A ⊂ R

2 and x ∈ R
2, define the distance from x to A as

dist(x,A) := inf {‖x − y‖ : y ∈ A}. By intA, we denote the interior of a set A.
It is easy to show that a map F is competitive if it is nondecreasing with respect to the

South-East partial order, that is if the following holds:

(
x1

y1

)

�se

(
x2

y2

)

=⇒ F

(
x1

y1

)

�seF

(
x2

y2

)

. (1.3)

Competitive systemswere studied bymany authors; see [4–19], and others. All known
results, with the exception of [4, 6, 10], deal with hyperbolic dynamics. The results presented
here are results that hold in both the hyperbolic and the non-hyperbolic cases.

We now state three results for competitive maps in the plane. The following definition
is from [18].
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Definition 1.1. Let R be a nonempty subset of R2. A competitive map T : R → R is said
to satisfy condition (O+) if for every x, y in R, T(x)�neT(y) implies x�ney, and T is said to
satisfy condition (O−) if for every x, y in R, T(x)�neT(y) implies y�nex.

The following theorem was proved by de Mottoni and Schiaffino [20] for the
Poincaré map of a periodic competitive Lotka-Volterra system of differential equations. Smith
generalized the proof to competitive and cooperative maps [15, 16].

Theorem 1.2. Let R be a nonempty subset of R2. If T is a competitive map for which (O+) holds, then
for all x ∈ R, {Tn(x)} is eventually componentwise monotone. If the orbit of x has compact closure,
then it converges to a fixed point of T . If instead (O−) holds, then for all x ∈ R, {T2n} is eventually
componentwise monotone. If the orbit of x has compact closure in R, then its omega limit set is either
a period-two orbit or a fixed point.

The following result is from [18], with the domain of the map specialized to be the
Cartesian product of intervals of real numbers. It gives a sufficient condition for conditions
(O+) and (O−).

Theorem 1.3 (Smith [18]). Let R ⊂ R
2 be the Cartesian product of two intervals in R. Let T : R →

R be a C1 competitive map. If T is injective and det JT (x) > 0 for all x ∈ R, then T satisfies (O+). If T
is injective and det JT (x) < 0 for all x ∈ R, then T satisfies (O−).

Theorem 1.4. Let T be a monotone map on a closed and bounded rectangular regionR ⊂ R
2. Suppose

that T has a unique fixed point e in R. Then e is a global attractor of T on R.

The following theorems were proved by Kulenović and Merino [3] for competitive
systems in the plane, when one of the eigenvalues of the linearized system at an equilibrium
(hyperbolic or non-hyperbolic) is by absolute value smaller than 1 while the other has an
arbitrary value. These results are useful for determining basins of attraction of fixed points of
competitive maps.

Our first result gives conditions for the existence of a global invariant curve through a
fixed point (hyperbolic or not) of a competitive map that is differentiable in a neighborhood
of the fixed point, when at least one of two nonzero eigenvalues of the Jacobian matrix of the
map at the fixed point has absolute value less than one. A region R ⊂ R

2 is rectangular if it is
the Cartesian product of two intervals in R.

Theorem 1.5. Let T be a competitive map on a rectangular region R ⊂ R
2. Let x ∈ R be a fixed point

of T such that Δ := R∩ int(Q1(x)∪Q3(x)) is nonempty (i.e., x is not the NW or SE vertex of R), and
T is strongly competitive on Δ. Suppose that the following statements are true.

(a) The map T has a C1 extension to a neighborhood of x.

(b) The Jacobian matrix of T at x has real eigenvalues λ, μ such that 0 < |λ| < μ, where |λ| < 1,
and the eigenspace Eλ associated with λ is not a coordinate axis.

Then there exists a curve C ⊂ R through x that is invariant and a subset of the basin of attraction
of x, such that C is tangential to the eigenspace Eλ at x, and C is the graph of a strictly increasing
continuous function of the first coordinate on an interval. Any endpoints of C in the interior of R
are either fixed points or minimal period-two points. In the latter case, the set of endpoints of C is a
minimal period-two orbit of T .
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Corollary 1.6. If T has no fixed point nor periodic points of minimal period-two in Δ, then the
endpoints of C belong to ∂R.

For maps that are strongly competitive near the fixed point, hypothesis b. of
Theorem 1.5 reduces just to |λ| < 1. This follows from a change of variables [18] that allows
the Perron-Frobenius Theorem to be applied to give that, at any point, the Jacobian matrix of
a strongly competitive map has two real and distinct eigenvalues, the larger one in absolute
value being positive, and that corresponding eigenvectors may be chosen to point in the
direction of the second and first quadrants, respectively. Also, one can show that in such case
no associated eigenvector is aligned with a coordinate axis.

The following result gives a description of the global stable and unstable manifolds of
a saddle point of a competitive map. The result is the modification of Theorem 1.7 from [12].

Theorem 1.7. In addition to the hypotheses of Theorem 1.5, suppose that μ > 1 and that the
eigenspace Eμ associated with μ is not a coordinate axis. If the curve C of Theorem 1.5 has endpoints
in ∂R, then C is the global stable manifold Ws(x) of x, and the global unstable manifold Wu(x) is a
curve in R that is tangential to Eμ at x and such that it is the graph of a strictly decreasing function of
the first coordinate on an interval. Any endpoints ofWu(x) in R are fixed points of T .

The next result is useful for determining basins of attraction of fixed points of
competitive maps.

Theorem 1.8. Assume the hypotheses of Theorem 1.5, and let C be the curve whose existence is
guaranteed by Theorem 1.5. If the endpoints of C belong to ∂R, then C separates R into two connected
components, namely

W− := {x ∈ R \ C : ∃y ∈ C with x�sey}, W+ := {x ∈ R \ C : ∃y ∈ C with y�sex}, (1.4)

such that the following statements are true.

(i) W− is invariant, and dist(Tn(x),Q2(x)) → 0 as n → ∞ for every x ∈ W−.

(ii) W+ is invariant, and dist(Tn(x),Q4(x)) → 0 as n → ∞ for every x ∈ W+.

If, in addition, x is an interior point of R and T is C2 and strongly competitive in a neighborhood
of x, then T has no periodic points in the boundary of Q1(x) ∪ Q3(x) except for x, and the following
statements are true.

(iii) For every x ∈ W−, there exists n0 ∈ N such that Tn(x) ∈ intQ2(x) for n ≥ n0.

(iv) For every x ∈ W+, there exists n0 ∈ N such that Tn(x) ∈ intQ4(x) for n ≥ n0.

2. Some Basic Facts

In this section we give some basic facts about the nonexistence of period-two solutions, local
injectivity of map T at the equilibrium point and (O+) condition.
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2.1. Equilibrium Points

The equilibrium points (x, y) of system (1.1) satisfy

x =
α1 + β1x

y
,

y =
α2 + γ2y

A2 + x
.

