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Abstract
In this article, we are working on an SEIR-SI type model for dengue disease in order to
better observe the dynamics of infection in human beings. We calculate the basic
reproduction numberR0 and determine the equilibrium points. We then show the
existence of global stability in each of the different states depending on the value of
R0. Moreover, to support the theoretical work, we present numerical simulations
obtained using Python. We also study the sensitivity of the parameters included in
the expression ofR0 with the aim of identifying the most influential parameters in
the dynamics of dengue disease spread. Finally, we introduce two functions u and v,
respectively indicating the treatment of the infected people and any prevention
system minimizing contact between humans and the disease causing vectors. We
present the curves of the controlled system after calculating the optimal pair of
controls capable of reducing the dynamics of the disease spread, still using Python.
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1 Introduction
Dengue is a viral and vector-borne disease. It is transmitted to humans by the bite of
infected mosquitoes. Dengue is a fairly regular disease in tropical and subtropical re-
gions, especially in urban and semi-urban areas. The vector causing the dengue disease
are mosquitoes mainly of Aedes aegypti species. These mosquitoes are also vectors of
chikungunya.

According to the World Health Organization, dengue fever is manifested by a wide range
of symptoms that vary from basic to severe flu-like symptoms. Although rare, some people
develop a severe form of dengue fever disease, which is characterized by various compli-
cations such as severe nose bleeding. The severe form of dengue, associated with high
risk of death, was first discovered in 1950 during epidemics in the Philippines and Thai-
land. Nowadays, the severe form of dengue affects most countries in Africa, Asia, and
Latin America, where it has become a major cause of hospitalization and death. There are
four distinct but closely related stereotypes that cause dengue fever: DENV-1, DENV-2,
DENV-3, and DENV-4. After recovery, lifelong immunity is obtained against the type of
virus that caused the infection. A dengue patient who subsequently developed the disease
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is at high risk of developing a severe form of dengue. Dengue fever has existed in Burkina
Faso since 1925. At the time of the last epidemic in 2016, the frequency of severe forms
was 33% [20] in the city of Ouagadougou, the capital of Burkina Faso.

The mathematical modeling of phenomena is essential in the field of applied sciences.
In physics, chemistry, biology, and many other fields, mathematical models are the pillars
of a rigorous scientific study in order to make predictions about observed phenomena.
Infectious diseases are increasingly becoming a major focus of mathematical modeling.
malaria, dengue, Ebola virus disease, schistosomiasis, COVID-19 [6, 26] are among many
other infectious diseases that are regularly the subject of mathematical studies [7, 8, 17].
Guiro et al. [16] analyzed a model of dengue transmission with general incidence. Ivorra
et al. [18] worked on an optimal control model to reduce the spread of Ebola virus disease.
In the modeling of schistosomiasis, Traore et al. [5] presented a study of a discrete class
of schistosomiasis models with general delay and incidence.

There are numerous mathematical models of dengue fever [2, 3, 14–16, 21], most con-
sider the group of infected people as one simple homogeneous group. However, the in-
fected group is almost always made up of people with simple dengue disease and some
people with a more severe case of the disease. Also, several optimal control studies on
epidemiological models exist [1, 7, 8, 17]. Guiro et al. [1] developed a problem of optimal
control of an SIR epidemic model with a general incidence function and time delays, while
Kumar et al. proposed an optimal control problem of age-structured SEIRV model with
imperfect vaccination [8].

As a contribution, we work on an SEIR-SI dengue model with an infected population
made up of two groups: one group with simple infected cases and another one with hem-
orrhagic cases. The split of the infected people into two groups is necessary to better
observe the dynamics of different types of dengue patients in the population. In addi-
tion to the stability study, we perform an optimal control study on an SEIR-SI dengue
model.

In this work, we subdivide the human population into five compartments: suscepti-
ble people (SH ), exposed people (EH ), people infected with simple cases (IRH ), people in-
fected with severe cases (IDH ), cured people (RH ), and deceased people (D). We present
the dengue vectors in two classes, one of which designates the susceptible (Sv) and the
other the infected (Iv) mosquitoes.

Our paper is organized as follows. In Sect. 2, we present the system of ordinary differ-
ential equations after presenting the transfer diagram. In Sect. 3, we make sure that our
mathematical model is well defined. Indeed, we exhibit the mathematical properties of
the model, calculate the equilibrium points and the basic reproduction number. We then
study the stability of the equilibrium points in Sect. 4. We numerically simulate the model
with some real data and some estimated data using Python 3.7 in Sect. 5. We also study
the sensitivity of the parameters that appear in the expression of the basic reproduction
number R0 in Sect. 6. An optimal control work is done in Sect. 7, and we conclude in
Sect. 8.

2 Mathematical model
At a time t in each compartment �i (i ∈ N), there are input movements Ei and output
movements Si of individuals.
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Figure 1 Transfer diagram

The input movements are counted positively and the outputs negatively. The dynam-
ics in the compartment �i at time t denoted by �̇i is mathematically translated by the
equation:

�̇i(t) =
∑

j≥0

Ej
i(t) –

∑

k≥0

Sk
i (t). (1)

With the aim to well observe the dynamics of humans infectious classes, we propose the
following diagram.

In the compartment SH , for example, we have ṠH (t) = �H – βH
SH
NH

IV – μHSH . Then,
according to Fig. 1, we obtain the following system of eight differential equations:

⎧
⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎨

⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎩

ṠH(t) = �H – βH
SH
NH

IV – μHSH ,

ĖH(t) = βH
SH
NH

IV – (μH + ηH )EH ,

İRH (t) = ηH EH – (μH + γH1 )IRH ,

İDH (t) = (1 – θ )γH1 IRH – (μH + γH2 )IDH ,

ṘH(t) = θγH1 IRH + ργH2 IDH – μH RH ,

ḊH(t) = (1 – ρ)γH2 IDH ,

ṠV (t) = �V – βV
SV
NV

(IRH + IDH ) – μV SV ,

İV (t) = βV
SV
NV

(IRH + IDH ) – μV IV ,

(2)
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with the initial conditions:

SH (t0) = SH0 > 0, EH (t0) = EH0 > 0, IRH (t0) = IRH 0 > 0,

IDH (t0) = IDH 0 > 0, DH (t0) = DH0 > 0, RH (t0) = RH0 > 0,

SV (t0) = SV0 > 0, IV (t0) = IV0 > 0,

where
• SH , EH , IRH , IDH , IDH , and RH denote the number of susceptible (SH ), latent (EH ), infec-

tious (IRH , IDH ), and recovered (RH ) persons at time t. IRH and IDH designate respectively
people with classical dengue fever and those with dengue hemorrhagic fever;

• SV and IV denote the number of vectors (mosquitoes) in susceptible and infectious
states at time t, respectively;

• NH = SH + EH + IRH + IDH + RH and NV = SV + IV are the human and vector population
size at time t, respectively;

• �H is the recruitment of humans, which is assumed to be constant;
• �V is the recruitment of mosquito population, which is assumed to be constant;
• βH is the average number of humans infected by the bites of infected mosquitoes per

day and per Aedes mosquito (human.day–1.vector–1). The flow of people from the class of
susceptible humans to the exposed humans class is therefore βH

SH
NH

IV ;
• βV is the average number of Aedes mosquitoes infected by biting infected hu-

mans per day and per humans (vector.day–1.human–1). The flow of mosquitoes from the
class of susceptible mosquitoes to the infected mosquitoes class is therefore βV

SV
NV

(IRH +
IDH );

• μH is the natural mortality rate of humans (persons.day–1). This means that mortality
is not due to the disease. Thus a number μHNH of people leaves the dynamics of disease
propagation at each time t;

• μV is the mortality rate of vectors (mosquitoes.day–1). Thus a number μV NV of
mosquitoes leaves the dynamics of disease propagation at each time t. The infectious pe-
riod of mosquito individual ends with their death;

• ηH denotes the transition rate (day–1) from state EH to IRH . We therefore consider a
transfer ηHEH from EH to IRH ;

• θ is simple cases infected individuals proportion (day–1) who will be recovered (RH );
• 1 –θ is simple cases infected individuals proportion (day–1) who will be in severe cases

(IDH );
• ρ is the proportion of severe cases infected individuals who will be recovered (RH );
• 1 – ρ is the proportion of severe cases individuals who will die (DH );
• γH1 is the transition rate (day–1) from state IRH to RH with proportion θ and to IDH

with proportion 1 – θ . So θγH1 IRH leaves IRH for RH and (1 – θ )γH1 IRH leaves IRH for
IDH ;

• γH2 is the transition rate (day–1) from state IDH to RH with proportion ρ and to DH

with proportion 1 – ρ . So ργH2 IDH leaves IDH for RH and (1 – ρ)γH2 IDH leaves IDH for
DH .

