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Abstract
In this paper, we study the solvability and generalized Ulam–Hyers (UH) stability of a
nonlinear Atangana–Baleanu–Caputo (ABC) fractional coupled system with a
Laplacian operator and impulses. First, this system becomes a nonimpulsive system
by applying an appropriate transformation. Secondly, the existence and uniqueness
of the solution are obtained by an F-contractive operator and a fixed-point theorem
on metric space. Simultaneously, the generalized UH-stability is established based on
nonlinear analysis methods. Thirdly, a novel numerical simulation algorithm is
provided. Finally, an example is used to illustrate the correctness and availability of the
main results. Our study is a beneficial exploration of the dynamic properties of
viscoelastic turbulence problems.
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1 Introduction
In 2016, Atangana and Baleanu [8] first put forward a new fractional derivative in the Ca-
puto sense. It is referred to as an ABC-fractional derivative. Compared to both Riemann–
Liouville and Caputo fractional derivatives, ABC-fractional derivatives employ a spe-
cial Mittag–Leffler function as the integral kernel to avoid singularity, which can be ex-
plained by the analysis below. Let the order of the derivatives be 0 < δ < 1, then the
integral kernel Eδ[– δ

1–δ
(t – s)] =

∑∞
k=0

[– δ
1–δ

(t–s)]k

�(δk+1) of the ABC-fractional derivatives sat-
isfies Eδ[– δ

1–δ
(t – s)]→1 (nonsingular), as s→t. However, the integral kernel (t – s)–δ

of both Riemann–Liouville and Caputo fractional derivatives agrees with (t – s)–δ→∞
(singular), as s→t. Therefore, the study of ABC-fractional differential systems has be-
come one of the hot topics in recent years. For example, some scholars have studied
their theoretical problems such as research methods [18, 27], important inequalities [19],
qualitative analysis [5], chaos analysis [9], and numerical approximations [49]. Other re-
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searchers applied ABC-fractional calculus theory to explore some application problems
[1, 3, 10–12, 17, 20, 25, 28, 36, 38, 44]. Specifically, Zhao et al. conducted a series of stud-
ies [21, 53–55, 60, 61] on the solvability and stability of some ABC-fractional differential
systems in the past two years.

In 1983, Leibenson [31] first proposed the p-Laplacian differential equation model to
describe the turbulence problem in porous media. The most basic form of p-Laplacian
differential equation is as follows:

�p

(
X′(t)

)′ = f
(
t,X(t)

)
, t ∈ (0, T),p> 1,

where T > 0, �p : z → |z|p–2z is called the p-Laplacian operator. Its inverse is �–1
p = �q

with 1
p

+ 1
q

= 1. Due to its strong physical background and application, the p-Laplacian
differential equation has become one of the most famous and important second-order
nonlinear ordinary differential equations, and has been extensively and deeply studied.
In recent years, the nonlinear p-Laplacian fractional differential system has been favored
by some scholars. For example, Alsaedi et al. [7] discussed the multiplicity of positive so-
lutions for a nonlinear high-order Riemann–Liouville fractional integral boundary value
problem with p-Laplacian. Zhao [62] studied the existence and generalized UH-stability
of solution for a nonlinear Caputo–Fabrizio fractional coupled Laplacian equation. Rao
and Ahmadini [39] applied the Guo–Krasnosel’skii fixed-point theorem to obtain the
multiplicity of positive solutions for a system of mixed Hadamard fractional boundary
value problems with a (p1,p2)-Laplacian operator. Actually, there have been some papers
dealing with various boundary value problems (BVP) of a p-Laplacian system involving
Riemann–Liouville or Caputo or Hadamard fractional derivatives, for instance, integral
BVP [2, 6], multipoint BVP [32, 40], infinite BVP [43], singular BVP [24], periodic BVP [63].

