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1. Introduction and preliminaries

Recently, there has been a great interest in studying nonlinear difference equations and sys-
tems. One of the reasons for this is a necessity for some techniques which can be used in inves-
tigating equations arising in mathematical models describing real-life situations in population
biology, economy, psychology, sociology, and so forth. Such equations also appear naturally
as discrete analogues of differential equations which model various biological and economical
systems [1–4]. In this paper, we study the following discrete delay Mosquito population equation
[1]:

xn+1 =
(
αxn + βxn−1

)
e−xn , x0, x1 > 0, n = 1, 2, 3, . . . , (1.1)

where

α ∈ (0, 1), β ∈ (0,∞). (1.2)

The equilibrium points of (1.1) are solutions of the following equation

x∗ =
(
αx∗ + βx∗)e−x

∗
. (1.3)
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It is easy to see that x∗ = 0 is always a equilibrium to (1.1), and (1.1) has an unique positive
equilibrium x∗ = ln (α + β), when α + β > 1.

By the well-known linear stability theorem, it is easy to know that the zero equilibrium
of (1.1) is asymptotically stable when α + β < 1 (see [1–3]), and unstable when α + β > 1, and a
fold bifurcation takes place when α + β = 1.

But “a question ” of mathematics and biology is whether stable and sustained oscillation
possible for (1.1), when α+β > 1, increases. In the present paper, we provide a detailed analysis
of these questions. Regarding β as a parameter, by analyzing the characteristic equation and
applying the local Hopf theory (see, e.g., Kuznetsov [5] or Wiggins [6]), we investigate the
stability of the equilibria and existence of period-two bifurcation. More specifically, we give
a bifurcation set in (α, β)-plane, from which one can see how the parameters α and β affect
the dynamics of (1.1). Furthermore, using the normal form theory, we drive a formula for
determining the direction of the period-two bifurcation and the stability of the period-two
solution bifurcation from the positive equilibrium E∗.

2. Stability and existence of bifurcation

Set un = xn, vn = xn−1, then (1.1) becomes

un+1 =
(
αun + βvn

)
e−un ,

vn+1 = un,
(2.1)

which, in turn, defines the two-dimensional discrete-time dynamical system,
(
u

v

)

�−→
(
(αu + βv)e−u

u

)

= G(U,α, β), (2.2)

where U = (u, v)T . The map always has the fixed point E0 = (x0, x0)T= (0, 0)T . For α + β > 1, a
unique nontrivial positive fixed point E∗ = (x∗, x∗)T appears, with the coordinates

x∗ = ln (α + β). (2.3)

The Jacobian matrix of the map (2.2) evaluated at the nontrivial fixed point is given by

dG
(
E∗, α, β

)
=

⎛

⎝
α

α + β
− x∗ β

α + β
1 0

⎞

⎠ (2.4)

with the characteristic equation

λ2 −
(

α

α + β
− x∗

)
λ − β

α + β
= 0. (2.5)

Regarding β as a parameter, it is easy to know that the equation

ln (α + β) =
2α

α + β
(2.6)

has the unique solution β = β0(α) = β0.
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Theorem 2.1. Suppose that α + β > 1.

(1) If β < β0(α), then E∗ is asymptotically stable.

(2) If β > β0(α), then E∗ is unstable.

(3) The bifurcation of a period-two solution occurs at β = β0(α), that is, system (2.1) has a unique
period-two solution bifurcating from the equilibrium E∗.

Proof. By the linear stability theorem, we know that the necessary and sufficient condition for
both roots of (2.5) to have absolute value less than one is ln (α+β) < 2α/(α+β), that is, β < β0(α),
so the stability statements are true.