Remark 2.1 In model (2) we see that the state DH does not appear in the derivative ex-
pression of any other state. The dynamics of DH does not affect the dynamics of other
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states. We can therefore reduce the mathematical study of model (2) to that of the follow-
ing one:

⎧
⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎨

⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎩

ṠH(t) = �H – βH
SH
NH

IV – μHSH

ĖH(t) = βH
SH
NH

IV – (μH + ηH )EH ,

İRH (t) = ηH EH – (μH + γH1 )IRH ,

İDH (t) = (1 – θ )γH1 IRH – (μH + γH2 )IDH ,

ṘH(t) = θγH1 IRH + ργH2 IDH – μH RH ,

ṠV (t) = �V – βV
SV
NV

(IRH + IDH ) – μV SV ,

İV (t) = βV
SV
NV

(IRH + IDH ) – μV IV .

(3)

3 Properties of the mathematical model
3.1 Positivity and boundedness of the solutions
For showing the positivity of solutions, we state the following lemma.

Lemma 3.1 [25] Suppose that 	 ⊂R×C
n is open, fi ∈ C(	,R).

If fi|xi(t)=0,Xt∈Cn
+0

≥ 0, Xt = (x1t , x2t , x3t , . . . , xnt)T , i = 1, 2, 3, . . . , n, then Cn
+0 = {φ = (φ1, . . . ,

φn) : φ ∈ C([–τ , 0],Rn
+0)} is the invariant domain of the following equations:

dxi(t)
dt

= fi(t, Xt), t ≥ σ , i = 1, 2, 3, . . . , n,

where Rn
+0 = {(x1, . . . , xn), xi ≥ 0, i = 1, 2, 3, . . . , n}.

Proposition 3.1 System (3) is invariant in R
7
+.

Proof By rewriting system (3), we get

⎧
⎨

⎩

dX
dt = B(X(t))

X0 = (SH0 , EH0 , IRH 0 , IDH 0 , RH0 , SV0 , IV0 )T ≥ 0,
(4)

where B(X(t)) = (B1(X), B2(X), . . . , B7(X))T and Bi is the right-hand side of ith (i ∈ {1, . . . , 7})
line of system (3). �

We have

dSH

dt
|SH =0 = �H ≥ 0,

dEH

dt
|EH =0 = βH

SH

NH
IV ≥ 0,

dIRH

dt
|IRH =0 = ηHEH ≥ 0,

dIDH

dt
|IDH =0 = (1 – θ )γH1 IRH ≥ 0,

dRH

dt
|RH =0 = θγH1 IRH + ργH2 IDH ≥ 0,
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dSV

dt
|SV =0 = �V ≥ 0,

dIV

dt
|IV =0 = βV

SV

NV
(IRH + IDH ) ≥ 0.

Then it follows that according to Lemma 3.1, R7
+ is an invariant set for model (3).

Proposition 3.2 System (3) solutions are bounded in the region

	 =
{

X = (SH , EH , IRH , IDH , RH , SV , IV ) ∈R
7
+/NH ≤ �H

μH
and NV ≤ �V

μV

}

with NH = SH + EH + IRH + IDH + RH and NV = SV + IV .

Proof We observe that

dSH

dt
+

dEH

dt
+

dIRH

dt
+

dIDH

dt
+

dRH

dt
= �H – μH NH – γH1 IRH – (1 – ρ)γH2 IDH ,

dNH

dt
≤ �H – μH NH ,

NH (t) ≤ NH0 e–μH t +
�H

μH

and

dSV

dt
+

dIV

dt
= �V – μV NV ,

dNV

dt
= �V – μV NV ,

NV (t) ≤ NV0 e–μV t +
�V

μV
.

Since t → +∞, we have then 0 ≤ (NH(t), NV (t)) ≤ ( �H
μH

, �V
μV

). Hence, system (3) solutions
are bounded in 	. �

3.2 Equilibrium points
In this subsection, we determine the equilibrium points of (3).

Let K = (SH , EH , IRH , IDH , RH , SV , IV ) be an equilibrium point of model (3). On the point
K it follows that

⎧
⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎨

⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎩

�H – βH
SH
NH

IV – μHSH = 0,

βH
SH
NH

IV – (μH + ηH )EH = 0,

ηHEH – (μH + γH1 )IRH = 0,

(1 – θ )γH1 IRH – (μH + γH2 )IDH = 0,

θγH1 IRH + ργH2 IDH – μHRH = 0,

�V – βV
SV
NV

(IRH + IDH ) – μV SV = 0,

βV
SV
NV

(IRH + IDH ) – μV IV = 0.

(5)
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By resolving the equations of (5), we get

SH =
�H

μH
–

(μH + ηH )(μH + γH1 )
μHηH

IRH , (6)

EH =
μH + γH1

ηH
IRH , (7)

IDH =
(1 – θ )γH1

μH + γH2
IRH , (8)

RH =
(

θγH1

μH
+

ργH2 (1 – θ )γH1

μH (μH + γH2 )

)
IRH , (9)

SV =
�V

μV
– IV . (10)

Let X0 and X∗ be respectively the disease-free equilibrium (DFE) point and the endemic
equilibrium point of model (3). At the disease-free equilibrium point, there are no infec-
tious persons (IV = IRH = IDH = 0), then X0 is given by

X0 =
(

�H

μH
, 0, 0, 0, 0,

�V

μV
, 0

)
. (11)

At the endemic equilibrium point X∗, we have

X∗ =
(
S∗

H , E∗
H , I∗

RH
, I∗

DH
, R∗

H , S∗
V , I∗

V
)
, (12)

where

S∗
H =

�H

μH
–

(μH + ηH )(μH + γH1 )
μHηH

I∗
RH

, (13)

E∗
H =

μH + γH1

ηH
I∗

RH
, (14)

I∗
DH

=
(1 – θ )γH1

μH + γH2
I∗

RH
, (15)

R∗
H =

(
θγH1

μH
+

ργH2 (1 – θ )γH1

μH (μH + γH2 )

)
I∗

RH
, (16)

S∗
V =

�V

μV
– I∗

V . (17)

3.3 Basic reproduction number R0

Proposition 3.3 The basic reproduction number R0 of model (3) is

R0 =

√
βHβV ηH

μV (μH + ηH )(μH + γH1 )

(
1 +

(1 – θ )γH1

μH + γH2

)
. (18)

Proof We use the next-generation matrix method [23] to calculate the reproduction num-
ber R0 of model (2). Let F and V , the transmission and flow matrix between the infectious
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compartments E, IRH , IDH , and IV :

F =

⎛

⎜⎜⎜⎝

F1

F2

F3

F4

⎞

⎟⎟⎟⎠ , F =

⎛

⎜⎜⎜⎜⎝

βH
SH
NH

IV

0
0

βV
SV
NV

(IRH + IDH )

⎞

⎟⎟⎟⎟⎠

and

V =

⎛

⎜⎜⎜⎝

V1

V2

V3

V4

⎞

⎟⎟⎟⎠ , V =

⎛

⎜⎜⎜⎝

–(μH + ηH )EH

ηHEH – (μH + γH1 )IRH

(1 – θ )γH1 IRH – (μH + γH2 )IDH

–μV IV

⎞

⎟⎟⎟⎠ .