As is well known, many evolutionary processes cannot maintain permanent stability,
and their development process always experiences brief and drastic changes. For example,
in population dynamics systems, the number of species can sharply decrease or species
may even become extinct due to factors such as earthquakes, tsunamis, epidemics, and
short-term overhunting. This type of situation is called an impulsive phenomenon. The
impulsive differential equations are one of the powerful tools for describing impulsive phe-
nomena. The theory and application of impulsive differential equations have flourished. In
recent years, fractional impulsive differential equations have remained a hot topic of inter-
est for scholars. For example, Benkerrouche et al. [13] applied two fixed-point theorems
to study the existence, uniqueness, and UH-stability of solutions to the multiterm im-
pulsive Caputo–Hadamard-type differential equations. Priya and Kaliraj [37] utilized the
Rothe’s fixed-point technique to discuss the controllability of neutral nonlinear fractional-
ordered impulsive systems. Xiao and Li [48] probed into the exponential stability of impul-
sive nonlinear conformable fractional delayed systems by the principle of comparison and
the Lyapunov function method. Phu and Hoa [35] investigated the Mittag–Leffler stability
of nonlinear uncertain dynamic systems with impulse effects with the random-order frac-
tional derivative. Sivalingam and Govindaraj [42] provided a new numerical algorithm for
the time-varying impulsive fractional differential equation. Although the impulsive phe-
nomenon can cause drastic changes to the system in a short period of time, we expect the
long-term behavior of the system to be stable. Therefore, many concepts of system stability
have been proposed. For example, the UH-stability was first proposed by Hyers and Ulam
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[22, 45] in the 1940s. Later, a series of generalizations were made on UH-stability, such
as generalized UH-stability, Ulam–Hyers–Rassias (UHR) stability, and generalized UHR-
stability. Recently, some scholars have made major achievements in the study of UH-type
stability of fractional-order differential systems. For example, Zada et al. [52] discussed the
stability of an impulsive coupled system of fractional integrodifferential equations. Yu [51]
established the β-UH-stability of a fractional differential equation with noninstantaneous
impulses. Chen and Lin [14] investigated the Ulam-type stability of impulsive and delayed
fractional differential systems. Mehmood et al. [33] dealt with the UH-type stability of
coupled ABC-fractional differential systems. Yaghoubi et al. [50] adopted the frequency-
based method to analyze the UH-type stability of polynomial fractional differential equa-
tions. Zhao [56] explored the UH- and UHR-stability of nonsingular exponential kernel
fractional Langevin systems. Some important achievements on the stability of fractional
differential equations can also be found in the literature [4, 15, 16, 26, 29, 30]. However,
it is rare to study the UH-type stability of ABC-fractional differential equations with im-
pulses because the structure of the differential equations is more complex than that of a
single differential equation. Additionally, there are no studies combining ABC-fractional
derivative with a coupled Laplacian system. Consequently, it is novel and interesting to
probe these problems.

Inspired by the aforementioned, we mainly consider the following nonlinear impulsive
ABC-fractional coupled system with a (p1,p2)-Laplacian:

⎧
⎪⎪⎪⎪⎪⎪⎪⎪⎪⎨

⎪⎪⎪⎪⎪⎪⎪⎪⎪⎩

ABCD
ν1
t+
k

[�p1 (ABCD
μ1
t+
k
X1(t))] = f1(t,X1(t),X2(t)), t ∈ (tk , tk+1] ⊂ I,

ABCD
ν2
t+
k

[�p2 (ABCD
μ2
t+
k
X2(t))] = f2(t,X1(t),X2(t)), t ∈ (tk , tk+1] ⊂ I,

X1(t+
k ) = (1 + ξ1k)X1(t–

k ), ABCD
μ1
t+
k
X1(t+

k ) = (1 + ζ1k)ABCD
μ1
t+
k–1

X1(t–
k ),

X2(t+
k ) = (1 + ξ2k)X2(t–

k ), ABCD
μ2
t+
k
X2(t+

k ) = (1 + ζ2k)ABCD
μ2
t+
k–1

X2(t–
k ),

X1(0) = w1, X2(0) = w2, ABCD
μ1
0+ X1(0) = v1, ABCD

μ2
0+ X2(0) = v2,

(1.1)

where I = [0, T], {tk}n
k=1 is an impulsive point sequence satisfying 0 = t0 < t1 < t2 < · · · < tn <

tn+1 = T ; w1, w2, v1, v2 ∈ R, ξ1k , ξ2k , ζ1k , ζ2k �= –1, 0 < μ1,μ2,ν1,ν2 ≤ 1 and p1,p2 > 1 are
some constants; ABCD∗ is the ∗-order ABC-fractional derivative; �pi (z) = |z|pi–2z (i = 1, 2),
and its inverse �–1

pi
= �qi , provided that 1

pi
+ 1

qi
= 1; fi ∈ C(I ×R

2,R) (i = 1, 2) is nonlinear;
Xi(t+

k ) and ABCD
μi
t+
k
Xi(t+

k ) represent the right limit; Xi(t–
k ) and ABCD

μi
t+
k–1

Xi(t–
k ) express the

left limit satisfying Xi(t–
k ) = Xi(tk) and ABCD

μi
t+
k–1

Xi(t–
k ) = ABCD

μi
t+
k–1

Xi(tk), i = 1, 2.

Remark 1.1 Compared to previous papers such as [23, 41, 56], our system (1.1) considers a
coupled system of equations involving impulsive effects and multiple fractional derivatives
μ1, μ2, ν1, and ν2, which includes a single equation and is more complex and difficult to
study.

The objective of this manuscript is to investigate the existence and generalized UH-
stability of solutions for system (1.1). Our main contributions include the following as-
pects. (i) As no papers have been found yet to address the nonlinear ABC-fractional dif-
ferential coupled Laplacian system with impulses, we first consider the system (1.1) to fill
this gap. (ii) The research method for impulsive differential equations is usually carried out
piecewise based on impulsive intervals. This method is relatively complex in construct-
ing the existence space of the solution and conducting prior estimation. We overcome
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this disadvantage by applying an appropriate transformation to convert the impulsive sys-
tem (1.1) into a nonimpulsive system. (iii) By constructing a F-contractive mapping and
a complete metric space, we apply a new fixed-point theorem on metric space to obtain
the existence and uniqueness of the solution of system (1.1). As the F-contraction map-
ping is an important extension of contraction mapping, it expands the scope of application
of contraction mapping methods in the study of operator equation solutions defined on
complete metric spaces. In addition, the generalized UH-stability of system (1.1) is also
established by nonlinear analysis methods. (iv) We propose a novel numerical simulation
algorithm for system (1.1).