(2.1)

First equation of System (2.1) gives

y =
α1

x
+ β1. (2.2)

Second equation of System (2.1) gives

y(A2 + x) = α2 + γ2y. (2.3)

Now, using (2.2), we obtain

(
α1 + β1x

)
(A2 + x)

x
= α2 + γ2

α1 + β1x

x
. (2.4)

This implies

(
α1 + β1x

)
(A2 + x) = α2x + γ2α1 + β1γ2x, (2.5)

which is equivalent to

β1x
2 + x

[
(α1 − α2) + β1

(
A2 − γ2

)]
+ α1

(
A2 − γ2

)
= 0. (2.6)

Solutions of (2.6) are

x1 =
−[(α1 − α2) + β1

(
A2 − γ2

)]
+
√[

(α1 − α2) + β1
(
A2 − γ2

)]2 − 4α1β1
(
A2 − γ2

)

2β1
,

x2 =
−[(α1 − α2) + β1

(
A2 − γ2

)] −
√[

(α1 − α2) + β1
(
A2 − γ2

)]2 − 4α1β1
(
A2 − γ2

)

2β1
.

(2.7)
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Table 1

E1 A2 < γ2,

E1, E2 A2 > γ2, [(α1 − α2) + β1(A2 − γ2)]
2 − 4α1β1(A2 − γ2) > 0, β1(A2 − γ2) < α2 − α1

E1 ≡ E2 A2 > γ2, [(α1 − α2) + β1(A2 − γ2)]
2 − 4α1β1(A2 − γ2) = 0, β1(A2 − γ2) < α2 − α1

E A2 = γ2, α2 > α1

No equilibrium A2 > γ2, [(α1 − α2) + β1(A2 − γ2)]
2 − 4α1β1(A2 − γ2) < 0

No equilibrium A2 > γ2, [(α1 − α2) + β1(A2 − γ2)]
2 − 4α1β1(A2 − γ2) ≥ 0, β1(A2 − γ2) > α2 − α1

No equilibrium A2 = γ2, α2 ≤ α1

Now, (2.2) gives

y1 =
(α1 − α2) − β1

(
A2 − γ2

)
+
√[

(α1 − α2) + β1
(
A2 − γ2

)]2 − 4α1β1
(
A2 − γ2

)

−2(A2 − γ2
) ,

y2 =
(α1 − α2) − β1

(
A2 − γ2

) −
√[

(α1 − α2) + β1
(
A2 − γ2

)]2 − 4α1β1
(
A2 − γ2

)

−2(A2 − γ2
) .

(2.8)

The equilibrium points are:

E1 =
(
x1, y1

)
,

E1 =
(
x2, y2

)
,

(2.9)

where x1, y1, x2, y2 are given by the above relations.
Note that

xy /= β1γ2. (2.10)

The discriminant of (2.6) is given by

D =
[
(α1 − α2) + β1

(
A2 − γ2

)]2 − 4α1β1
(
A2 − γ2

)
. (2.11)

The criteria for the existence of equilibrium points are summarized in Table 1 where

E =
(
α2 − α1

β1
,

β1α2

α2 − α1

)
. (2.12)

2.2. Condition (O+) and Period-Two Solution

In this section we prove three lemmas.

Lemma 2.1. System (1.1) satisfies either (O+) or (O−). Consequently, the second iterate of every
solution is eventually monotone.



Advances in Difference Equations 7

Proof. The map T associated to system (1.1) is given by

T
(
x, y

)
=
(
α1 + β1x

y
,
α2 + γ2y

A2 + x

)
. (2.13)

Assume

T
(
x1, y1

)�neT
(
x2, y2

)
, (2.14)

then we have

α1 + β1x1

y1
≤ α1 + β1x2

y2
, (2.15)

α2 + γ2y1

A2 + x1
≤ α2 + γ2y2

A2 + x2
. (2.16)

Equations (2.15) and (2.16) are equivalent, respectively, to

α1
(
y2 − y1

)
+ β1

(
x1y2 − x2y1

) ≤ 0, (2.17)

α2(x2 − x1) +A2γ2
(
y1 − y2

)
+ γ2

(
x2y1 − x1y2

) ≤ 0. (2.18)

Now, using (2.17) and (2.18), we have the following:

If y2 ≥ y1 =⇒ x1y2 < x2y1 =⇒ x1 < x2 =⇒
(
x1, y1

)�ne
(
x2, y2

)
,

If y2 < y1 =⇒ x2 < x1 and/or x2y1 − x1y2 < 0 =⇒ x2 < x1 =⇒
(
x2, y2

)�ne
(
x1, y1

)
.

(2.19)

Lemma 2.2. System (1.1) has no minimal period-two solution.

Proof. Set

T
(
x, y

)
=
(
α1 + β1x

y
,
α2 + γ2y

A2 + x

)
. (2.20)

Then

T
(
T
(
x, y

))
= T

(
α1 + β1x

y
,
α2 + γ2y

A2 + x

)

=

(
(x +A2)

(
α1 +

(
β1
(
α1 + xβ1

))
/y

)

α2 + yγ2
,
y
(
α2 +

(
γ2
(
α2 + yγ2

))
/x +A2

)

yA2 + α1 + xβ1

)

.

(2.21)
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Period-two solution satisfies

(x +A2)
(
α1 +

(
β1
(
α1 + xβ1

))
/y

)

α2 + yγ2
− x = 0, (2.22)

y
(
α2 +

(
γ2
(
α2 + yγ2

))
/(x +A2)

)

yA2 + α1 + xβ1
− y = 0. (2.23)

We show that this system has no other positive solutions except equilibrium points.
Equations (2.22) and (2.23) are equivalent, respectively, to

xyα1 + yA2α1 − xyα2 + xα1β1 +A2α1β1 + x2β1
2 + xA2β1

2 − xy2γ2

y
(
α2 + yγ2

) = 0, (2.24)

−xy2A2 − y2A2
2 − xyα1 − yA2α1 + xyα2 + yA2α2 − x2yβ1 − xyA2β1 + yα2γ2 + y2γ2

2

(x +A2)
(
yA2 + α1 + xβ1

) = 0.

(2.25)

Equation (2.24) implies

yA2α1 + xy(α1 − α2) +A2α1β1 + x2β1
2 + xβ1

(
α1 +A2β1

) − xy2γ2 = 0. (2.26)

Equation (2.25) implies

−xy2A2 − x2yβ1 + xy
(−α1 + α2 −A2β1

)
+ y

(
A2(−α1 + α2) + α2γ2

)
+ y2

(
−A2

2 + γ2
2
)
= 0.

(2.27)

Using (2.26), we have

x2 =
−yA2α1 − xy(α1 − α2) −A2α1β1 − xβ1

(
α1 +A2β1

)
+ xy2γ2

β1
2

. (2.28)

Putting (2.28) into (2.27), we have

y
(
y(x +A2)α1 + y

(
−A2(x +A2)β1 − xyγ2 + β1γ2

2
)
+ α2

(−xy + β1
(
x +A2 + γ2

)))
= 0.