On the disease-free equilibrium X0 = ( �H
μH

, 0, 0, 0, 0, �V
μV

, 0), we obtain

DF =

⎛

⎜⎜⎜⎜⎜⎜⎝

∂F1
∂EH

∂F1
∂IRH

∂F1
∂IDH

∂F1
∂IV

∂F2
∂EH

∂F2
∂IRH

∂F2
∂IDH

∂F2
∂IV

∂F3
∂EH

∂F3
∂IRH

∂F3
∂IDH

∂F3
∂IV

∂F4
∂EH

∂F4
∂IRH

∂F4
∂IDH

∂F4
∂IV

⎞

⎟⎟⎟⎟⎟⎟⎠
,

F = DF =

⎛

⎜⎜⎜⎜⎝

0 0 0 βH�H
μH NH

0 0 0 0
0 0 0 0
0 βV �V

μV NV
βV �V
μV NV

0

⎞

⎟⎟⎟⎟⎠
,

F =

⎛

⎜⎜⎜⎝

0 0 0 βH

0 0 0 0
0 0 0 0
0 βV βV 0

⎞

⎟⎟⎟⎠ ,

DV =

⎛

⎜⎜⎜⎜⎜⎜⎝

∂V1
∂EH

∂V1
∂IRH

∂V1
∂IDH

∂V1
∂IV

∂V2
∂EH

∂V2
∂IRH

∂V2
∂IDH

∂V2
∂IV

∂V3
∂EH

∂V3
∂IRH

∂V3
∂IDH

∂V3
∂IV

∂V4
∂EH

∂V4
∂IRH

∂V4
∂IDH

∂V4
∂IV

⎞

⎟⎟⎟⎟⎟⎟⎠
,

and

V = DV =

⎛

⎜⎜⎜⎝

–(μH + ηH ) 0 0 0
ηH –(μH + γH1 ) 0 0
0 (1 – θ )γH1 –(μH + γH2 ) 0
0 0 0 –μV

⎞

⎟⎟⎟⎠ .
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Then we get

V –1 = –

⎛

⎜⎜⎜⎜⎜⎜⎝

1
μH +ηH

0 0 0
ηH

(μH +ηH )(μH +γH1 )
1

μH +γH1
0 0

ηH (1–θ )γH1
(μH +ηH )(μH +γH1 )(μH +γH2 )

(1–θ )γH1
(μH +γH1 )(μH +γH2 )

1
μH +γH2

0

0 0 0 1
μV

⎞

⎟⎟⎟⎟⎟⎟⎠
,

and

–FV –1 =

⎛

⎜⎜⎜⎝

0 0 0 a1

0 0 0 0
0 0 0 0
a2 a3 a4 0

⎞

⎟⎟⎟⎠ ,

where

a1 =
βH

μV
,

a2 =
βV ηH

(μH + ηH )(μH + γH1 )
+

βV ηH (1 – θ )γH1

(μH + ηH )(μH + γH1 )(μH + γH2 )
,

a3 =
βV

(μH + γH1 )(μH + γH2 )
,

a4 =
βV

μV (μH + γH2 )
.

The basic reproduction number R0 [23] is defined as the dominant eigenvalue of the ma-
trix –FV –1. Therefore,

R2
0 = a1a2

R2
0 =

βHβV ηH

μV (μH + ηH )(μH + γH1 )

(
1 +

(1 – θ )γH1

μH + γH2

)
. �

Theorem 3.1
(i) If R0 > 1, then system (3) has a unique endemic equilibrium point denoted X∗.

(ii) If R0 < 1, then system (3) has a unique disease-free equilibrium point denoted X0.

Proof i) Let consider the continuous function ϒ(IRH , IV ) = (ϒ1(IRH , IV ),ϒ2(IRH , IV )) where

ϒ1(IRH , IV ) =
ηHβH

μH + ηH

S0
H – (EH + IRH + IDH + RH )

NV
IV – (μH + γH1 )IRH

and

ϒ2(IRH , IV ) = βV
S0

V – IV

NV

(
1 +

(1 – θ )γH1

μH + γH2

)
IRH – μV IV .

Any solution of the equation ϒ(IRH , IV ) = 0 in (0, S0
H ) × (0, S0

V ) corresponds to an equi-
librium point with SH , IRH , SV , IV > 0. We remark that ϒ(0, 0) = 0 and ϒ(S0

H , S0
V ) < 0. The
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sufficient condition for the equation ϒ(IRH , IV ) = 0 to have a solution in (0, S0
H ) × (0, S0

V ) is
the increasing of ϒ at the point (0, 0). This condition is equivalent to

⎧
⎨

⎩

∂ϒ1
∂IRH

(0, 0) + ∂ϒ1
∂IV

(0, 0) > 0
∂ϒ2
∂IRH

(0, 0) + ∂ϒ2
∂IV

(0, 0) > 0.
(19)

For all (IRH , IV ) ∈R
2
+, we have:

⎧
⎪⎪⎪⎪⎨

⎪⎪⎪⎪⎩

∂ϒ1
∂IRH

+ ∂ϒ1
∂IV

= – ηH βH
μH +ηH

S0
H –(EH +1+IDH +RH )

NH
IV – (μH + γH1 )

+ ηH βH
μH +ηH

S0
H –(EH +IRH +IDH +RH )

NH

∂ϒ2
∂IRH

+ ∂ϒ2
∂IV

= βV
S0

V –IV
NV

(1 + (1–θ )γH1
μH +γH2

) + βV
(S0

V –1)
NV

(1 + (1–θ )γH1
μH +γH2

)IRH – μV

At the point (0, 0) we get:

⎧
⎨

⎩

∂ϒ1
∂IRH

+ ∂ϒ1
∂IV

= –(μH + γH1 ) + ηH βH
μH +ηH

∂ϒ2
∂IRH

+ ∂ϒ2
∂IV

= βV (1 + (1–θ )γH1
μH +γH2

) – μV

It follows that:

∂ϒ1

∂IRH

(0, 0) +
∂ϒ1

∂IV
(0, 0) > 0 ⇔ ηHβH

(μH + ηH )
> μH + γH1 ,

∂ϒ2

∂IRH

(0, 0) +
∂ϒ2

∂IV
(0, 0) > 0 ⇔ βV

(
1 +

(1 – θ )γH1

μH + γH2

)
> μV

and

Eq. (19) ⇐⇒ βHβV ηH

μV (μH + ηH )(μH + γH1 )

(
1 +

(1 – θ )γH1

μH + γH2

)
> 1

Eq. (19) ⇐⇒R2
0 > 1.

Since R0 > 1 by hypothesis, the conditions of Eq. (19) are therefore verified. These condi-
tions implies the increasing of the function ϒ at the point (0, 0). The system (3) has then
an unique endemic equilibrium point X∗ when R0 > 1.

ii) Similarly, we obtain the uniqueness of the disease free equilibrium point X0 when
R0 < 1. Indeed, ϒ(0, 0) = 0, ϒ(S0

H , S0
V ) < 0 and R0 < 1 then the function ϒ at (0, 0) is de-

creasing on (0, S0
H ) × (0, S0

V ). We deduce that (IRH , IV ) = (0, 0) is the only zero of ϒ . This
point corresponds to the disease free equilibrium, hence the uniqueness of X0. �

4 Global stability of equilibrium points
We study here the global stability of the disease-free equilibrium X0 and the endemic equi-
librium X∗, when R0 < 1 and R0 > 1 respectively.

4.1 Global stability of disease-free equilibrium point X0

Theorem 4.1 The disease-free equilibrium X0 of system (3) is globally asymptotically sta-
ble when R0 < 1.
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Proof Let us consider the infected classes EH , IRH , IDH , and IV .
By the equations corresponding to these states, we have at X0 the following system:

⎧
⎪⎪⎪⎪⎪⎨

⎪⎪⎪⎪⎪⎩

ĖH(t) = βH
SH
NH

IV – (μH + ηH )EH ,

İRH (t) = ηH EH – (μH + γH1 )IRH ,

İDH (t) = (1 – θ )γH1 IRH – (μH + γH2 )IDH ,

İV (t) = βV
SV
NV

(IRH + IDH ) – μV IV .

(20)

System (20) can be rewritten as follows:

⎛

⎜⎜⎜⎝

EH

IRH

IDH

IV

⎞

⎟⎟⎟⎠ =

⎛

⎜⎜⎜⎜⎝

–(μH + ηH ) 0 0 βH
SH
NH

(1 – θ )ηH –(μH + γH1 ) 0 0
θηH 0 –(μH + γH2 ) 0

0 βV
SV
NV

βV
SV
NV

–μV

⎞

⎟⎟⎟⎟⎠

⎛

⎜⎜⎜⎝

ĖH

İRH

İDH

İV

⎞

⎟⎟⎟⎠ .