The remaining framework of the paper is as follows. Section 2 reviews some necessary
content about ABC-fractional calculus. Based on the F-contractive mapping and a new
fixed-point theorem on a metric space, we obtain some sufficient conditions to ensure that
system (1.1) has a unique solution in Sect. 3. Section 4 further builds the generalized UH-
stability of system (1.1). In Sect. 5, we first provide a novel numerical simulation algorithm.
Then, an example is applied to verify the correctness of our theoretical results and the
effectiveness of the algorithm. A concise conclusion is made in Sect. 6.

2 Preliminaries
Definition 2.1 ([23]) For 0 < γ ≤ 1, b > a and W : [a, b]→R, the left-sided γ -order ABC-
fractional integral of W is defined by

ABCIγ
a W(t) =

1 – γ

N(γ )
W(t) +

γ

N(γ )�(γ )

∫ t

a
(t – s)γ –1 W(s) ds,

where N(α) is a normalization constant with N(0) = N(1) = 1.

Definition 2.2 ([8]) For 0 < γ ≤ 1, b > a and W∈ C1(a, b), the left-sided γ -order ABC-
fractional derivative of W is defined by

ABCD
γ

a+ W(t) =
N(γ )
1 – γ

∫ t

a
E

[

–
α

1 – α
(t – s)

]

W′(s) ds,

where Eγ (z) =
∑∞

n=0
zn

�(γ n+1) is the Mittag–Leffer special function with parameter γ .

Lemma 2.1 ([41]) If H∈ C[a, b]. then the unique solution of the following IVP

⎧
⎨

⎩

ABCD
γ

a+ W(t) = H(t), t ≥ a, 0 < γ ≤ 1,

W(a) = Wa,

is given by

W(t) = Wa +
1 – γ

N(γ )
[
H(t) – H(a)

]
+

γ

N(γ )�(γ )

∫ t

a
(t – s)γ –1H(s) ds.

Lemma 2.2 Let p > 1. The p-Laplacian operator �p(z) = |z|p–2z has the following fea-
tures:

(i) If z ≥ 0, then �p(z) = zp–1, and �p(z) is increasing with respect to z;
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(ii) For all z, w ∈ R, �p(zw) = �p(z)�p(w);
(iii) If 1

p
+ 1

q
= 1, then �q[�p(z)] = �p[�q(z)] = z, for all z ∈ R;

(iv) For all z, w ≥ 0, z ≤ w ⇔ �q(z) ≤ �q(w);
(v) 0 ≤ z ≤ �–1

q (w) ⇔ 0 ≤ �q(z) ≤ w;

(vi)
∣
∣�q(z) – �q(w)

∣
∣ ≤

⎧
⎨

⎩

(q– 1)Mq–2|z – w|, q≥ 2, 0 ≤ z, w ≤ M;

(q– 1)Mq–2|z – w|, 1 < q < 2, z, w ≥ M ≥ 0.

The fixed-point theory introduced below is an important means to solve our problem.

Definition 2.3 ([46]) A function F : (0, +∞)→R is called the Wardowski function if F
satisfies the following:

(f1) For all x, y > 0, x < y ⇒ F(x) < F(y), namely, F is strictly monotonically increasing;
(f2) limn→∞ F(xn) = –∞ ⇔ limn→∞ xn = 0, ∀xn ≥ 0;
(f3) It has α ∈ (0, 1) such that limx→0+ xαF(x) = 0.

All Wardowski functions are marked as F. Wardowski [47] replaced (f2) with (f2)′: for
any sequence {xn} ⊂ (0,∞), limn→∞ F(xn) = –∞ ⇒ limn→∞ xn = 0, and called F satisfying
(f1) and (f2)′ the semi-Wardowski function.

Definition 2.4 ([46]) Let (X,ρ) be a complete metric space, and T : X→X be an operator.
If there exist λ > 0 and F ∈ F such that

ρ(Tx, Ty) > 0 ⇒ λ + F
(
ρ(Tx, Ty)

) ≤ F
(
ρ(x, y)

)
, ∀x, y ∈ X,

then T is called a F-contraction.

Remark 2.1 It is easy to verify that F(z) = log z meets the conditions (f1)–(f3), i.e., F(z) =
log z ∈ F. Concurrently, λ + F(ρ(Tx,Ty)) ≤ F(ρ(x, y)) implies that ρ(Tx, Ty) < e–λρ(x, y),
that is, T is a Banach contraction. In other words, F-contraction is a generalization of
Banach contraction.