(2.29)

This is equivalent to

x =
−yA2

2β1 +A2
(
yα1 + α2β1

)
+ β1γ2

(
α2 + yγ2

)

−yα1 + α2
(
y − β1

)
+ y

(
A2β1 + yγ2

) . (2.30)
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Putting (2.30) into (2.24), we obtain

β1
(
α2 + yγ2

)(
α2β1 + y2(A2 − γ2

)
+ y

(
α1 − α2 + β1

(−A2 + γ2
)))

= 0 (2.31)

or

y2 γ2
(
A2 + γ2

)
+ β1 γ2

(−α1 + β1
(
A2 + γ2

))
+ y

(
A2 + γ2

) (−α1 + α2 + β1
(
A2 + γ2

))
= 0.
(2.32)

From (2.31), we obtain fixed points. In the sequel, we consider (2.32).
Discriminant of (2.32) is given by

Δ :=
(
A2 + γ2

)(−4β1γ22
(−α1 + β1

(
A2 + γ2

))
+
(
A2 + γ2

)(−α1 + α2 + β1
(
A2 + γ2

))2)
. (2.33)

Real solutions of (2.32) exist if and only if Δ ≥ 0. The solutions are given by

y1 =

(−A2 − γ2
) (−α1 + α2 + β1

(
A2 + γ2

)) −
√
Δ

2γ2
(
A2 + γ2

) ,

y2 =

(−A2 − γ2
) (−α1 + α2 + β1

(
A2 + γ2

))
+
√
Δ

2γ2
(
A2 + γ2

) .

(2.34)

Using (2.30), we have

x1 =

(−α1 + α2 + β1
(
A2 − γ2

)) (
A2 + γ2

)
+
√
Δ

2β1γ2
,

x2 =

(−α1 + α2 + β1
(
A2 − γ2

)) (
A2 + γ2

) −
√
Δ

2β1γ2
.

(2.35)

Claim. Assume Δ ≥ 0. Then

(i) for all values of parameters, y1 < 0;

(ii) for all values of parameters, x2 < 0.

Proof. (1) Assume (−α1 +α2 + β1 (A2 + γ2)) > 0. Then it is obvious that the claim y1 < 0 is true.
Now, assume (−α1 + α2 + β1 (A2 + γ2)) ≤ 0. Then y1 < 0 if and only if

Δ − (
A2 + γ2

)2(−α1 + α2 + β1
(
A2 + γ2

))2
> 0, (2.36)

which is equivalent to

−4β1γ22
(
A2 + γ2

)(−α1 + β1
(
A2 + γ2

))
> 0. (2.37)
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This is true since

(−α1 + β1
(
A2 + γ2

))
<
(−α1 + α2 + β1

(
A2 + γ2

)) ≤ 0. (2.38)

(2) Assume (−α1 + α2 + β1 (A2 − γ2)) < 0. Then it is obvious that x2 < 0. Now, assume

(−α1 + α2 + β1
(
A2 − γ2

)) ≥ 0. (2.39)

Then x2 < 0 if and only if

Δ − (−α1 + α2 + β1
(
A2 − γ2

))2(
A2 + γ2

)2
> 0. (2.40)

This is equivalent to

4β1γ2
(
A2 + γ2

)(
A2

(−α1 + α2 +A2β1
)
+ α2γ2 − β1γ2

2
)
> 0. (2.41)

Using (2.39), we have

(
A2

(−α1 + α2 +A2β1
)
+ α2γ2 − β1γ2

2
)
≥ A2γ2β1 + α2γ2 − β1γ2

2 ≥ α1γ2 > 0, (2.42)

which implies that the inequality (2.41) is true.

Now, the proof of the Lemma 2.2 follows from the Claim 2.2.

Lemma 2.3. The map T associated to System (1.1) satisfies the following:

T
(
x, y

)
=
(
x, y

)
only for

(
x, y

)
=
(
x, y

)
. (2.43)

Proof. By using (2.1), we have

T
(
x, y

)
=
(
x, y

)
,

⇐⇒ α1 + β1x

y
=

α1 + β1x

y
,

α2 + γ2y

A2 + x
=

α2 + γ2y

A2 + x
.

(2.44)

First equation implies

α1
(
y − y

)
+ β1

(
xy − xy

)
= 0. (2.45)

Second equation implies

α2(x − x) + γ2A2
(
y − y

)
= γ2

(
xy − yx

)
. (2.46)
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Note the following

xy − xy = (x − x)y + x
(
y − y

)
. (2.47)

Using (2.47), Equations (2.45) and (2.46), respectively, become

β1y(x − x) +
(
α1 + β1x

)(
y − y

)
= 0,

(
α2 + γ2y

)
(x − x) + γ2(A2 + x)

(
y − y

)
= 0.

(2.48)

Note that System (2.48) is linear homogeneous system in x − x and y − y. The
determinant of System (2.48) is given by

∣∣∣∣∣

β1y α1 + β1y

α2 + γ2y γ2(A2 + x)

∣∣∣∣∣
. (2.49)

Using (2.1), the determinant of System (2.48) becomes

∣∣∣∣∣

β1y xy

y(A2 + x) γ2(A2 + x)

∣∣∣∣∣
= y(A2 + x)

(
β1γ2 − xy

)
/= 0. (2.50)

This implies that System (2.48) has only trivial solution, that is

x = x, y = y. (2.51)

3. Linearized Stability Analysis

The Jacobian matrix of the map T has the following form:

JT =

⎛

⎜⎜⎜⎜
⎝

β1
y

−α1 + β1x

y2

− α2 + γ2y

(A2 + x)2
γ2

A2 + x

⎞

⎟⎟⎟⎟
⎠

. (3.1)

The value of the Jacobian matrix of T at the equilibrium point is

JT
(
x, y

)
=

⎛

⎜⎜⎜⎜
⎝

β1
y

−x
y

− y

A2 + x

γ2
A2 + x

⎞

⎟⎟⎟⎟
⎠

. (3.2)
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The determinant of (3.2) is given by

det JT
(
x, y

)
=

β1γ2 − xy

y(A2 + x)
. (3.3)

The trace of (3.2) is

Tr JT
(
x, y

)
=

β1
y

+
γ2

A2 + x
. (3.4)

The characteristic equation has the form

λ2 − λ

(
β1
y

+
γ2

A2 + x

)
+

β1γ2 − xy

y(A2 + x)
= 0. (3.5)

Theorem 3.1. Assume that A2 < γ2. Then there exists a unique positive equilibrium E1 which is a
saddle point, and the following statements hold.