Since 0 < SH
NH

, SV
NV

≤ 1, we have

⎛

⎜⎜⎜⎝

ĖH

İRH

İDH

İV

⎞

⎟⎟⎟⎠ ≤

⎛

⎜⎜⎜⎝

–(μH + ηH ) 0 0 βH

(1 – θ )ηH –(μH + γH1 ) 0 0
θηH 0 –(μH + γH2 ) 0

0 βV βV –μV

⎞

⎟⎟⎟⎠

⎛

⎜⎜⎜⎝

EH

IRH

IDH

IV

⎞

⎟⎟⎟⎠

⎛

⎜⎜⎜⎝

ĖH

İRH

İDH

İV

⎞

⎟⎟⎟⎠ ≤ (A + B)

⎛

⎜⎜⎜⎝

EH

IRH

IDH

IV

⎞

⎟⎟⎟⎠ .

We consider Ȳ = (ĒH , ĪRH , ĪDH , ĪV ) and the following system:
⎛

⎜⎜⎜⎜⎝

˙̄EH
˙̄IRH˙̄IDH˙̄IV

⎞

⎟⎟⎟⎟⎠
= (A + B)

⎛

⎜⎜⎜⎝

ĒH

ĪRH

ĪDH

ĪV

⎞

⎟⎟⎟⎠ , (21)

˙̄Y = (A + B)Ȳ , (22)

where

A =

⎛

⎜⎜⎜⎝

0 0 0 βH

0 0 0 0
0 0 0 0
0 βV βV 0

⎞

⎟⎟⎟⎠ ,

B =

⎛

⎜⎜⎜⎝

–(μH + ηH ) 0 0 0
(1 – θ )ηH –(μH + γH1 ) 0 0

θηH 0 –(μH + γH2 ) 0
0 0 0 –μV

⎞

⎟⎟⎟⎠ .

We remark that F ≥ 0 and V is an asymptotic stable Metzler invertible matrix.
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Since R0 = ρ(–FV –1) < 1, using the Varga lemma in [24], we get M = F + V is asymptot-
ically stable. That means system (21) is asymptotically stable at origin (0, 0, 0, 0). In other
words,

(ĒH , ĪRH , ĪDH , ĪV ) → (0, 0, 0, 0) when t → +∞.

By applying Lakshmikantham standard comparison theorem in [9], we get

(EH , IRH , IDH , IV ) → (0, 0, 0, 0) when t → +∞.

We use EH = 0, IRH = 0, IDH = 0, IV = 0 in (3) and get SH → S0
H , RH → R0

H SV → S0
V , as well

as t → +∞. It follows that when R0 < 1,

(
SH(t), EH (t), IRH (t), IDH (t), RH(t), SV (t), IV (t)

)

→
(

�H

μH
, 0, 0, 0, 0,

�V

μV
, 0

)
as t → +∞.

X0 = ( �H
μH

, 0, 0, 0, 0, �V
μV

, 0) is therefore globally asymptotically stable for R0 < 1. �

4.2 Global stability of endemic equilibrium point X∗

Theorem 4.2 The endemic equilibrium X∗ of system (3) is globally asymptotically stable
when R0 > 1.

Lemma 4.1 Let us consider the following function g defined by

g(IRH ) = IRH – I∗
RH

– I∗
RH

ln

(
IRH

I∗
RH

)
IRH , I∗

RH
∈R

+.

We have that g(IRH ) ≥ 0.
Indeed, by limited development we get

g(IRH ) = g
(
I∗

RH

)
+ g ′(I∗

RH

)(
IRH – I∗

RH

)
+

1
2

g ′′(ξ )
(
IRH – I∗

RH

)2

=
1
2

I∗
RH

I2
RH

(
IRH – I∗

RH

)2

g(IRH ) ≥ 1
2

I∗
RH

(�H/μH )2

(
IRH – I∗

RH

)2.

Proof Consider the Lyapunov function candidate:

V
(
X(t)

)
=

(
SH – S∗

H
)

+
(
EH – E∗

H
)

+
(
IRH – I∗

RH

)

+
(
IDH – I∗

DH

)
+

(
RH – R∗

H
)

–
(
S∗

H + E∗
H + I∗

RH
+ I∗

DH
+ R∗

H
)

ln

(
SH + EH + IRH + IDH + RH

S∗
H + E∗

H + I∗
RH

+ I∗
DH

+ R∗
H

)

+
(
SV – S∗

V
)

+
(
IV – I∗

V
)

–
(
S∗

V + I∗
V
)

ln

(
SV + IV

S∗
V + I∗

V

)
.
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• We have V (X∗) = 0

V
(
X(t)

)
= (SH + EH + IRH + IDH + RH ) –

(
S∗

H + E∗
H + I∗

RH
+ I∗

DH
+ R∗

H
)

–
(
S∗

H + E∗
H + I∗

RH
+ I∗

DH
+ R∗

H
)

ln

(
SH + EH + IRH + IDH + RH

S∗
H + E∗

H + I∗
RH

+ I∗
DH

+ R∗
H

)

+ (SV + IV ) –
(
S∗

V + I∗
V
)

–
(
S∗

V + I∗
V
)

ln

(
SV + IV

S∗
V + I∗

V

)

V
(
X(t)

)
= NH – N∗

H – N∗
H ln

(
NH

N∗
H

)
+ NV – N∗

V – N∗
V ln

(
NV

N∗
V

)
.

• Using Lemma 4.1, we get V (X(t)) > 0 ∀X �= X∗.
Differentiating with respect to time yields

V̇
(
X(t)

)
=

(
1 –

N∗
H

NH

)
ṄH +

(
1 –

N∗
V

NV

)
ṄV ,

V̇
(
X(t)

)
=

(
1 –

N∗
H

NH

)(
�H – βH

SH

NH
IV – μHSH + βH

SH

NH
IV – (μH + ηH )EH + ηHEH

– (μH + γH1 )IRH + (1 – θ )γH1 IRH – (μH + γH2 )IDH

+ γH1 IRH + ργH2 IDH – μHRH

)

+
(

1 –
N∗

V
NV

)(
�V – βV

SV

NV
(IRH + IDH ) – μV SV

+ βV
SV

NV
(IRH + IDH ) – μV IV

)
,

V̇
(
X(t)

)
=

(
1 –

N∗
H

NH

)
(�H – μHNH ) +

(
1 –

N∗
V

NV

)
(�V – μV NV )

=
NH – N∗

H
NH

(
μH N∗

H – μH NH
)

+
NV – N∗

V
NV

(
μV N∗

V – μV NV
)
,

V̇
(
X(t)

)
= –μH

(NH – N∗
H)2

NH
– μV

(NV – N∗
V )2

NV
.

• We get V̇ (X(t)) ≤ 0. V (X(t)) is then a Lyapunov function. �

In addition, we get V̇ (X(t)) = 0 for SH = S∗
H , EH = E∗

H , IRH = I∗
RH

, IDH = I∗
DH

, and RH = R∗
H .

According to the LaSalle invariance theorem [10, 11], the endemic equilibrium point X∗

is globally asymptotically stable.

5 Numerical simulations and comments
In this section we have performed some numerical simulations to corroborate the theoret-
ical work in the disease-free case and in the endemic case. In our simulations, we assume
that the population is annually affected by dengue fever. This implies that the number of
hemorrhagic cases in the event of dengue is considerable.

Depending on whether the number of basic reproduction is less than or greater than
unity, the dynamics of the different states are observed using the Python version 3.7 pro-
gramming software.
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For the case of R0 < 1, some values are taken from the literature: �H = 200, �V = 100,
μH = 0.3, μV = 0.2 in [16], and ρ = 0.99 in [19]. Estimated, the values of the others param-
eters are: ηH = 0.3, θ = 0.4, γH1 = 0.5, γH2 = 0.3, βH = 0.5, and βV = 0.21.

Indeed, with the estimated value βH = 0.5, we assume that for a group of one hundred
(100) healthy people bitten by infected mosquitoes, fifty (50) will become ill with dengue
fever. Also, by βV = 0.21, we assume that for one hundred (100) healthy mosquitoes biting
infected people, twenty-one (21) mosquitoes become infected. With these different values,
we get R0 = 0.70156. The first seven curves are obtained using different initial states X0.

