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We investigate the periodic nature of solutions of a “max-type” difference equation sometimes re-
ferred to as the “Lyness max” equation. The equation we consider is xn+1 = max{xn,A}/xn−1 .
where A is a positive real parameter, x − 1 = Ar−1 , and x0 = Ar0 such that r−1 and r0 are positive
rational numbers. The results in this paper answer the Open Problem of Grove and Ladas (2005).
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1. Introduction

In [1], the following open problem was posed.

Open problem 1. Assume that A ∈ (0,∞), and that r1 and r2 are positive rational numbers.
Investigate the periodic nature of the solution of the difference equation

xn+1 =
max

{
xn,A

}

xn−1
, n = 0, 1, . . . , (1.1)

with initial conditions x−1 = Ar1 and x0 = Ar2 .

In [2], Janowski et al. proved the following result.

Theorem 1.1. The solution of (1.1) with initial conditions x−1 = 1, x0 = Ak/m, where (k,m) = 1 and
1 ≤ m < k, is periodic

(1) with period 5k −m if A > 1,
(2) with period 5k +m if A < 1.
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In [3], Feuer proved the following results.

Theorem 1.2. Assume that A > 1 and that {xn} is a solution of (1.1). If {xn} is periodic of period p,
then p = 5r + 4s for some positive integers r and s. In fact, there exist positive integers r1 and s1 such
that {xn} is periodic of prime period 5r1 + 4s1.

Lemma 1.3. Assume that A > 1 and that {xn} is a solution of (1.1). If {xn} is a periodic solution of
prime period p = 5r + 4s, where (r, s) = 1 and A ≤ x0 < x−1, then

x−1 = Ar/s+1. (1.2)

Theorem 1.4. Assume that A < 1 and that {xn} is a solution of (1.1). If {xn} is periodic of period p,
then p = 5r + 6s for some positive integers r and s. In fact, there exist positive integers r1 and s1 such
that {xn} is periodic of prime period 5r1 + 6s1.

Lemma 1.5. Assume that A < 1 and that {xn} is a solution of (1.1). If {xn} is a periodic solution of
prime period p = 5r + 6s, where (r, s) = 1 and x0 ≤ A < 1 < x−1, then

x0

x−1
= Ar/s+1. (1.3)

In [2], a smaller range of solutions was presented with x0 = A in the case A > 1 (and
similar results for A < 1). In [3], it was shown that any solution with initial conditions 1 < A ≤
x0 < x−1 = Ar/s+1 is periodic with period 5r + 4s (and similar results for A < 1). So, not all
possible periods were discovered in [2, 3]. We solve the open problem exactly.

In [4], it was shown that every solution of

an+2 = max {an+1, 0} − an, n = 0, 1, . . . , (1.4)

is periodic with period 5. The change of variables

xn−1 = ean for n ≥ 0 (1.5)

reduces (1.4) to (1.1) with A = 1.

2. The case A > 1

We consider (1.1). Let xn = Arn for n ≥ − 1. Then, (1.1) implies the difference equation

rn+1 = max {rn, 1} − rn−1, n = 0, 1, . . . , (2.1)

where initial conditions r−1 and r0 are positive rational numbers.
We give the following three lemmas which give us explicit solutions for some consecu-

tive terms and show us the pattern of the behavior of solutions.

Lemma 2.1. Let rn be a solution of (2.1) such that max {r−1, r0} = r > 1. Then the following state-
ments are true for some integersN ≥ − 1.
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(1) If rN = r, rN = rN+4, or rN = rN+5.

(2) If rN = rN+4 = r, rN+1 ≤ 1, and rN+5 = rN+1 + rN − 1.
(3) If rN = rN+5 = r, rN+1 > 1, and rN+6 = rN+1 − 1.

Proof. (1) Let rN = r for some integersN ≥ − 1. By computer computation, we have rN−1 < rN.
From (2.1), we get that rN+1 = rN − rN−1.

If rN+1 ≤ 1, we get

rN+2 = 1 − rN < 0, rN+3 = 1 − rN+1 < 1, rN+4 = rN. (2.2)

If rN+1 > 1, we get

rN+2 = −rN−1 < 0, rN+3 = 1 − rN+1 < 1, rN+4 = 1 + rN−1 > 1, rN+5 = rN. (2.3)

(2)-(3). From (1) and (2.1), we get immediately (2) and (3).

Clearly, there are infinite N integers which hold Lemma 2.1. The proof of the following
lemma about a number ofN integers is by induction and will be omitted.

Lemma 2.2. Let rn be a solution of (2.1) which holds Lemma 2.1. Let r = k/m, (k,m) = 1, and
N < 5k −m − 1. Then, a number ofN integers

(1) which hold 2.1(1) is k.
(2) which hold 2.1(2) is m.

(3) which hold 2.1(3) is k −m.

Remark 2.3. Apply Lemma 2.1. Firstly, from Lemma 2.1(2), we get that

rN = rN+4 = r, rN+5 = rN+1 + rN − 1. (2.4)

Then, from Lemma 2.1(3), we get

rN+9 = rN+4 = r, rN+10 = rN + rN+1 − 2. (2.5)

Now, we apply Lemma 2.1(3) firstly and then we get that

rN = rN+5 = r, rN+6 = rN+1 − 1. (2.6)

Then from Lemma 2.1(2), we get

rN+9 = rN+5 = r, rN+10 = rN + rN+1 − 2. (2.7)

It shows that the last corresponding two terms are same in each two cases. So, we can apply
Lemmas 2.1(2) or 2.1(3) firstly for getting the last two terms we need.