Lemma 2.3 ([34]) Let T : X→X be an operator defined on the complete metric space (X,ρ).
Assume that the following are true:

(a1) There exist λ > 0 and F ∈ F such that

ρ(Tx, Ty) > 0 ⇒ λ + F
(
ρ(Tx, Ty)

) ≤ F
(
S(x, y)

)
, ∀x, y ∈X,

where

S(x, y) = max

{

ρ(x, y),ρ(x, Tx),ρ(y, Ty),
ρ(x, Ty) + ρ(Tx, y)

2

}

;

(a2) One of F and T is continuous.
Then, there exists a unique x∗ ∈X such that Tx∗ = x∗.

3 Existence and uniqueness of solution
This section is devoted to proving the existence and uniqueness of the solution to system
(1.1). We first transform the impulsive system (1.1) into a nonimpulsive system. In what
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follows, let �p1 (ABCD
μ1
t+
k
X1(t)) = Y1(t), �p2 (ABCD

μ2
t+
k
X2(t)) = Y2(t), and apply Lemma 2.2,

then system (1.1) becomes the following system:

⎧
⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎨

⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎩

ABCD
μ1
t+
k
X1(t) = �q1 (Y1(t)), t ∈ (tk , tk+1] ⊂ I,

ABCD
ν1
t+
k
Y1(t) = f1(t,X1(t),X2(t)), t ∈ (tk , tk+1] ⊂ I,

ABCD
μ2
t+
k
X2(t) = �q2 (Y2(t)), t ∈ (tk , tk+1] ⊂ I,

ABCD
ν2
t+
k
Y2(t) = f2(t,X1(t),X2(t)), t ∈ (tk , tk+1] ⊂ I,

X1(t+
k ) = (1 + ξ1k)X1(t–

k ), Y1(t+
k ) = �p1 (1 + ζ1k)Y1(t–

k ),

X2(t+
k ) = (1 + ξ2k)X2(t–

k ), Y2(t+
k ) = �p2 (1 + ζ2k)Y2(t–

k ),

X1(0) = w1, X2(0) = w2, Y1(0) = �p1 (v1), Y2(0) = �p2 (v2).

(3.1)

Obviously, the solvability of system (1.1) and system (3.1) are completely equivalent.
Hence, it suffices to discuss the existence and uniqueness of the solution to system (3.1).
To this end, consider the following nonimpulsive ABC-fractional differential system:

⎧
⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎨

⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎩

ABCD
μ1
0+ W1(t) =

∏
0≤tk <t(1 + ξ1k)–1(1 + ζ1k)�q1 (V1(t)),

ABCD
ν1
0+ V1(t)

= �p1 (
∏

0≤tk <t
1

1+ζ1k
)f1(t,

∏
0≤tk <t(1 + ξ1k)W1(t),

∏
0≤tk <t(1 + ξ2k)W2(t)),

ABCD
μ2
0+ W2(t) =

∏
0≤tk <t(1 + ξ2k)–1(1 + ζ2k)�q2 (V2(t)),

ABCD
ν2
0+ V2(t)

= �p2 (
∏

0≤tk <t
1

1+ζ2k
)f2(t,

∏
0≤tk <t(1 + ξ1k)W1(t),

∏
0≤tk <t(1 + ξ2k)W2(t)),

W1(0) = w1, W2(0) = w2, V1(0) = �p1 (v1), V2(0) = �p2 (v2).

(3.2)

Lemma 3.1 For systems (3.1) and (3.2), the following assertions hold:
(b1) If Wi(t) and Vi(t) (i = 1, 2) satisfy system (3.2), then Xi(t) =

∏
0≤tk<t(1 + ξik)Wi(t)

and Yi(t) =
∏

0≤tk <t �pi (1 + ζik)Vi(t) satisfy system (3.1);
(b2) If Xi(t) and Yi(t) (i = 1, 2) satisfy system (3.1), then Wi(t) =

∏
0≤tk <t(1 + ξik)–1Xi(t)

and Vi(t) =
∏

0≤tk <t[�pi (1 + ζik)]–1Yi(t) satisfy system (3.2).

Proof Obviously, (3.1) and (3.2) have the same initial conditions. Assume that Wi(t)
and Vi(t) (i = 1, 2) satisfy system (3.2), when t ∈ (tk , tk+1) (k = 0, 1, 2, . . . , n), we substi-
tute Xi(t) =

∏
0≤tk <t(1 + ξik)Wi(t) and Yi(t) =

∏
0≤tk <t �pi (1 + ζik)Vi(t) into the first four

equations of (3.2) to obtain the first four equations of (3.1), which means that Xi(t) =
∏

0≤tk <t(1 + ξik)Wi(t) and Yi(t) =
∏

0≤tk<t �pi (1 + ζik)Vi(t) satisfy system (3.1). When t = tk

(k = 1, 2, . . . , n), we have

Xi
(
t+
k
)

=
k∏

j=1

(1 + ξij)Wi(tk), Yi
(
t+
k
)