Comments In each of the subfigures (a)–(d) of Fig. 2 and (a)–(c) of Fig. 3, we have pre-
sented the evolution of the population of susceptible humans, exposed humans, simple
infected humans, severely infected humans, recovered humans, susceptible vectors, and
infected vectors respectively.

Also, we present the evolution of susceptible persons, simple infected persons, and se-
vere infected persons, all in the same subfigure Fig. 3(d). The evolution of infected vectors
and infected persons, both severe and simple cases, are all shown in subfigure Fig. 3(e).

In a single subfigure, namely subfigure Fig. 3(g), we show the evolution of all human
compartments. Similarly, we propose in the single curve Fig. 3(f ) the evolution of all com-
partments of vectors.

Theses curves point out that the disease tends to disappear in the population. Indeed,
the human and vector infectious classes IRH , IDH , and IV are getting closer and closer to
zero with the evolution of time t. This implies the disappearance of the disease in the
population.

Figure 2 The dynamics of humans,R0 < 1
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Figure 3 The dynamics of humans and vectors,R0 < 1

The next curves are obtained with the estimated values grouped in Table 1. We keep the
value of �H , �V , μH , μV , γH1 , γH2 and make the following changes:

ρ = 0.3 ηH = 0.8 θ = 0.1 βH = 0.41 βV = 0.51.
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Table 1 The values of parameters forR0 > 1 (R0 = 1.289688122976037)

Parameters Values Source

�H 200 [16]
�V 100 [16]
ρ 0.3 estimated
βH 0.41 estimated
βV 0.51 estimated
μV 0.2 [16]
μH 0.3 [16]
ηH 0.8 estimated
θ 0.1 estimated
γH1 0.5 estimated
γH2 0.3 estimated

Indeed, with the estimated value rho = 0.3, we assume that at the endemic equilibrium
point for ten (10) haemorrhagically infected people, three (03) will recover and seven (07)
will die of dengue. Also, with the estimated value theta = 0.1, we assume that for every ten
(10) people infected with simple dengue, one (01) will recover and nine (09) will experience
a complication. Indeed, with the estimated value rho = 0.3, we assume that at the endemic
equilibrium point for ten (10) haemorrhagically infected people, three (03) will recover
and seven (07) will die of dengue. Also, with the estimated value theta = 0.1, we assume
that for every ten (10) people infected with simple dengue, one (01) will recover and nine
(09) will experience a complication.

Comments By the curves (a)–(e) of Fig. 4 and (a)–(f ) of Fig. 5, we show respectively the
dynamics as a function of time (days) of the population of susceptible humans, exposed
humans, simple infected humans, severely infected humans, recovered humans, suscep-
tible vectors, and infected vectors respectively.

We show in the same figure, subfigure 5(c), the curve of the evolution of the simple
infected and the severe infected. Also we show in the single Fig. 5(d) the three curves
of the three infectious classes (simple infected humans, severe infected humans, infected
mosquitoes). In 5(c) and 5(d), the persistence of the three infectious classes during the
dynamics of the disease can be seen.

5(e) and 5(f ) show the dynamics of the different classes of vectors and the different
classes of humans, respectively.

Overall, the different curves show a persistence of the disease in the population when
the basic reproduction number is greater than 1.

6 Global sensitivity of R0 parameters
The normalized forward sensitivity index of R0, which depends differentiably on the pa-
rameter ζ [13, 16], is defined by

�
R0
ζ =

∂R0

∂ζ
× ζ

R0
. (23)

Recall (18) that the basic reproduction number R0 is given by

R0 =

√
βHβV ηH

μV (μH + ηH )(μH + γH1 )

(
1 +

(1 – θ )γH1

μH + γH2

)
.
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Figure 4 The dynamics of humans,R0 > 1

For each parameter ζ ofR0, thanks to (23), we evaluate the impact onR0 of the parameters
variation.

By calculation, the sensitivity indices of R0 with respect to βH , βV , μH , μV , ηH , γH1 , and
γH2 are as follows:

�
R0
βH

=
1
2

; �
R0
βV

=
1
2

;

�R0
μV

= –
1
2

; �R0
ηH

=
μH

2(μH + ηH )
;

�R0
μH

=
–μH (μH + γH2 )

2(μH + γH2 + (1 – θ )γH1 )

[
2μH + ηH + γH1

(μH + ηH )(μH + γH1 )

(
1 +

(1 – θ )γH1

μH + γH2

)

+
(1 – θ )γH1γH2

μH + γH2

]
;

�
R0
θ =

–θγH1

2(μH + γH2 + (1 – θ )γH1 )
;
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Figure 5 The dynamics of humans and vectors,R0 > 1

�R0
γH1

=
γH1

2

[
1

μH + γH1
+

1 – θ + μH + γH2

μH + γH2 + (1 – θ )γH1

]
;

�R0
γH2

=
–(1 – θ )γH1γH2

2(μH + γH2 + (1 – θ )γH2 )(μH + γH2 )
.

For the different parameters of R0, we give a value (Table 2) and obtain a numerical
value of the sensitivity index (Table 2) corresponding to the parameter value.

The diagram (Fig. 6) is a graphic illustration of the sensitivity indices we have calculated.
Indeed, by Fig. 6, we have in picture positive or negative impact of the variation of R0

parameters. The fact that �
R0
βH

= +0.5 means that 1% increase in βH , keeping all other
parameters fixed, will increase the value of R0 by 0.5%.

Also, when each of the parameters βV , ηH , and γH1 increases by 1% while the other
parameters remain constant, the value of R0 increases by 0.5%, 0.285714285%, and
0.631883655%, respectively. On the other hand, when each of the parameters μH , μV ,
θ , and γH2 increases by 1% while the other parameters remain constant, the value of R0

decreases by 0.532921918%, 0.5%, 0.00020842%, and 0.089233609%, respectively.
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Table 2 Sensitivity indices ofR0 parameters

Parameters Values Source Sensitivity index

βH 0.0005 [16] +0.5
βV 0.0021 [16] +0.5
ηH 0.3 estimated +0.285714285
μH 0.4 [16] –0.532921918
μV 0.3 [16] –0.5
θ 0.001 estimated –0.00020842
γH1 0.5 estimated +0.631883655
γH2 0.3 estimated –0.089233609

Figure 6 Sensitivity indices diagram

7 Optimal control problem
7.1 Statement of the optimal control problem
In this section, we compute the optimal function of the control (u(t), v(t)) to determine
the best measures in terms of treatment and any prevention method to minimize the pop-
ulation of infected individuals. Indeed:

• u consists of early supportive care with rehydration and symptomatic treatment. These
methods improve the patient’s survival;

• v represents any method that can reduce vector–human contact (destruction of egg
nests, mosquito nets, awareness-raising, etc.).

This optimal couple minimizes at the same time the cost of implementing the treatment
and the prevention strategies. So we consider the following optimal control problem:

J(ū, v̄) = min
{

J(u, v) : (u, v) ∈ U
}

, (24)
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where

J(u, v) =
∫ tf

0

[
IRH + IDH + IV +

A1

2
u2(t) +

A2

2
v2(t)

]
dt, (25)

subject to the equation

⎧
⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎨

⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎩

ṠH(t) = �H – βH
SH
NH

(1 – v(t))IV – μH SH ,

ĖH(t) = βH
SH
NH

(1 – v(t))IV – (μH + ηH )EH ,

İRH (t) = ηH EH – γH1 (1 – u(t))IRH – μHIRH ,

İDH (t) = (1 – u(t))[(1 – θ )γH1 IRH – γH2 IDH ] – μHIDH ,

ṘH(t) = (1 – u(t))[θγH1 IRH + ργH2 IDH ] – μHRH ,

DH(t) = (1 – u(t))(1 – ρ)γH2 IDH ,

ṠV (t) = �V – βV
SV
NV

(1 – u(t))(IRH + IDH ) – μV SV ,

İV (t) = βV
SV
NV

(1 – u(t))(IRH + IDH ) – μV IV .

(26)

The two functions u(t) and v(t) represent respectively the treatment of infected persons
and the different ways to prevent dengue fever. The use of insecticides, destruction of
egg nests, and any other measure that reduces mosquito bites are ranked in the order of
prevention methods. The functions u and v are elements of the set U defined by

	 =
{

(u, v) ∈ (
L2(0, tf )

)2 : 0 ≤ u(t), v(t) ≤ 1 ∀t ∈ [0, tf ], tf ∈R
+}

.