The next proof shows the existence of a period-two solution. Let un = u′
n+x

∗, vn = v′
n+x

∗,
then there are

u′
n+1 =

[
αu′

n + βv′
n + (α + β)x∗]e−x

∗−u′
n − x∗, u′

n+1 = v′
n. (2.7)

By (2.4) and (2.6), we know that when β = β0, the Jacobian of the new map at U= (0, 0)T

is

A = dG(U,α, β0) =

⎛

⎝
−α

α + β0

β0

α + β0
1 0

⎞

⎠ (2.8)

and has eigenvalues −1 and β0/(α + β0). The eigenvalue −1 whit corresponding eigenvector
Y = (1,−1)T . Note that 1 is not an eigenvalue of A.

A straightforward calculation shows that

Range (I +A) = span
(

β0

α + β0
, 1
)T

. (2.9)

Now,

d

dβ

(
dG

(
U,α, β

))∣∣
β=β0

=

⎛

⎜
⎝

−2α − β0
(
α + β0

)2

−β0
(
α + β0

)2

0 0

⎞

⎟
⎠ ,

d

dβ

(
dG

(
U,α, β

))∣∣
β=β0

Y =

(
−2α

(
α + β0

)2
, 0

)T

/∈ span
(

β0

α + β0
, 1
)T

.

(2.10)

By the period-doubling bifurcation theorem (Stuart and Humphries, [7, page 41, Theo-
rem 1.4.5]), the bifurcation of a period-two solution occurs.

3. Direction of bifurcation of the period-two cycle

In the previous section, we have shown that the system (2.1) undergoes a period-two bifur-
cation at the positive equilibrium E∗ when β = β0. In this section, by using the normal form
method for discrete system introduced by Kuznetsov [5] or Wiggins [6], we will study the
direction and stability of the period-two bifurcation.
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We can write system (2.2) as

U �−→ AU + F(U), U ∈ R2, (3.1)

where F(U) = O(‖U‖2) is a smooth function. As before, its Taylor expansion is represented in
the form

F(U) =
1
2
B(U,U) +

1
6
C(U,U,U) +O

(‖U‖4), (3.2)

where

B(U,U) =
(
b0(U,U), 0

)T
,

C(U,U,U) =
(
c0(U,U,U), 0

)T
,

(3.3)

b0(φ, ψ) =
−β0

α + β0

(
φ1ψ2 + φ2ψ1

)
,

c0(φ, ψ, η) =
α

α + β0

(
φ1ψ1η1

)
+

β0

α + β0

(
φ1ψ2η1 + φ1ψ1η2 + φ2ψ1η1

)
.

(3.4)

Let q ∈ R2 is the eigenvector of A with eigenvalue −1, let p ∈ R2 be the adjoint eigen-
vector, that is, ATp = −p, where AT is the transposed matrix. So, from (2.6), we know that
q = (1,−1)T , and p = D(1,−β0/(α + β0))

T .
Normalize p with respect to q such that 〈p, q〉 = 1, where 〈·, ·〉 is the standard scalar

product in R2, we have

q = (1,−1)T , p =
α + β0

α + 2β0

(
1,

−β0

α + β0

)T

. (3.5)

Let W su denote a linear eigenspace of A corresponding to all eigenvalues other than −1,
we know that y ∈ W su if and only if 〈p, y〉 = 0.

Now, we can decompose any vector U ∈ R2 as

U = zq + y,

z = 〈p,U〉,
y = U − 〈p,U〉q.

(3.6)

In the coordinates (z, y), the map (3.1) can be written as

z̃ = −z +
〈
p, F(zq + y)

〉
,

ỹ = Ay + F(zq + y) − 〈
p, F(zq + y)

〉
q.