=
k∏

j=1

�pi (1 + ζij)Vi(tk) (3.3)

and

Xi
(
t–
k
)

=
k–1∏

j=1

(1 + ξij)Wi(tk), Yi
(
t–
k
)

=
k–1∏

j=1

�pi (1 + ζij)Vi(tk). (3.4)
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Together with (3.3) and (3.4), we obtain

Xi
(
t+
k
)

= (1 + ξik)Xi
(
t–
k
)
, Yi

(
t+
k
)

= �pi (1 + ζik)Yi
(
t–
k
)
. (3.5)

Equation (3.5) is the impulsive conditions of (3.1). Thus, the assertion (b1) is true.
Next, we show that the assertion (b2) holds. In fact, when t ∈ (tk , tk+1] (k = 0, 1, 2, . . . , n),

it is same manner as the proof of (b1) that Wi(t) =
∏

0≤tk<t(1 + ξik)–1Xi(t) and Vi(t) =
∏

0≤tk <t[�pi (1 + ζik)]–1Yi(t) satisfy system (3.2). In the small neighborhood of t = tk (k =
1, 2, . . . , n), we derive from (3.5), Xi(t–

k ) = Xi(tk) and Yi(t–
k ) = Yi(tk) that

Wi
(
t–
k
)

=
k–1∏

j=1

(1 + ξij)–1Xi
(
t–
k
)

=
k–1∏

j=1

(1 + ξij)–1Xi(tk) = Wi(tk), (3.6)

Vi
(
t–
k
)

=
k–1∏

j=1

[
�pi (1 + ζij)

]–1
Yi

(
t–
k
)

=
k–1∏

j=1

[
�pi (1 + ζij)

]–1
Yi(tk) = Vi(tk), (3.7)

Wi
(
t+
k
)

=
k∏

j=1

(1 + ξij)–1Xi
(
t+
k
)

=
k–1∏

j=1

(1 + ξij)–1Xi
(
t–
k
)
, (3.8)

Vi
(
t+
k
)

=
k∏

j=1

[
�pi (1 + ζij)

]–1
Yi(tk) =

k–1∏

j=1

[
�pi (1 + ζij)

]–1
Yi

(
t–
k
)
. (3.9)

Equations (3.6)–(3.9) mean that Wi(t) and Vi(t) are continuous on [0, T]. The proof of
Lemma 3.1 is completed. �

Lemma 3.2 Assume that w1, w2, v1, v2 ∈R, ξ1k , ξ2k , ζ1k , ζ2k �= –1, 0 < μ1,μ2,ν1,ν2 ≤ 1 and
p1,p2 > 1 are some constants, f1, f2 ∈ C(I × R

2,R), Xi(t–
k ) = Xi(tk) and ABCD

μi
t+
k–1

Xi(t–
k ) =

ABCD
μi
t+
k–1

Xi(tk), i = 1, 2. Then, the nonimpulsive ABC-fractional differential system (3.2) is
equivalent to the following integral system:

⎧
⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎨

⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎩

W1(t) = w1 + 1–μ1
N(μ1) [

∏
0≤tk <t(1 + ξ1k)–1(1 + ζ1k)�q1 (h1(t, W1(t), W2(t))) – v1]

+ μ1
N(μ1)�(μ1)

∫ t
0 (t – s)μ1–1

× ∏
0≤tk <s(1 + ξ1k)–1(1 + ζ1k)�q1 (h1(s, W1(s), W2(s))) ds,

W2(t) = w2 + 1–μ2
N(μ2) [

∏
0≤tk <t(1 + ξ2k)–1(1 + ζ2k)�q2 (h2(t, W1(t), W2(t))) – v2]

+ μ2
N(μ2)�(μ2)

∫ t
0 (t – s)μ2–1

× ∏
0≤tk <s(1 + ξ2k)–1(1 + ζ2k)�q2 (h2(s, W1(s), W2(s))) ds,

(3.10)

where

h1
(
s, W1(s), W2(s)

)

= �p1 (v1) +
1 – ν1

N(ν1)

[

�p1

( ∏

0≤tk <s

1
1 + ζ1k

)

× f1

(

s,
∏

0≤tk<s

(1 + ξ1k)W1(s),
∏

0≤tk<s

(1 + ξ2k)W2(s)
)

– f1(0, w1, w2)
]
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+
ν1

N(ν1)�(ν1)

∫ s

0
(s – τ )ν1–1�p1

( ∏

0≤tk <τ

1
1 + ζ1k

)

× f1

(

τ ,
∏

0≤tk <τ

(1 + ξ1k)W1(τ ),
∏

0≤tk<τ

(1 + ξ2k)W2(τ )
)

dτ , (3.11)

h2
(
s, W1(s), W2(s)

)

= �p2 (v2) +
1 – ν2

N(ν2)

[

�p2

( ∏

0≤tk <s

1
1 + ζ2k

)

× f2

(

s,
∏

0≤tk<s

(1 + ξ1k)W1(s),
∏

0≤tk<s

(1 + ξ2k)W2(s)
)