The two constants A1 > 0, A2 > 0 are measures of the relative cost of the interventions
associated with the controls u and v respectively.

Theorem 7.1 (Existence of optimal control) Consider the optimal control problem (24)
subject to (26). Then there exists an optimal control (ū, v̄) in 	 and a corresponding solution

X̄(t) = (S̄H , ĒH , ĪRH , ĪDH , R̄H , D̄H , S̄V , ĪV )

that minimize J(u, v) over a set of admissible controls 	.

Proof The existence of an optimal control can be obtained by using a result of Flemning
and Rishel [4]. To use an existence result, Theorem III.4.1 from Lukes [12], we must check
if the following properties are satisfied:

(1) The set of controls and the corresponding solutions are not empty.
(2) The set of admissible controls U is convex and closed in L2(0, T).
(3) The vectors field of the state system is borned by a linear control function.
(4) The integrand of objective function

f 0(X(t), u(t), v(t)
)

= IRH + IDH + IV +
A1

2
u2(t) +

A2

2
v2(t)

is convex. The Hessian matrix of f 0 on U is

H =

(
A1 0
0 A2

)
.



Yoda et al. Advances in Continuous and Discrete Models         (2024) 2024:11 Page 21 of 33

We have spec(M) = {A1, A2} ⊂R
∗
+, then f 0 is strictly convex.

(5) There exist constants k > 0 and ρ > 1 such as the integrand f 0 of objective function
verifies f 0(X(t), u(t), v(t)) ≥ k|(u, v)|ρ – k2. We have

f 0(X(t), u(t), v(t)
)

= IRH + IDH + IV +
A1

2
u2(t) +

A2

2
v2(t)

≥ 1
2

min(A1, A2)
(
u(t)2 + v(t)2) + IRH + IDH + IV

f 0(X(t), u(t), v(t)
) ≥ 1

2
min(A1, A2)

∥∥(u, v)
∥∥2

2.

We get

f 0(X(t), u(t), v(t)
) ≥ k

∥∥(u, v)
∥∥2

2

with k = 1
2 min(A1, A2). �

Proposition 7.1 (Hamiltonian characterization of minimization problem) The mini-
mization problem (24) induces to a problem of minimization of Hamiltonian H defined
by

H
(
X(t), p(t), p0, u(t), v(t)

)
= IRH + IDH + IV +

A1

2
u2(t) +

A2

2
v2(t) +

8∑

i=1

λifi, (27)

where:
• fi is the right-hand side of the differential equation of ith state variable,
• p(·) is absolutely continuous application defined to [0, tf ] −→R

n \ {0},
• p0 is a positive or null real and X(t) = (SH , EH , IRH , IDH , RH , DH , SV , IV ).

Proof Let

p0 = 1,

p(t) =
(
λ1(t),λ2(t),λ3(t), . . . ,λ8(t)

)
,

f 0(X(t), u(t), v(t)
)

= IRH (t) + IDH (t) + IV +
A1

2
u2(t) +

A2

2
v2(t),

f
(
X(t), u(t), v(t)

)
=

(
f1

(
X(t), u(t), v(t)

)
, f2

(
X(t), u(t), v(t)

)
, . . . , f8

(
X(t), u(t), v(t)

))
,

where

X(t) = (SH , EH , IRH , IDH , RH , DH , SV , IV )

and

f1
(
X(t), u(t), v(t)

)
= �H – βH

SH

NH

(
1 – v(t)

)
IV – μHSH ,

f2
(
X(t), u(t), v(t)

)
= βH

SH

NH

(
1 – v(t)

)
IV – (μH + ηH )EH ,
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f3
(
X(t), u(t), v(t)

)
= ηHEH – γH1

(
1 – u(t)

)
IRH – μHIRH ,

f4
(
X(t), u(t), v(t)

)
=

(
1 – u(t)

)[
(1 – θ )γH1 IRH – γH2 IDH

]
– μH IDH ,

f5
(
X(t), u(t), v(t)

)
=

(
1 – u(t)

)
[θγH1 IRH + ργH2 IDH ] – μHRH ,

f6
(
X(t), u(t), v(t)

)
=

(
1 – u(t)

)
(1 – ρ)γH2 IDH ,

f7
(
X(t), u(t), v(t)

)
= �V – βV

SV

NV

(
1 – u(t)

)
(IRH + IDH ) – μV SV ,

f8
(
X(t), u(t), v(t)

)
= βV

SV

NV

(
1 – u(t)

)
(IRH + IDH ) – μV IV .

Then the Hamiltonian of the optimal problem is defined by

H
(
t, X, p, p0, u, v

)
=

〈
p, f

(
X(t), u(t), v(t)

)〉
+ p0f 0(X(t), u(t), v(t)

)

=
〈
(λ1,λ2, . . . ,λ8), (f1, f2, . . . , f8)

〉
+ p0f 0

=
8∑

i=1

λifi + IRH (t) + IDH (t) + IV +
A1

2
u2(t) +

A2

2
v2(t)

H
(
t, X, p, p0, u, v

)
= IRH (t) + IDH (t) + IV +

A1

2
u2(t) +

A2

2
v2(t) +

8∑

i=1

λifi. �

Proposition 7.2 (Existence of adjoint vector p(·)) The application p(·)

p(·) : [0, tf ] −→R
8

t �−→ (
λ1(t),λ2(t),λ3(t),λ4(t),λ5(t),λ6(t),λ6(t),λ7(t),λ8(t)

)

and verify

⎧
⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎨

⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎩

λ̇1 = βH
λ1–λ2

NH
(1 – v(t))IV + λ1μH ,

λ̇2 = (λ2 – λ3)ηH + λ2μh,

λ̇3 = 1 + (1 – u(t))((λ3 – λ4(1 – θ ) – λ5θ )γH1 + (λ7 – λ8)βV
SV
NV

),

λ̇4 = 1 + (1 – u(t))((λ4 – λ5ρ – λ6(1 – ρ))γH2 + (λ7 – λ8)βV
SV
NV

),

λ̇5 = λ5μH ,

λ̇6 = 0,

λ̇7 = (λ7 – λ8)(1 – u(t))βV
1

NV
(IRH + IDH ) + λ7μV ,

λ̇8 = 1 + (1 – v(t))(λ1βH
SH
NH

– λ2βH
SH
NH

+ λ8μV ),

λi(tf ) = 0 ∀i ∈ {1, 2, . . . , 8}.

(28)

Proof According to Theorem (7.1) the couple of controls (ū, v̄) associated with the solution
X̄ minimize J(u, v) over U . According to the maximum principle of Pontryagin, there exists
an absolutely continuous application

p(·) : [0, tf ] −→R
10

t �−→ (
λ1(t),λ2(t),λ3(t),λ4(t)

)
, ,λ5(t), . . . , ,λ8(t))
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such as for almost all t ∈ [0, tf ]

ṗ(t) = –
∂H
∂X

and p(tf ) = 0.

Then

ṗ(t) = –
∂H
∂X

�⇒

⎧
⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎨

⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎩

λ̇1 = – ∂H
∂SH

,

λ̇2 = – ∂H
∂EH

,

λ̇3 = – ∂H
∂IRH

,

λ̇4 = – ∂H
∂IDH

,

λ̇5 = – ∂H
∂RH

,

λ̇6 = – ∂H
∂DH

,

λ̇7 = – ∂H
∂SV

,

λ̇8 = – ∂H
∂IV

.

(29)

Then we have

λ̇1 = –
∂H
∂SH

(
t, X, p, p0, u, v

)

= –
∂

∂SH

(
IRH (t) + IDH (t) + IV +

A1

2
u2(t) +

A2

2
v2(t) +

10∑

i=1

λifi(X, u, v)

)

= –
8∑

i=1

λi
∂fi

∂S
(X, u, v)

= –λ1
∂f1

∂SH
(X, u, v) – λ2

∂f2

∂SH
(X, u, v)

= –λ1
∂

∂SH

[
�H – βH

SH

NH

(
1 – v(t)

)
IV – μHSH

]

– λ2
∂

∂SH

[
βH

SH

NH

(
1 – v(t)

)
IV – (μH + ηH )EH

]

= –λ1

[
–βH

1
NH

(
1 – v(t)

)
IV – μH

]
– λ2

[
βH

1
NH

(
1 – v(t)

)
IV

]
,

λ̇1 = λ1μH + βH
λ1 – λ2

NH

(
1 – v(t)

)
IV .