(a) If β1(γ2 +A2) < α1 + α2, then λ1 ∈ (1,+∞) and λ2 ∈ (−1, 0).
(b) If β1(γ2 + A2) > α1 + α2, β1A2 < α2 < β1γ2 and α1(β1γ2 − α2) < β1γ2(α2 − β1A2), then

λ1 ∈ (1,+∞) and λ2 ∈ (0, 1).

(c) If β1(γ2+A2) > α1+α2, α2 > β1γ2 and α1(α2−β1γ2) > β1γ2(α2−β1A2), then λ1 ∈ (1,+∞)
and λ2 ∈ (0, 1).

(d) If β1(γ2+A2) > α1+α2, α2 > β1γ2 and α1(α2−β1γ2) < β1γ2(α2−β1A2), then λ1 ∈ (1,+∞)
and λ2 ∈ (−1, 0).

Proof. The equilibrium is a saddle point if and only if the following conditions are satisfied:

∣∣Tr JT
(
x, y

)∣∣ >
∣∣1 + det JT

(
x, y

)∣∣, Tr2JT
(
x, y

) − 4det JT
(
x, y

)
> 0. (3.6)

The first condition is equivalent to

β1
y

+
γ2

A2 + x
> 1 +

β1γ2 − xy

y(A2 + x)
. (3.7)

This implies the following:

β1(A2 + x) + γ2y > y(A2 + x) + β1γ2 − xy

⇐⇒ (A2 + x)
(
β1 − y

)
+ γ2

(
y − β1

)
> −xy

⇐⇒ (
y − β1

)(
A2 − γ2 + x

)
< xy.

(3.8)
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Notice the following:

y1 − β1 =
(α1 − α2) − β1

(
A2 − γ2

)
+
√
[(α1 − α2) + β1(A2 − γ2)]

2 − 4α1β1
(
A2 − γ2

)

−2(A2 − γ2
) − β1

=
(α1 − α2) + β1

(
A2 − γ2

)
+
√[

(α1 − α2) + β1
(
A2 − γ2

)]2 − 4α1β1
(
A2 − γ2

)

−2(A2 − γ2
)

=
−[(α1 − α2) +β1

(
A2 − γ2

)] −
√[

(α1 − α2) + β1
(
A2 − γ2

)]2 − 4α1β1
(
A2 − γ2

)

2β1

2β1
2
(
A2 − γ2

)

= x2
β1

A2 − γ2
.

(3.9)

That is,

y1 − β1 = x2
β1

A2 − γ2
. (3.10)

Similarly,

A2 − γ2 + x1 = A2 − γ2

+
−[(α1 − α2) + β1

(
A2 − γ2

)]
+
√[

(α1 − α2) + β1
(
A2 − γ2

)]2 − 4α1β1
(
A2 − γ2

)

2β1

=
β1
(
A2 − γ2

) − (α1 − α2) +
√[

(α1 − α2) + β1
(
A2 − γ2

)]2 − 4α1β1
(
A2 − γ2

)

2β1

=
−β1

(
A2 − γ2

)
+ (α1 − α2) −

√[
(α1 − α2) + β1

(
A2 − γ2

)]2 − 4α1β1
(
A2 − γ2

)

−2β1

=
(α1 − α2) − β1

(
A2 − γ2

) −
√[

(α1 − α2) + β1
(
A2 − γ2

)]2 − 4α1β1
(
A2 − γ2

)

−2(A2 − γ2
)

A2 − γ2
β1

= y2
A2 − γ2

β1
.

(3.11)

Now, we have

(
y1 − β1

)(
A2 − γ2 + x1

)
< x1y1 ⇐⇒ x2

β1
A2 − γ2

y2
A2 − γ2

β1
< x1y1. (3.12)
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This is equivalent to

x2y2 < x1y1. (3.13)

The last condition is equivalent to

x2y2 − x1y1 < 0 ⇐⇒ −(y2(x1 − x2) + x1
(
y1 − y2

))
< 0 (3.14)

which is true since x1 > x2 and y1 > y2.
The second condition is equivalent to

(
β1
y

+
γ2

A2 + x

)2

− 4
β1γ2

y(A2 + x)
+ 4

xy

y(A2 + x)
> 0. (3.15)

This is equivalent to

(
β1
y

− γ2
A2 + x

)2

+ 4
xy

y(A2 + x)
> 0, (3.16)

establishing the proof of Theorem 3.1.
Since the map T is strongly competitive, the Jacobian matrix (3.2) has two real and

distinct eigenvalues, with the larger one in absolute value being positive.
From (3.5) at E1, we have

λ1 + λ2 =
β1
y1

+
γ2

A2 + x1
,

λ1λ2 =
β1γ2 − x1y1

y1(A2 + x1)
.

(3.17)

The first equation implies that either both eigenvalues are positive or the smaller one
is negative.

Consider the numerator of the right-hand side of the second equation. We have

β1γ2 − x1y1 = β1γ2 −
−(α1 − α2) − β1

(
A2 − γ2

)
+
√
D

2β1

(α1 − α2) − β1
(
A2 − γ2

)
+
√
D

−2(A2 − γ2
)

= β1γ2 −
√
D + (α1 + α2) − β1

(
A2 − γ2

)

2

=
β1
(
γ2 +A2

) − (α1 + α2) −
√
D

2
,

(3.18)

where D = [(α1 − α2) + β1(A2 − γ2)]
2 − 4α1β1(A2 − γ2).
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(a) If β1(γ2 +A2) < α1 + α2, then the smaller root is negative, that is, λ2 ∈ (−1, 0).
If β1(γ2 +A2) > (α1 + α2), then

β1
(
γ2 +A2

) − (α1 + α2) >
√
D

⇐⇒ β21(γ2 +A2)
2 − 2β1

(
γ2 +A2

)
(α1 + α2) + (α1 + α2)2

> (α1 − α2)2 + 2β1(α1 − α2)
(
A2 − γ2

)
+ β21

(
A2 − γ2

)2 − 4α1β1
(
A2 − γ2

)

⇐⇒ β1γ2
(
β1A2 − α2

)
+ α1

(
α2 − β1γ2

)
> 0.

(3.19)

From the last inequality statements (b), (c) and (d) follow.

We now perform a similar analysis for the other cases in Table 1.

Theorem 3.2. Assume

A2 > γ2, β1
(
A2 − γ2

)
< α2 − α1,

[
(α1 − α2) + β1

(
A2 − γ2

)]2 − 4α1β1
(
A2 − γ2

)
> 0. (3.20)

Then E1, E2 exist. E1 is a saddle point; E2 is a sink. For the eigenvalues of E1, λ1(E1) ∈ (1,+∞) the
following holds.

(a) If β1γ2 < α2 < β1A2, then λ2 ∈ (0, 1).

(b) If α2 > β1A2 and α1(α2 − β1γ2) < β1γ2(α2 − β1A2), then λ2 ∈ (−1, 0).
(c) If α2 < β1γ2 and β1γ2(β1A2 − α2) > α1(β1γ2 − α2), then λ2 ∈ (0, 1).