– f2(0, w1, w2)
]

+
ν2

N(ν2)�(ν2)

∫ s

0
(s – τ )ν2–1�p2

( ∏

0≤tk <τ

1
1 + ζ2k

)

× f2

(

τ ,
∏

0≤tk <τ

(1 + ξ1k)W1(τ ),
∏

0≤tk<τ

(1 + ξ2k)W2(τ )
)

dτ . (3.12)

Proof For simplicity, we denote

g1
(
s, W(s)

)
=

∏

0≤tk <s

(1 + ξ1k)–1(1 + ζ1k)�q1

(
V1(s)

)
,

g2
(
s, W(s)

)
= �p1

( ∏

0≤tk <s

1
1 + ζ1k

)

f1

(

s,
∏

0≤tk <s

(1 + ξ1k)W1(s),
∏

0≤tk<s

(1 + ξ2k)W2(s)
)

,

g3
(
s, W(s)

)
=

∏

0≤tk <s

(1 + ξ2k)–1(1 + ζ2k)�q2

(
V2(s)

)
,

g4
(
s, W(s)

)
= �p2

( ∏

0≤tk <s

1
1 + ζ2k

)

f2

(

s,
∏

0≤tk <s

(1 + ξ1k)W1(s),
∏

0≤tk<s

(1 + ξ2k)W2(s)
)

.

If W(t) = (W1(t), V1(t), W2(t), V2(t)) ∈ [C([0, T],R)]4 is a solution of system (3.2), then it
follows from Lemma 2.1 that

W1(t) = W1(0) +
1 – μ1

N(μ1)
[
g1

(
t, W(t)

)
– h1

(
0, W(0)

)]

+
μ1

N(μ1)�(μ1)

∫ t

0
(t – s)μ1–1g1

(
s, W(s)

)
ds, (3.13)

V1(t) = V1(0) +
1 – ν1

N(ν1)
[
h2

(
t, W(t)

)
– g2

(
0, W(0)

)]

+
ν1

N(ν1)�(ν1)

∫ t

0
(t – s)ν1–1g2

(
s, W(s)

)
ds, (3.14)

W2(t) = W2(0) +
1 – μ2

N(μ2)
[
g3

(
t, W(t)

)
– h3

(
0, W(0)

)]

+
μ2

N(μ2)�(μ2)

∫ t

0
(t – s)μ2–1g3

(
s, W(s)

)
ds, (3.15)
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V2(t) = V2(0) +
1 – ν2

N(ν2)
[
g4

(
t, W(t)

)
– h4

(
0, W(0)

)]

+
ν2

N(ν2)�(ν2)

∫ t

0
(t – s)ν2–1g4

(
s, W(s)

)
ds. (3.16)

Noting that

g1
(
0, W(0)

)
= �q1

(
V1(0)

)
, g2

(
0, W(0)

)
= f1

(
0, W1(0), W2(0)

)
,

g3
(
0, W(0)

)
= �q2

(
V2(0)

)
, g4

(
0, W(0)

)
= f2

(
0, W1(0), W2(0)

)

and the initial conditions W1(0) = w1, W2(0) = w2, V1(0) = �p1 (v1), V2(0) = �p2 (v2), we
derive from (3.13)–(3.16) that

⎧
⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎨

⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎩

W1(t) = w1 + 1–μ1
N(μ1) [g1(t, W(t)) – v1]

+ μ1
N(μ1)�(μ1)

∫ t
0 (t – s)μ1–1g1(s, W(s)) ds,

V1(t) = �p1 (v1) + 1–ν1
N(ν1) [g2(t, W(t)) – f1(0, w1, w2]

+ ν1
N(ν1)�(ν1)

∫ t
0 (t – s)ν1–1g2(s, W(s)) ds,

W2(t) = w2 + 1–μ2
N(μ2) [g3(t, W(t)) – v2]

+ μ2
N(μ2)�(μ2)

∫ t
0 (t – s)μ2–1g3(s, W(s)) ds,

V2(t) = �p2 (v2) + 1–ν2
N(ν2) [g4(t, W(t)) – f2(0, w1, w2]

+ ν2
N(ν2)�(ν2)

∫ t
0 (t – s)ν2–1g4(s, W(s)) ds.

(3.17)

Conversely, if W(s) = (W1(s), V1(s), W2(s), V2(s)) ∈ [C([0, T],R)]4 is a solution of (3.17),
then it is also a solution of (3.2) because the above derivation is completely reversible. In
(3.17), substituting V1(t) and V2(t) into the first and second equations, respectively, we
obtain the integral system (3.10). The proof is completed. �

According to Lemma 3.2, let X = [C([0, T],R)]2, a metric ρ : X→X is defined by

ρ
(
W(t), W(t)

)
= max

{
sup

0≤t≤T

∣
∣W1(t) – W1(t)

∣
∣, sup

0≤t≤T

∣
∣W2(t) – W2(t)

∣
∣
}

, (3.18)

for all W(t), W(t) ∈ X, where W(t) = (W1(t), W2(t)), W(t) = (W1(t), W2(t)). It is easy to
prove that (X,ρ) is a complete metric space.