By the same method, we have

λ̇2 = –λ2
∂f2

∂EH
– λ3

∂f3

∂EH

=
∂

∂EH
(–λ2f2 – λ3f3)

=
∂

∂EH

(
–λ2

(
βH

SH

NH

(
1 – v(t)

)
IV – (μH + ηH )EH

)

– λ3
(
ηHEH – γH1

(
1 – u(t)

)
IRH – μHIRH

))
,
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λ̇2 = λ2μH + (λ2 – λ3)ηH

λ̇3 = 1 +
∂

∂IRH

(–λ3f3 – λ4f4 – λ5f5 – λ7f7 – λ8f8)

= 1 + λ3μH +
(
1 – u(t)

)(
λ3γH1 – λ4(1 – θ )γH1 – λ5θγH1 + (λ7 – λ8)βV

SV

NV

)

λ̇3 = 1 + λ3μH +
(
1 – u(t)

)(
λ3γH1 – λ4(1 – θ )γH1 – λ5θγH1 + (λ7 – λ8)βV

SV

NV

)

λ̇4 = 1 +
∂

∂IDH

(–λ4f4 – λ5f5 – λ6f6 – λ7f7 – λ8f8)

= 1 + λ4μH +
(
1 – u(t)

)(
λ4γH2 – λ5ργH2 – λ6γH2 (1 – ρ) + (λ7 – λ8)βV

SV

NV
IRH

)

λ̇4 = 1 + λ4μH +
(
1 – u(t)

)(
λ4λH2 – λ5ρλH2 – λ6(1 – ρ)γH2 + (λ7 – λ8)βV

SV

NV
IRH

)

λ̇5 =
∂

∂RH
(–λ5f5),

λ̇5 = λ5μH

λ̇6 =
∂

∂DH
(–λ6f6),

λ̇6 = 0,

λ̇7 =
∂

∂SV
(–λ7f7 – λ8f8)

= λ7μV +
(
1 – u(t)

)(
λ7βV

1
NV

(IRH + IDH ) – λ8βV
1

NV
(IRH + IDH )

)
,

λ̇7 = λ7μV +
(
1 – u(t)

)
(λ7 – λ8)βV

1
NV

(IRH + IDH ),

λ̇8 = 1 +
∂

∂IV
(–λ1f1 – λ2f2 – λ8f8)

= 1 +
(
1 – v(t)

)(
λ1βH

SH

NH
– λ2βH

SH

NH

)
,

λ̇8 = 1 + λ8μV +
(
1 – v(t)

)
(λ1 – λ2)βH

SH

NH
.

The condition of transversality at final time tf is p(tf ) = 0. Then

p(tf ) = 0 �⇒

⎧
⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎨

⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎩

λ1(tf ) = 0,

λ2(tf ) = 0,

λ3(tf ) = 0,

λ4(tf ) = 0,

λ5(tf ) = 0,

λ6(tf ) = 0,

λ7(tf ) = 0,

λ8(tf ) = 0.

(30)
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Finally, the characteristics of the vector

p(·) : t �−→ (
λ1(t),λ2(t),λ3(t),λ4(t),λ5(t),λ6(t),λ7(t),λ8(t)

)

are

⎧
⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎨

⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎩

λ̇1 = +λ1μH + βH
λ1–λ2

NH
(1 – v(t))IV ,

λ̇2 = λ2μH + (λ2 – λ3)ηH

λ̇3 = 1 + λ3μH + (1 – u(t))(λ3γH1 – λ4(1 – θ )γH1 – λ5θγH1 + (λ7 – λ8)βV
SV
NV

),

λ̇4 = 1 + λ4μH + (1 – u(t))(λ4γH2 – λ5ργH2 – λ6γH2 (1 – ρ) + (λ7 – λ8)βV
SV
NV

),

λ̇5 = λ5μH ,

λ̇6 = 0,

λ̇7 = λ7μV + (λ7 – λ8)(1 – u(t))βV
1

NV
(IRH + IDH ),

λ̇8 = 1 + λ8μV + (λ1 – λ2)(1 – v(t))βH
SH
NH

,

λi(tf ) = 0 ∀i ∈ {1, 2, . . . , 8}.

(31)

�

Theorem 7.2 (Characterization of optimal control) The optimal control (ū, v̄) is defined
by

ū = min

(
1, max

(
0,

N(X̄(t))
A1

))
,

where

N
(
X(t)

)
= –λ3γH1 IRH + λ4

(
(1 – θ )γH1 IRH – γH2 IDH

)
+ λ5(θγH1 IRH + ργH2 IDH )

+ λ6(1 – ρ)γH2 IDH – (λ7 – λ8)βV
SV

NV
(IRH + IDH )

and

v̄ = min

(
1, max

(
0,

λ2 – λ1

A2

βHSHIV

NH

))
.

Proof To prove the characterizations of optimal control, we define the Lagrangian associ-
ated with the problem. It corresponds to Hamiltonian increased by coefficients of penalty.

L(t, X, u, v, p) = H
(
t, X, p, p0, u, v

)
+ w11u + w12(1 – u) + w21v + w22(1 – v),

where wij(t) ≥ 0 are penalization coefficients that verify

w11u(t) = w12
(
1 – u(t)

)
= 0 for the control ū

and

w21v(t) = w22
(
1 – v(t)

)
= 0 for the control v̄.
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The optimal control (ū, v̄) obtained is the resultant of application of equations of constraint

⎧
⎨

⎩

∂L
∂u = 0 in ū,
∂L
∂v = 0 in v̄,

that imply

⎧
⎨

⎩

∂H
∂u – w11 + w12 = 0 in ū,
∂H
∂v – w21 + w22 = 0 in v̄.

The partial derivative of H in relation to u is given by

∂H
∂u

(
t, X, p, p0, u, v

)

=
∂

∂u

(
IRH (t) + IDH (t) + IV +

A1

2
u2(t) +

A2

2
v2(t) +

8∑

i=1

λifi

)

= A1u +
∂

∂u
(λ3f3 + λ4f4 + λ5f5 + λ6f6 + λ7f7 + λ8f8)

∂H
∂u

(
t, X, p, p0, u, v

)

= A1u + λ3(γH1 IRH ) – λ4
(
(1 – θ )γH1 IRH – γH2 IDH

)
– λ5(θγH1 IRH + ργH2 IDH )

– λ6(1 – ρ)γH2 IDH + (λ7 – λ8)βV
SV

NV
(IRH + IDH ).

The partial derivative of H in relation to v is given by

∂H
∂v

(
t, X, p, p0, u, v

)
=

∂

∂u

(
IRH (t) + IDH (t) + IV +

A1

2
u2(t) +

A2

2
v2(t) +

8∑

i=1

λifi

)

= A2v +
∂

∂v
(λ1f1 + λ2f2)

∂H
∂v

(
t, X, p, p0, u, v

)
= A2v + (λ1 – λ2)βH

SH

NH
IV .

We obtain
⎧
⎨

⎩
A1u(t) + M(X(t)) – w11 + w12 = 0 for u = ū,

A2v(t) + (λ1 – λ2)βH
SH
NH

IV – w21 + w22 = 0 for v = v̄,

where

M
(
X(t)

)
= λ3(γH1 IRH ) – λ4

(
(1 – θ )γH1 IRH – γH2 IDH

)
– λ5(θγH1 IRH + ργH2 IDH )

– λ6(1 – ρ)γH2 IDH + (λ7 – λ8)βV
SV

NV
(IRH + IDH )

and at ū and v̄, we have:
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• A1ū(t) + M(X̄(t)) – w11 + w12 = 0

ū =
1

A1

(
–M

(
X̄(t)

)
+ w11 – w12

)

• A2v̄(t) + (λ1 – λ2)βH
S̄H
N̄H

IV + w21 – w22 = 0

v̄ =
1

A2

(
(λ2 – λ1)βH

S̄H

N̄H
ĪV – w21 + w22

)
.