Proof. Note that if β1A2−α2 < 0 and α2 −β1γ2 < 0, then α2 > β1A2 and α2 < β1γ2,which implies
A2 < γ2, which is a contradiction.

The equilibrium is a sink if the following condition is satisfied:

∣∣Tr JT
(
x, y

)∣∣ <
∣∣1 + det JT

(
x, y

)∣∣ < 2. (3.21)

The condition |Tr JT (x, y)| < |1 + det JT (x, y)| is equivalent to

β1
y

+
γ2

A2 + y
< 1 +

β1γ2
y(A2 + x)

− xy

y(A2 + x)
. (3.22)

This implies

β1(A2 + x) + γ2y < y(A2 + x) + β1γ2 − xy

⇐⇒ (A2 + x)
(
β1 − y

)
+ γ2

(
y − β1

)
< −xy

⇐⇒ (
y − β1

)(
A2 − γ2 + x

)
> xy.

(3.23)

Now, we prove that E2 is a sink.
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We have to prove that

(
y2 − β1

)(
A2 − γ2 + x2

)
> x2y2. (3.24)

Notice the following:

y2 − β1 =
(α1 − α2) − β1

(
A2 − γ2

) −
√[

(α1 − α2) + β1
(
A2 − γ2

)]2 − 4α1β1
(
A2 − γ2

)

−2(A2 − γ2
) − β1

=
(α1 − α2) + β1

(
A2 − γ2

) −
√[

(α1 − α2) + β1
(
A2 − γ2

)]2 − 4α1β1
(
A2 − γ2

)

−2(A2 − γ2
)

=
−[(α1 − α2) + β1

(
A2 − γ2

)]
+
√[

(α1 − α2) + β1
(
A2 − γ2

)]2 − 4α1β1
(
A2 − γ2

)

2
(
A2 − γ2

)

=
−[(α1 − α2) + β1

(
A2 − γ2

)]
+
√[

(α1 − α2) + β1
(
A2 − γ2

)]2 − 4α1β1
(
A2 − γ2

)

2
(
A2 − γ2

)
β1

A2 − γ2

= x1
β1

A2 − γ2
.

(3.25)

Similarly,

A2 − γ2 + x2 = A2 − γ2

+
−[(α1 − α2) + β1

(
A2 − γ2

)] −
√[

(α1 − α2) + β1
(
A2 − γ2

)]2 − 4α1β1
(
A2 − γ2

)

2β1

=
(α1 − α2) − β1

(
A2 − γ2

)
+
√[

(α1 − α2) + β1
(
A2 − γ2

)]2 − 4α1β1
(
A2 − γ2

)

−2β1

=
(α1 − α2) − β1

(
A2 − γ2

)
+
√[

(α1 − α2) + β1
(
A2 − γ2

)]2 − 4α1β1
(
A2 − γ2

)

−2(A2 − γ2
)

A2 − γ2
β1

= y1
A2 − γ2

β1
.

(3.26)

Now, condition

(
y2 − β1

)(
A2 − γ2 + x2

)
> x2y2 (3.27)
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becomes

x1
β1

A2 − γ2
y1

A2 − γ2
β1

> x2y2, (3.28)

that is,

x1y1 > x2y2, (3.29)

which is true. (see Theorem 3.1.)
Condition

∣∣1 + det JT
(
x, y

)∣∣ < 2 (3.30)

is equivalent to

β1γ2
y(A2 + x)

− xy

y(A2 + x)
< 1. (3.31)

This implies

β1γ2 − xy < y(A2 + x) ⇐⇒ β1γ1 − yA2 < 2xy. (3.32)

We have to prove that

β1γ2 − y2A2 < 2x2y2. (3.33)

Using (2.2), we have

β1γ2 −
(
α1

x2
+ β1

)
A2 < 2x2

(
α1

x2
+ β1

)
. (3.34)

This is equivalent to

β1
(
γ2 −A2

)
< 2α1 + 2x2β1 +

α1A2

x2
, (3.35)

which is always true since A2 > γ2 and the left side is always negative, while the right side is
always positive.
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Notice that conditions

x1y1 > x2y2,

(
β1
y

− γ2
A2 + x

)2

+ 4
xy

y(A2 + x)
> 0,

(3.36)

imply that E1 is a saddle point.
From (3.5) at E1, we have

λ1 + λ2 =
β1
y1

+
γ2

A2 + x1
,

λ1λ2 =
β1γ2 − x1y1

y1(A2 + x1)
.

(3.37)

The first equation implies that either both eigenvalues are positive or the smaller one
is negative.

Consider the numerator of the right-hand side of the second equation. We have

β1γ2 − x1y1 = β1γ2 −
−(α1 − α2) − β1

(
A2 − γ2

)
+
√
D

2β1

(α1 − α2) − β1
(
A2 − γ2

)
+
√
D

−2(A2 − γ2
)

= β1γ2 −
√
D + (α1 + α2) − β1

(
A2 − γ2

)

2

=
β1
(
γ2 +A2

) − (α1 + α2) −
√
D

2
.

(3.38)

We have

β1γ2 − xy > 0 ⇐⇒ β1
(
γ2 +A2

) − (α1 + α2) −
√
D

2
> 0. (3.39)

Inequality

β1
(
γ2 +A2

) − (α1 + α2) −
√
D > 0 (3.40)

is equivalent to

β1γ2
(
β1A2 − α2

)
+ α1

(
α2 − β1γ2

)
> 0, (3.41)

which is obvious if β1γ2 < α2 < β1A2. Then inequality (3.41) holds. This confirms (a). The
other cases follow from (3.41).
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Theorem 3.3. Assume

A2 > γ2, β1
(
A2 − γ2

)
< α2 − α1,

[
(α1 − α2) + β1

(
A2 − γ2

)]2 − 4α1β1
(
A2 − γ2

)
= 0. (3.42)

Then there exists a unique positive equilibrium point

E1 = E2 =

(
(α2 − α1) − β1

(
A2 − γ2

)

2β1
,
β1
(
A2 − γ2

) − (α1 − α2)

2
(
A2 − γ2

)

)

, (3.43)

which is non-hyperbolic. The following holds.

(a) If β1(A2 + γ2) > α1 + α2, then λ1 = 1 and λ2 ∈ (0, 1).

(b) If β1(A2 + γ2) < α1 + α2, then λ1 = 1 and λ2 ∈ (−1, 0).