We give the following lemma which is taken from Lemmas 2.1, 2.2, and Remark 2.3. It
allows us to calculate more quickly terms in the solution.
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Lemma 2.4. Suppose that rn satisfies Lemma 2.1 with r = k/m, (k,m) = 1. Then the following hold.

(1) If rN = rN+4l1 = r, then rN+4l1+1 = rN + rN+4(l1−1)+1 − 1 for l1 = 1, 2, . . . , m.

(2) If rN+4m = rN+4m+5l2 = r, then rN+4m+5l2+1 = rN+4m+5(l2−1)+1 − 1 for l2 = 1, 2, . . . , k −m.

Theorem 2.5. Let rn be a solution of (2.1), where r−1, r0 are positive rational numbers. Suppose that
max {r−1, r0, 1} = k/m and (k,m) = 1. Then, rn is periodic with prime period 5k −m.

Proof. We have to show rn = rn+5k−m for all n ≥ − 1.We have r ≥ 1.
If k/m = 1,we have k = m = 1, 0 < r−1 ≤ 1, and 0 < r0 ≤ 1. Then, from (2.1) we get that

r1 = 1 − r−1, r2 = 1 − r0, r3 = r−1, r4 = r0. (2.8)

So, the proof is completed for r = 1.
We assume that k/m > 1. We will apply Lemma 2.4. From Lemma 2.4(1), we get that

rN = rN+4m, rN+4m+1 = mrN + rN+1 −m. (2.9)

Then, from Lemma 2.4(2)we get

rN+4m = rN+4m+5(k−m), rN+4m+5(k−m)+1 = mrN + rN+1 − k. (2.10)

So, at the end of this process we have rN = rN+5k−m and rN+1 = rN+5k−m+1. From rn−1 =
max {rn, 1} − rn+1, we get immediately rN = rN+5k−m for all N ≥ − 1. Also, it is easy to see
that rN+1 /= rN+4l1+1 and rN+1 /= rN+4m+5l2+1 for l1 = 1, 2, . . . , m and l2 = 1, 2, . . . , k −m − 1. It shows
that 5k −m is the smallest period. So, the proof is completed.

3. The Case A < 1

We consider (1.1). Let xn = Arn for n ≥ − 1. Then (1.1) implies the difference equation

rn+1 = min{rn, 1} − rn−1, n = 0, 1, . . . , (3.1)

where initial conditions are positive rational numbers.
The proofs of the lemmas and theorems in this section are similar to the proofs of the

corresponding lemmas and theorems in the previous section and will be omitted.

Lemma 3.1. Let rn be a solution of (3.1) such that at least one of the initial conditions is 0 < r−1 ≤ 1
or 0 < r0 ≤ 1. Letmax {r−1, r0} = r. Then the following statements are true for some integersN > 0.

(1) If rN = −r, then rN = rN+5 or rN = rN+6.

(2) If rN = rN+6 = −r, then rN+5 = rN−1 + rN + 1.
(3) If rN = rN+5 = −r, then rN+4 = rN−1 + 1.

The following lemma is generalized from Lemma 3.1.

Lemma 3.2. Let rn be a solution of (3.1) which holds Lemma 3.1. Let r = k/m and (k,m) = 1. Then,
the following hold.
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(1) If rN = rN+6l1 = −r, then rN+6l1−1 = rN + rN+6(l1−1)−1 + 1 for l1 = 1, 2, . . . , m.
(2) If rN+6m = rN+6m+5l2 = −r, then rN+6m+5l2−1 = rN+6m+5(l2−1)−1 + 1 for l2 = 1, 2, . . . , k −m.

The following result follows directly from previous lemma. We assume that at least one
of the initial conditions r−1, r0 is 0 < r−1 ≤ 1 or 0 < r0 ≤ 1. We will demonstrate what prime
period for a solution of (3.1) in these conditions.

Theorem 3.3. Let rn be a solution of (3.1). Suppose that max {r−1, r0, 1} = k/m and (k,m) = 1.
Then, rn is periodic with prime period 5k +m.

Lemma 3.4. Let rn be a solution of (3.1), where r−1 > 1 and r0 > 1. Let r−1 + r0 = r. Then the following
statements are true for some integersN > 0.

(1) If rN = 1 − r, then rN = rN+5 or rN = rN+6.
(2) If rN = rN+6 = 1 − r, then rN+5 = rN−1 + rN + 1.
(3) If rN = rN+5 = 1 − r, then rN+4 = rN−1 + 1.

Lemma 3.5. Let rn be a solution of (3.1) which holds Lemma 3.4. Let r = k/m and (k,m) = 1. Then,
the following hold.

(1) If rN = rN+6l1 = 1 − r, then rN+6l1−1 = rN + rN+6(l1−1)−1 + 1 for l1 = 1, 2, . . . , m.
(2) If rN+6m = rN+6m+5l2 = 1 − r, then rN+6m+5l2−1 = rN+6m+5(l2−1)−1 + 1 for l2 = 1, 2, . . . , k − 2m.

Theorem 3.6. Let rn be a solution of (3.1), where r−1 > 1 and r0 > 1. Let r−1 + r0 = r, r = k/m, and
(k,m) = 1. Then, rn is periodic with prime period 5k − 4m.
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