(3.7)

Using Taylor expansion, we can write (3.7) in the form as following:

z̃ = −z +
1
2
σz2 + z〈α, y〉 + 1

6
δz3 + · · · ,

ỹ = Ay +
1
2
βz2 + · · · ,

(3.8)
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where z ∈ R, y ∈ R2, σ, δ ∈ R, α, β ∈ R2. σ, δ, and β are given as following:

σ =
〈
p, B(q, q)

〉
, δ =

〈
p,C(q, q, q)

〉
, β = B(q, q) − 〈

p, B(q, q)
〉
q, (3.9)

and the scalar product 〈α, y〉 can be expressed as

〈α, y〉 =
〈
p, B(q, y)

〉
. (3.10)

The center manifold of (3.8) has the representation

y = V (z) =
1
2
ω2z

2 +O
(
z3). (3.11)

Substituting this expansion into the second equation of (3.8), using the first equation and
the invariance of the center manifold, we get the following linear equation for ω2:

(A − E)ω2 + β = 0. (3.12)

The matrix (A −E) is invertible because λ = 1 is not an eigenvalue of A. Thus, (3.12) can
be solved directly giving

ω2 = −(A − E)−1β, (3.13)

and the restriction of (3.8) to the center manifold takes the form

z̃ = −z +
1
2
σz2 +

1
6
(
δ − 3

〈
p, B

(
q, (A − E)−1β

)〉)
z3 +O

(
z4). (3.14)

Using (3.9), we can write the restricted map as

z̃ = −z + a(0)z2 + b(0)z3 +O
(
z4), (3.15)

with

a(0) =
1
2
〈
p, B(q, q)

〉
,

b(0) =
1
6
〈
p,C(q, q, q)

〉 − 1
4
(〈p, B(q, q)〉)2 − 1

2
〈
p, B

(
q, (A − E)−1B(q, q)

)〉
.

(3.16)

The map (3.15) can be transformed to the normal form

ξ̃ = −ξ + c(0)ξ3 +O
(
ξ4), (3.17)

where

c(0) = a2(0) + b(0). (3.18)

Thus, the critical normal form coefficient c(0), that determines the nondegeneracy of the
flip bifurcation and allows us to predict the direction of bifurcation of the period-two cycle, is
given by the following invariant formula:

c(0) =
1
6
〈
p,C(q, q, q)

〉 − 1
2
〈
p, B

(
q, (A − E)−1B(q, q)

)〉
. (3.19)

From (3.2), (3.4), and (3.5), we get

c(0) =
α − 3β0

6(α + 2β0)
. (3.20)

Because α − 3β0 < 0, so we get c(0) < 0.
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Figure 1: x0 = 0.1, x1 = 0.1. (a) α = 0.5, β = 0.3. α + β < 1; (b) α = 0.5, β = 0.8. α + β > 1 and β < β0.
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Figure 2: α = 0.5, β = 1.264, β > β0. x0 = 0.1, x1 = 0.1.

A general result for the direction and stability of period-two bifurcation; see for example,
Wiggins [6, Chapter 3, Section 3.2, Theorem 3.2.3]. In fact, we have the following result.

Theorem 3.1. A period-two bifurcation of (2.1) at β = β0 occurs, and the unique period-two solution
bifurcating from E∗ is unstable.
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4. Numerical test

To illustrate the analytical results found, let us consider the following particular case of sys-
tem (2.1). We have carried out numerical simulations on system (2.1) using Matlab with these
parameter values, and for different β.

For instance, if the parameter values are chosen as α = 0.5 and β = 0.3, we have α+ β < 1,
then the zero solution is asymptotically stable (see Figure 1(a)). If the parameter values are
chosen as α = 0.5 and β = 0.8, we have α + β > 1, then the zero solution is unstable and a
new equilibrium appears. By Theorem 2.1 we know that if the parameter values are chosen as
β < β0, the positive equilibrium is asymptotically stable (see Figure 1(b)).

By Theorem 2.1 we know that if the parameter values are chosen as β > β0, the positive
equilibrium is asymptotically stable. If the parameter values are chosen such that β > β0, the
positive equilibrium is unstable, and the bifurcation takes place when β crosses β0(ln (α+β0) =
2α/(α + β0)) to the right. By Theorem 3.1, the bifurcating period-two solution is unstable (see
Figure 2).
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