Proof. Evaluating the Jacobian matrix (3.2) at equilibrium E1 = E2 = (((α2 − α1) − β1(A2 −
γ2))/2β1, (β1(A2 − γ2) − (α1 − α2))/2(A2 − γ2)), we have

JT
(
x, y

)

=

⎛

⎜⎜⎜⎜
⎝

β1
(
β1
(
A2 − γ2

) − (α1 − α2)
)
/2

(
A2 − γ2

) −
(
(α2 − α1) − β1

(
A2 − γ2

))
/2β1

(
β1
(
A2 − γ2

) − (α1 − α2)
)
/2

(
A2 − γ2

)

−
(
β1
(
A2 − γ2

) − (α1 − α2)
)
/2

(
A2 − γ2

)

A2 +
((
(α2 − α1) − β1

(
A2 − γ2

))
/2β1

)
γ2

A2 +
((
(α2 − α1) − β1

(
A2 − γ2

))
/2β1

)

⎞

⎟⎟⎟⎟
⎠
.

(3.44)

The characteristic equation of JT (x, y) is

det
(
JT
(
x, y

) − λI
)

=

⎛

⎜⎜⎜⎜
⎝

β1
(
β1
(
A2 − γ2

) − (α1 − α2)
)
/2

(
A2 − γ2

) − λ −
(
(α2 − α1) − β1

(
A2 − γ2

))
/2β1

(
β1
(
A2 − γ2

) − (α1 − α2)
)
/2

(
A2 − γ2

)

−
(
β1
(
A2 − γ2

) − (α1 − α2)
)
/2

(
A2 − γ2

)

A2 +
((
(α2 − α1) − β1

(
A2 − γ2

))
/2β1

)
γ2

A2 +
((
(α2 − α1) − β1

(
A2 − γ2

))
/2β1

) − λ

⎞

⎟⎟⎟⎟
⎠

= 0,
(3.45)

which is simplified to

λ2 − λ

(
β1

(
β1
(
A2 − γ2

) − (α1 − α2)
)
/2

(
A2 − γ2

) +
γ2

A2 +
((
(α2 − α1) − β1

(
A2 − γ2

))
/2β1

)

)

+
β1γ2 −

((
(α2 − α1) − β1

(
A2 − γ2

))
/2β1

)((
β1
(
A2 − γ2

) − (α1 − α2)
)
/2

(
A2 − γ2

))

((
β1
(
A2 − γ2

) − (α1 − α2)
)
/2

(
A2 − γ2

))(
A2 +

((
(α2 − α1) − β1

(
A2 − γ2

))
/2β1

)) = 0.

(3.46)
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Solutions of (3.46) are

λ1 = 1, λ2 =
−α2

1 + 2α1α2 − α2
2 +A2

2β
2
1 + 2A2β

2
1γ2 − 3β21γ

2
2

α2
1 − 2α1α2 + α2

2 − 2A2α1β1 + 2A2α2β1 +A2
2β

2
1 − β21γ

2
2

. (3.47)

Note that λ2 can be written in the following form:

λ2 =
−(α1 − α2)

2 + β21
(
A2

2 − γ22
)
+ 2β21γ2

(
A2 − γ2

)

(α1 − α2)2 + 2A2β1(α2 − α1) + β21
(
A2

2 − γ22
) . (3.48)

Note that |λ2| < 1.
The corresponding eigenvectors, respectively, are

(
−A2 − γ2

β1
, 1
)
,

(

−
(
A2 − γ2

)(
α1 − α2 +A2β1 − β1γ2

)(−α1 + α2 +A2β1 + β1γ2
)

β1
(−α1 + α2 +A2β1 − β1γ2

)2 , 1

)

.

(3.49)

Note that the denominator of (3.48) is always positive.
Consider numerator of (3.48)

−(α1 − α2)2 + β21

(
A2

2 − γ22

)
+ 2β21γ2

(
A2 − γ2

)
. (3.50)

From

[
(α1 − α2) + β1

(
A2 − γ2

)]2 − 4α1β1
(
A2 − γ2

)
= 0, (3.51)

we have

(α1 − α2)2 = 4α1β1
(
A2 − γ2

) − 2β1(α1 − α2)
(
A2 − γ2

) − β21
(
A2 − γ2

)2
. (3.52)

Substituting (α1 − α2)
2 from (3.52) in (3.50), we obtain

− 4α1β1
(
A2 − γ2

)
+ 2β1(α1 − α2)

(
A2 − γ2

)
+ β22

(
A2

2 − γ22

)
+ 2β21γ2

(
A2 − γ2

)

= 2β1
(
A2 − γ2

)(
β1
(
A2 + γ2

) − (α1 + α2)
)
.

(3.53)

Now, (3.48) becomes

λ2 =
2β1

(
A2 − γ2

)(
β1(A2 + α2) − (α1 + α2)

)

(α1 − α2)2 + 2A2β1(α2 − α1) + β21
(
A2

2 − γ22
) , (3.54)

establishing the proof of the theorem.
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Now, we consider the special case of System (1.1)when A2 = γ2.
In this case system (1.1) becomes

xn+1 =
α1 + β1xn

yn
,

yn+1 =
α2 +A2xn

A2 + yn
,

n = 0, 1, 2, . . . . (3.55)

Equilibrium points are solutions of the following system:

x =
α1 + β1x

y
,

y =
α2 +A2y

A2 + x
.

(3.56)

The second equation implies

x =
α2 − α1

β1
, α2 > α1. (3.57)

Now, the first equation implies

y =
β1α2

α2 − α1
, α2 > α1. (3.58)

The map T associated to System (3.55) is given by

T
(
x, y

)
=
(
α1 + β1x

y
,
α2 +A2y

A2 + x

)
. (3.59)

The Jacobian matrix of the map T has the following form:

JT =

⎛

⎜⎜⎜⎜
⎝

β1
y

−α1 + β1x

y2

− α2 +A2y

(A2 + x)2
γ2

A2 + x

⎞

⎟⎟⎟⎟
⎠

. (3.60)

The value of the Jacobian matrix of T at the equilibrium point is

JT
(
x, y

)
=

⎛

⎜⎜⎜⎜
⎝

β1
y

−x
y

− y

A2 + x

A2

A2 + x

⎞

⎟⎟⎟⎟
⎠

. (3.61)
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The determinant of (3.61) is given by

det JT
(
x, y

)
=

β1A2 − xy

y(A2 + x)
. (3.62)

The trace of (3.61) is

Tr JT
(
x, y

)
=

β1
y

+
A2

A2 + x
. (3.63)

Theorem 3.4. Assume

A2 = γ2, α2 > α1. (3.64)

Then there exists a unique positive equilibrium point

E =
(
α2 − α1

β1
,

β1α2

α2 − α1

)
(3.65)

of system (1.1), which is a saddle point. The following statements hold.

(a) If β1A2 − α2 > 0, then λ1 ∈ (1,+∞) and λ2 ∈ (0, 1).

(b) If β1A2 − α2 < 0, then λ1 ∈ (1,+∞) and λ2 ∈ (−1, 0).