Remark 3.1 In view of Lemmas 3.1 and 3.2, if W∗(t) = (W∗
1 (t), W∗

2 (t)) ∈ X is a solution of
(3.10), then X∗(t) = (X∗

1 (t),X∗
2 (t)) is a solution of (1.1), where

X∗
1 (t) =

∏

0≤tk <t

(1 + ξ1k)W∗
1 (t), X∗

2 (t) =
∏

0≤tk <t

(1 + ξ2k)W∗
2 (t).

Based on Remark 3.1, to discuss the existence and uniqueness of the solution to sys-
tem (1.1), it suffices to conduct the same discussion on system (3.10). We first need the
following underlying assumptions:

(H1) w1 �= 0 or w2 �= 0, T , vi > 0, 0 < μi,νi ≤ 1,pi > 1, ξ1k , ξ2k , ζ1k , ζ2k > –1, fi ∈ C([0, T]×
R

2,R), i = 1, 2, k = 1, 2, . . . , n;
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(H2) For all t ∈ [0, T], u, v ∈R, there exist some constants mi, Mi > 0 such that

mi ≤ fi(t, u, v) ≤ Mi, i = 1, 2;

(H3) For all t ∈ [0, T], u, u, v, v ∈ R, there exist a constant λ > 0 and some continuous
functions Li1(t), Li2(t) ≥ 0 such that

∣
∣fi(t, u, v) – fi(t, u, v)

∣
∣ ≤ e–λ

[
Li1(t)|u – u| + Li2(t)|v – v|].

For the sake of brevity and fluency in the subsequent text, we introduce some symbols
below:

‖Li1‖T = max
0≤t≤T

Li1(t), ‖Li2‖T = max
0≤t≤T

Li2(t),

Mi = v
pi–1
i +

1 – νi

N(νi)

[

mi
∏

0≤tk<t

1
(1 + ζik)pi–1 – Mi

]

,

Mi = v
pi–1
i +

1 – νi

N(νi)

[

Mi
∏

0≤tk <t

1
(1 + ζik)pi–1 – mi

]

+
MiTνi

N(νi)�(νi)
∏

0≤tk <t

1
(1 + ζik)pi–1 ,

�i =
1

N(μi)N(νi)

[

(1 – μi)(1 – νi) +
(1 – μi)Tνi

�(νi)
+

(1 – νi)Tμi

�(μi)
+

μiνiTμi+νi

�(μi)�(νi)

]

,

�i =
∏

0≤tk <t

1 + ζik

1 + ξik

[

‖Li1‖T
∏

0≤tk <t

1 + ξ1k

(1 + ζik)pi–1 + ‖Li2‖T
∏

0≤tk <t

1 + ξ2k

(1 + ζik)pi–1

]

,

ϑi = (qi – 1)�i�iMi
qi–2, ϑi = (qi – 1)�i�iMi

qi–2, i = 1, 2.

(H4) We further assume that one of the following conditions holds: ϑ1,ϑ2 < 1 when
q1,q2 ≥ 2; or ϑ1,ϑ2 < 1 when q1 ≥ 2, 1 < q2 < 2; or ϑ1,ϑ2 < 1 when 1 < q1 <
2, q2 ≥ 2; or ξ1, ξ2 < 1 when 1 < q1,q2 < 2;

Theorem 3.1 Assume that (H1)–(H4) hold. If M1,M2 > 0, then system (3.10) has a unique
nonzero solution W∗(t) = (W∗

1 (t), W∗
2 (t)) ∈X.

Proof (W1(0), W2(0)) = (w1, w2) �= (0, 0) implies that (W1(t), W2(t)) �≡ (0, 0), ∀t ∈ [0, T]. We
introduce a complete metric space (X,ρ) defined as (3.18). According to Lemma 3.2, for
all W(t) = (W1(t), W2(t)) ∈X, we define a vector operator F: X→X as follows:

F
(
W(t)

)
=

(
F1

(
W(t)

)
,F2

(
W(t)

))
, t ∈ [0, T], (3.19)

where

F1
(
W(t)

)
= w1 +

1 – μ1

N(μ1)

[ ∏

0≤tk <t

(1 + ξ1k)–1(1 + ζ1k)�q1

(
h1

(
t, W1(t), W2(t)

))
– v1

]

+
μ1

N(μ1)�(μ1)

∫ t

0
(t – s)μ1–1

×
∏

0≤tk <s

(1 + ξ1k)–1(1 + ζ1k)�q1

(
h1

(
s, W1(s), W2(s)

))
ds, (3.20)
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F2
(
W(t)

)
= w2 +

1 – μ2

N(μ2)

[ ∏

0≤tk <t

(1 + ξ2k)–1(1 + ζ2k)�q2

(
h2

(
t, W1(t), W2(t)

))
– v2

]

+
μ2

N(μ2)�(μ2)