Let be the set {t : 0 < ū < 1}. We have

w11ū = w12(1 – ū) ⇒ w11 = w12 = 0, therefore

ū =
–M(X̄(t))

A1
.

Let be the set {t : ū = 0}.
We have w12(1 – ū) = 0 ⇒ w12 = 0, therefore

0 = ū =
–M(X̄(t)) + w11

A1
.

Since w11 ≥ 0, then –M(X̄(t))
A1

≤ ū = 0.
Thus, on the set {t : 0 ≤ ū < 1}, ū is defined as follows:

max

(
0,

–M(X̄(t))
A1

)
.

Let be the set {t : ū = 1}. We have

w11 × 1 = w12 × 0 = 0 ⇒ w11 = 0, then 1 = ū =
–M(X̄(t)) – w12

A1
.

Since w12 ≥ 0, then –M(X̄(t))
A1

ū = 1.
On the set {t : 0 ≤ ū ≤ 1}, ū is defined by

ū = min

(
1, max

(
0,

–M(X̄(t))
A1

))
.

By the same method, we get the expression of v̄:

v̄ = min

(
1, max

(
0,

–M(X̄(t))
A1

))
.

Finally, on the set U , the optimal control (ū, v̄) is given by

ū = min

(
1, max

(
0,

N(X̄(t))
A1

))
,
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where

N
(
X(t)

)
= –M

(
X(t)

)

N
(
X(t)

)
= –λ3γH1 IRH + λ4

(
(1 – θ )γH1 IRH – γH2 IDH

)
+ λ5(θγH1 IRH + ργH2 IDH )

+ λ6(1 – ρ)γH2 IDH – (λ7 – λ8)βV
SV

NV
(IRH + IDH )

and

v̄ = min

(
1, max

(
0,

λ2 – λ1

A2

βHSHIV

NH

))
. �

7.2 Numerical simulations
In this section, the optimal system and the results of simulations obtained by Python 3.7
(see the Annex) are presented. The optimal system is given by

⎧
⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎨

⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎩

ṠH(t) = �H – βH
SH
NH

(1 – v(t))IV – μH SH ,

ĖH(t) = βH
SH
NH

(1 – v(t))IV – (μH + ηH )EH ,

İRH (t) = ηH EH – γH1 (1 – u(t))IRH – μHIRH ,

İDH (t) = (1 – u(t))[(1 – θ )γH1 IRH – γH2 IDH ] – μHIDH ,

ṘH(t) = (1 – u(t))[θγH1 IRH + ργH2 IDH ] – μHRH ,

DH(t) = (1 – u(t))(1 – ρ)γH2 IDH ,

ṠV (t) = �V – βV
SV
NV

(1 – u(t))(IRH + IDH ) – μV SV ,

İV (t) = βV
SV
NV

(1 – u(t))(IRH + IDH ) – μV IV ,

λ̇1 = βH
λ1–λ2

NH
(1 – v(t))IV + λ1μH ,

λ̇2 = (λ2 – λ3)ηH + λ2μH ,

λ̇3 = 1 + λ3μH + (1 – u(t))(λ3γH1 – λ4(1 – θ )γH1 – λ5θγH1 + (λ7 – λ8)βV
SV
NV

),

λ̇4 = 1 + λ4μH + (1 – u(t))(λ4γH2 – λ5ργH2 – λ6γH2 (1 – ρ) + (λ7 – λ8)βV
SV
NV

),

λ̇5 = λ5μH ,

λ̇6 = 0,

λ̇7 = λ7μV + (λ7 – λ8)(1 – u(t))βV
1

NV
(IRH + IDH ),

λ̇8 = 1 + λ8μV + (λ1 – λ2)(1 – v(t))βH
SH
NH

,

λi(tf ) = 0 ∀i ∈ {1, 2, . . . , 8},
ū = min(1, max(0, N(X̄(t))

A1
)),

v̄ = min(1, max(0, λ2–λ1
A2

βH SH IV
NH

))

(32)

with

N
(
X(t)

)
= –λ3γH1 IRH + λ4

(
(1 – θ )γH1 IRH – γH2 IDH

)
+ λ5(θγH1 IRH + ργH2 IDH )

+ λ6(1 – ρ)γH2 IDH – (λ7 – λ8)βV
SV

NV
(IRH + IDH ).

With the values of Table 1, we obtain the following curves:
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Figure 7 Humans and vectors dynamics with and without control (u(t);v(t))

Comments Figure 7(a) shows in orange color the susceptible population when there are
treatment and prevention (u �= 0 and v �= 0) and in blue color the susceptible population
when there are no treatment and prevention (u = 0 and v = 0). This shows that without
treatment and prevention people leave the susceptible compartment for the exposed com-
partment.
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Figure 8 Dynamics of infectious classes with v(t) and with (u(t);v(t))

Figures 7(c), 7(d), and 7(h) represent the different dynamics of infected vectors and in-
fected people. The orange color curves represent the dynamics when there are treatment
and prevention (u �= 0 and v �= 0) and the blue curve represents the population when there
are no vaccination and treatment (u = 0 and v = 0). This shows that without prevention
and treatment infected individuals will be more numerous.

Again using the data in Table 1, we present the curves expressing the dynamics in the
different infectious classes.

Curves (a), (b), and (c) in Fig. 8 show the population dynamics of infected humans in sin-
gle cases, infected humans in severe cases, and infected vectors (mosquitoes) as a function
of time, respectively.

In each of the three subfigures, it can be seen that when prevention alone is applied,
the trend is the same as when both prevention and treatment are applied. In fact, when
prevention alone is applied, the infectious classes tend towards zero after a certain time.
When treatment is added, the number of individuals in the infectious classes continues to
tend towards zero, but after a shorter time.

8 Conclusion
In our paper, we worked on an SEIR-SI model of dengue fever in a population regularly
affected by this disease. There are considerable hemorrhagic cases of the dengue disease
because of the regularity of the disease. We took full account of the hemorrhagic cases
of dengue denoted by IDH . We have shown the global stability of the equilibrium points
depending on whether R0 is greater or less than 1. Moreover, to corroborate the theo-
retical study, we presented numerical simulations using Python. We then calculated the
sensitivity of each parameter affecting the basic reproduction number R0. We found that
a variation of +1% in each of the parameters βH , βV , ηH , γH1 separately increases the value
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of R0 and a variation of +1% in each of the parameters μH , μV , θ , γH2 decreases the value
of R0. Also, γH1 and μH when varied by +1% are respectively the parameters that have
the most positive and negative influence on the value of R0. Finally, optimal control work
was carried out for finding how the optimal pair (u(t); v(t)) is able to drastically reduce the
spread of dengue in a population regularly affected by this disease.

Annex
Numerical method with python 3.7
In first, we implement (2), the model without control by using the function odeint of
PYTHON. We obtain for example

def F0(Y , t) :

f = [f1,

f2,

f3,

f4,

f5,

f6,

f7,

f8, ]

return f

sol = odeint(F0, Y 0, T),

where Y0 is the initial condition and T is the time.
Secondly, we implement model (32) by using the method of shoot [22]. Let

⎧
⎨

⎩
y = (SH , EH , IRH , IDH , RH , SV , IV ,λ1, . . . ,λ8)

y = (y1, y2, y3, y4, y5, y6, y7, y8, y9, y10, . . . , y15, y16).
(33)

By re-writing model (32), we get the two point boundary value problem

⎧
⎪⎪⎨

⎪⎪⎩

ẏ(t) = F(t, y(t)),

y(0) = (S0
H , E0

H , I0
RH

, I0
DH

, R0
HD0

H , S0
V , I0

V ,λ1(0), . . . ,λ8(0))) = y0,

y(T) = (SH(T), EH (T), . . . , DH (T), SV (T), IV (T), 0, . . . , 0) = yT .

(34)

The solution of (34) depends on T and y0, and is written y(T , y0). At final time T ,

y
(
T , y0) = y(T), (35)

and this means

y
(
T , y0) – y(T) = 0. (36)



Yoda et al. Advances in Continuous and Discrete Models         (2024) 2024:11 Page 32 of 33

By posing G(y0) = y(T , y0) – y(T), the problem becomes:
Find y0 such that

G
(
y0) = 0. (37)

Solving the system of differential equations (34) is the same as finding a zero of the firing
function G(y0). This is possible with the fsolve function in Python.
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