Proof. We prove that E is a saddle point.
We check the conditions

∣∣Tr JT
(
x, y

)∣∣ > 1 + det JT
(
x, y

)
, Tr2JT

(
x, y

) − 4det JT
(
x, y

)
> 0. (3.66)

Condition |Tr JT (x, y)| > 1 + det JT (x, y) is equivalent to

β1
y

+
A2

A2 + x
> 1 +

β1A2

(A2 + x)y
− x

A2 + x
. (3.67)

This implies

β1(A2 + x) +A2y > yA2 + xy + β1A2 − xy ⇐⇒ β1x > 0. (3.68)

Condition

Tr2JT
(
x, y

) − 4det JT
(
x, y

)
> 0 (3.69)
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is equivalent to

(
β1
y

− γ2
A2 + x

)2

+ 4
xy

y(A2 + x)
> 0. (3.70)

Hence E is a saddle point.
Now,

λ1 + λ2 =
β1
y
,

λ1λ2 =
β1A2 − α2

y(A2 + x)
.

(3.71)

The first equation implies that either both eigenvalues are positive or the smaller one
is less then zero. The second equation implies that

If β1A2 > α2, then λ1 ∈ (1,+∞), λ2 ∈ (0,−1);
If β1A2 < α2, then λ1 ∈ (1,+∞), λ2 ∈ (−1, 0),

(3.72)

establishing the proof of theorem.

4. Global Behavior

Theorem 4.1. Assume

A2 < γ2. (4.1)

Then system (1.1) has a unique equilibrium point E1 which is a saddle point. Furthermore, there
exists the global stable manifold Ws(E1) that separates the positive quadrant so that all orbits below
this manifold are asymptotic to (∞, 0), and all orbits above this manifold are asymptotic to (0,∞). All
orbits that start on Ws(E1) are attracted to E1. The global unstable manifold Wu(E1) is the graph of
a continuous, unbounded, strictly decreasing function.

Proof. The existence of the global stable manifold Ws(E1) with the stated properties follows
from Theorems 1.5, 1.7, and 1.8 and Lemmas 2.1 and 2.2.

Theorem 4.2. Assume

A2 > γ2, β1
(
A2 − γ2

)
< α2 − α1,

[
(α1 − α2) + β1

(
A2 − γ2

)]2 − 4α1β1
(
A2 − γ2

)
> 0. (4.2)

Then system (1.1) has two equilibrium points: E1 which is a saddle point and E2 which is a sink.
Furthermore, there exists the global stable manifold Ws(E1) that separates the positive quadrant so
that all orbits below this manifold are asymptotic to (∞, 0), and all orbits above this manifold are
attracted to equilibrium E2. All orbits that start on Ws(E1) are attracted to E1. The global unstable
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manifoldWu(E1) is the graph of a continuous, unbounded, strictly decreasing function with end point
E2.

Proof. The existence of the global stable manifold Ws(E2) with the stated properties follows
from Theorems 1.5, 1.7, and 1.8 and Lemmas 2.1 and 2.2.

Theorem 4.3. Assume

A2 > γ2, β1
(
A2 − γ2

)
< α2 − α1,

[
(α1 − α2) + β1

(
A2 − γ2

)]2 − 4α1β1
(
A2 − γ2

)
= 0. (4.3)

Then system (1.1) has a unique equilibrium E2 = E3 which is non-hyperbolic. The sequences
{x2n}, {x2n+1}, {y2n}, and {y2n+1} are eventually monotonic. Every solution that starts in Q4(E2)
is asymptotic to (∞, 0), and every solution that starts in Q2(E2) is asymptotic to the equilibrium E2.
Furthermore, there exists the global stable manifold Ws(E2) that separates the positive quadrant into
three invariant regions, so that all orbits below this manifold are asymptotic to (∞, 0), and all orbits
that start above this manifold are attracted to the equilibrium E2. All orbits that start on Ws(E2) are
attracted to E2.

Proof. The existence of the global stable manifold Ws(E2) with the stated properties follows
from Theorems 1.5, 1.7, and 1.8 and Lemmas 2.1 and 2.2.

First we prove that for all points M(x) = (x, (α1/x) + β1), x /= 0, the following holds:

M(x)�seT(M(x)). (4.4)

Observe that M(x) is actually an arbitrary point on the curve x = (α1 + β1x)/y, which
represents one of two equilibrium curves for system (1.1).

Indeed,

T
(
x, (α1/x) + β1

)
=

(

x,
α2 + γ2

(
(α1/x) + β1

)

A2 + x

)

=

(

x,
α2x + γ2

(
α1 + β1x

)

(A2 + x)x

)

.

(4.5)

Now we have

(
x,

α1

x
+ β1

)
�se

(

x,
α2x + γ2

(
α1 + β1x

)

x(A2 + x)

)

⇐⇒ x ≤ x,
α1 + β1x

x
≥ α2x + γ2

(
α1 + β1x

)

x(A2 + x)
.

(4.6)

The last inequality is equivalent to

(
α1 + β1x

)
(A2 + x) ≥ α2x + γ2α1 + β1γ2x. (4.7)
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This is equivalent to

β1x
2 + x

(
α1 − α2 + β1

(
A2 − γ2

))
+ α1

(
A2 − γ2

) ≥ 0, (4.8)

which always holds since the discriminant of the quadratic polynomial on the left-hand side
is zero.

Note that M(x)�seE2, and M(x) = E2 for x = ((α2 − α1) − β1(A2 − γ2))/2β1.
Monotonicity of the map T implies

Tn(M(x))�seT
n+1(M(x)). (4.9)

Set Tn(M(x)) = {(xn, yn)}. Then the sequence {xn} is increasing and bounded by
x-coordinate of the equilibrium, and the sequence {yn} is decreasing and bounded by
y-coordinate of the equilibrium. This implies that {(xn, yn)} converges to the equilibrium
as n → ∞.

Now, take any point A(x, y) ∈ Q2(E2). Then there exists point M(x∗) such that
M(x∗)�seA(x, y)�seE2. By using monotonicity of the map T,we obtain

Tn(M(x∗))�seT
n(A

(
x, y

))�seE2. (4.10)

Letting n → ∞ in (4.10), we have

lim
n→∞

Tn(A
(
x, y

))
= E2. (4.11)

Now, we consider Q4(E2). By choosing M(x) such that E2�seM(x), we note that

E2�seM(x)�seT(M(x)). (4.12)

By using monotonicity of the map T,we have

Tn(M(x))�seT
n+1(M(x)). (4.13)

Set Tn(M(x)) = {(xn, yn)}. Then the sequence {xn} is increasing, and the sequence
{yn} is decreasing and bounded by y-coordinate of equilibrium and has to converge. If
{xn} converges, then {(xn, yn)} has to converge to the equilibrium, which is impossible. This
implies that xn → ∞, n → ∞. Since yn+1 = (α2 + γ2yn)/(A2 + xn), then limn→∞yn = 0.

Now, take any point B(x, y) in Q4(E2). Then there is point M(x∗∗) such that
E2�seM(x∗∗)�seB(x, y). Using monotonicity of the map T,we have

E2�seT
n(M(x∗∗))�seT

n(B
(
x, y

))
. (4.14)

Since, Tn(M(x∗∗)) is asymptotic to (∞, 0), then limn→∞Tn(B(x, y)) = (∞, 0).
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Theorem 4.4. Assume

A2 = γ2, α2 > α1. (4.15)

Then system (1.1) has a unique equilibrium E which is a saddle point. Furthermore, there exists the
global stable manifoldWs(E) that separates the positive quadrant so that all orbits below this manifold
are asymptotic to (∞, 0), and all orbits above this manifold are asymptotic to (0,∞). All orbits that
start on Ws(E) are attracted to E. The global stable manifold Wu(E) is the graph of a continuous,
unbounded, strictly increasing function.

Proof. The existence of the global stable manifold Ws(E) with the stated properties follows
from Theorems 1.5, 1.7, and 1.8 and Lemmas 2.1 and 2.2.

Theorem 4.5. Assume

A2 > γ2,
[
(α1 − α2) + β1

(
A2 − γ2

)]2 − 4α1β1
(
A2 − γ2

)
< 0, (4.16)

A2 > γ2,
[
(α1 − α2) + β1

(
A2 − γ2

)]2 − 4α1β1
(
A2 − γ2

) ≥ 0, β1
(
A2 − γ2

)
> α2 − α1 (4.17)

or

A2 = γ2, α2 ≤ α1. (4.18)

Then system (1.1) does not possess an equilibrium point. Its global behavior is described as
follows:

xn −→ ∞, yn −→ 0, n −→ ∞. (4.19)

Proof. If the conditions of this theorem are satisfied, then (2.6) implies that there is no real (if
the first condition of this theorem is satisfied) or positive equilibrium points (if the second
condition of this theorem is satisfied).

Consider the second equation of system (1.1). That is,

yn+1 =
α2 + γ2yn

A2 + xn
. (4.20)

Note the following

yn+1 ≤ α2

A2
+

γ2
A2

yn. (4.21)

Now, consider equation

un+1 −
γ2
A2

un =
α2

A2
. (4.22)
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Its solution is given by

un = c

(
γ2
A2

)n

+
α2

A2 − γ2
. (4.23)

Since A2 > γ2, then letting n → ∞we obtain that un → 0. Now, (4.21) implies

yn ≤ α2

A2 − γ2
+ ε, n −→ ∞. (4.24)

This means that sequence {yn} is bounded for A2 > γ2.
In order to prove the global behavior in this case, we decompose System (1.1) into the

system of even-indexed and odd-indexed terms as

x2n+1 =
α1 + β1x2n

y2n
,

x2n =
α1 + β1x2n−1

y2n−1
,

y2n+1 =
α2 + γ2y2n

A2 + x2n
,

y2n =
α2 + γ2y2n−1
A2 + x2n−1

,

(4.25)

for n = 1, 2, . . ..
Lemma 2.1 implies that subsequences {x2n+1}, {x2n}, {y2n+1}, and {y2n} are eventu-

ally monotone.
Since sequence {yn} is bounded, then the subsequences {y2n+1} and {y2n} must

converge. If the sequences {x2n+1} and {x2n} would converge to finite numbers, then
the solution of (1.1) would converge to the period-two solution, which is impossible by
Lemma 2.2. Thus at least one of the subsequences {x2n+1} and {x2n} tends to +∞, n → ∞.
Assume that x2n → ∞ as n → ∞. In view of third equation of (4.25), y2n+1 → 0, and in
view of first equation of (4.25), x2n+1 → ∞ which by fourth equation of (4.25) implies that
y2n+1 → 0 as n → ∞.

Now, we prove the case when A2 = γ2 and α2 = α1.
In this case System (1.1) becomes

xn+1 =
α1 + β1xn

yn
,

yn+1 =
α1 +A2yn

A2 + xn
.

(4.26)

The map T associated to System (4.26) is given by

T
(
x, y

)
=
(
α1 + β1x

y
,
α1 +A2y

A2 + x

)
. (4.27)
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Equilibrium curves C1 and C2 can be given explicitly as the following functions of x :

C1 : y1 =
α1

x
+ β1,

C2 : y2 =
α1

x
.

(4.28)

It is obvious that these two curves do not intersect, which means that System (4.26)
does not possess an equilibrium point.

Similarly, as in the proof of Theorem 4.3, for all points C1(x) = (x, (α1/x) + β1), x /= 0
the following holds:

C1(x) � T(C1(x)). (4.29)

Indeed,

T
(
x,

α1

x
+ β1

)
=

⎛

⎜
⎝x,

α1 +A2

(α1

x
+ β1

)

A2 + x

⎞

⎟
⎠

=

(

x,
α1x +A2

(
α1 + β1x

)

(A2 + x)x

)

.

(4.30)

Now, we have

(
x,

α1

x
+ β1

)
�se

(

x,
α1x +A2

(
α1 + β1x

)

(A2 + x)x

)

⇐⇒ x ≤ x and
α1

x
+ β1 ≥

α1x +A2
(
α1 + β1x

)

(A2 + x)x
.

(4.31)

The last inequality is equivalent to

(
α1 + β1x

)
(A2 + x) ≥ α1x +A2α1 + β1A2x, (4.32)

which always holds.
Monotonicity of T implies

Tn(C1(x))�seT
n+1(C1(x)). (4.33)

Set Tn(C1(x)) = {(x′
n, y

′
n)}. Then the sequence {x′

n} is increasing and the sequence
{y′

n} is decreasing. Since {y′
n} is decreasing and y′

n > 0, n = 1, 2, . . . , then it has to converge.
If {x′

n} converges, then {(x′
n, y

′
n)} has to converge to the equilibrium, which is impossible.

This implies that x′
n → ∞, n → ∞. The second equation of System (4.26) implies that

y′
n → 0, n → ∞.
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Now, take any point (x, y) ∈ R
2
+. Then there exists point C1(x	) = (x	, α1/x

	) such that

C1(x	)�se
(
x, y

)
. (4.34)

Monotonicity of T implies

Tn(C1(x	)�seT
n(x, y

)
. (4.35)

Set

Tn(x, y
)
=
(
xn, yn

)
, Tn(C1(x	)) =

(
x′′
n, y

′′
n

)
. (4.36)

Then, we have

x′′
n ≤ xn,

y′′
n ≥ yn.

(4.37)

Since

x′′
n −→ ∞, y′′

n −→ 0, n −→ ∞. (4.38)

we conclude, using the inequalities (4.37), that

xn −→ ∞, yn −→ 0, n −→ ∞. (4.39)

Similarly, we can prove the case A2 = γ2, α2 < α1.

References
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