∫ t

0
(t – s)μ2–1

×
∏

0≤tk <s

(1 + ξ2k)–1(1 + ζ2k)�q2

(
h2

(
s, W1(s), W2(s)

))
ds, (3.21)

h1(t, W1(t), W2(t)) and h2(t, W1(t), W2(t)) are defined as (3.11) and (3.12), respectively.
For all W(t) = (W1(t), W2(t)), t ∈ [0, T], we derive from (3.11), (H1), and (H2) that

h1
(
t, W1(t), W2(t)

) ≤ v
p1–1
1 +

1 – ν1

N(ν1)

[

M1
∏

0≤tk <t

1
(1 + ζ1k)p1–1 – m1

]

+
ν1M1

N(ν1)�(ν1)
∏

0≤tk <t

1
(1 + ζ1k)p1–1

∫ t

0
(t – τ )ν1–1 dτ

≤ v
p1–1
1 +

1 – ν1

N(ν1)

[

M1
∏

0≤tk <t

1
(1 + ζ1k)p1–1 – m1

]

+
M1Tν1

N(ν1)�(ν1)
∏

0≤tk <t

1
(1 + ζ1k)p1–1 = M1 (3.22)

and

h1
(
t, W1(t), W2(t)

) ≥ v
p1–1
1 +

1 – ν1

N(ν1)

[

m1
∏

0≤tk <t

1
(1 + ζ1k)p1–1 – M1

]

= M1. (3.23)

Similarly, it follows from (3.12), (H1), and (H2) that

h2
(
t, W1(t), W2(t)

) ≤ v
p2–1
2 +

1 – ν2

N(ν2)

[

M2
∏

0≤tk <t

1
(1 + ζ2k)p2–1 – m2

]

+
M2Tν2

N(ν2)�(ν2)
∏

0≤tk <t

1
(1 + ζ2k)p2–1 = M2 (3.24)

and

h2
(
t, W1(t), W2(t)

) ≥ v
p2–1
2 +

1 – ν2

N(ν2)

[

m2
∏

0≤tk <t

1
(1 + ζ2k)p2–1 – M2

]

= M2. (3.25)

Obviously, M1 ≤ M1, M2 ≤ M2. For all W= (W1, W2), W= (W1, W2) ∈X, t ∈ [0, T], we
apply the condition (H3) to obtain the following estimate

∣
∣h1

(
t, W1(t), W2(t)

)
– h1

(
t, W1(t), W2(t)

)∣
∣

≤ 1 – ν1

N(ν1)
�p1

( ∏

0≤tk <t

1
1 + ζ1k

)∣
∣
∣
∣f1

(

t,
∏

0≤tk <t

(1 + ξ1k)W1(t),
∏

0≤tk<t

(1 + ξ2k)W2(t)
)

– f1

(

t,
∏

0≤tk <t

(1 + ξ1k)W1(t),
∏

0≤tk<t

(1 + ξ2k)W2(t)
)∣

∣
∣
∣
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+
ν1

N(ν1)�(ν1)

∫ t

0
(t – τ )ν1–1�p1

( ∏

0≤tk <τ

1
1 + ζ1k

)∣
∣
∣
∣f1

(

τ ,
∏

0≤tk <τ

(1 + ξ1k)W1(τ ),

∏

0≤tk <τ

(1 + ξ2k)W2(τ )
)

– f1

(

τ ,
∏

0≤tk <τ

(1 + ξ1k)W1(τ ),
∏

0≤tk<τ

(1 + ξ2k)W2(τ )
)∣

∣
∣
∣dτ

≤ 1 – ν1

N(ν1)
∏

0≤tk <t

1
(1 + ζ1k)p1–1

[

L11(t)
∏

0≤tk <t

(1 + ξ1k)
∣
∣W1(t) – W1(t)

∣
∣

+ L12(t)
∏

0≤tk <t

(1 + ξ2k)
∣
∣W2(t) – W2(t)

∣
∣
]

e–λ +
ν1

N(ν1)�(ν1)
∏

0≤tk <t

1
(1 + ζ1k)p1–1

×
∫ t

0
(t – τ )ν1–1

[

L11(τ )
∏

0≤tk <τ

(1 + ξ1k)
∣
∣W1(τ ) – W1(τ )

∣
∣

+ L12(τ )
∏

0≤tk <τ

(1 + ξ2k)
∣
∣W2(τ ) – W2(τ )

∣
∣
]

e–λ dτ

≤ 1 – ν1

N(ν1)
∏

0≤tk <t

1
(1 + ζ1k)p1–1

[

‖L11‖T
∏

0≤tk <t

(1 + ξ1k) × ρ(W, W)

+ ‖L12‖T
∏

0≤tk <t

(1 + ξ2k) × ρ(W, W)
]

e–λ +
ν1

N(ν1)�(ν1)
∏

0≤tk <t

1
(1 + ζ1k)p1–1

×
∫ t

0
(t – τ )ν1–1

[

‖L11‖T
∏

0≤tk <τ

(1 + ξ1k) × ρ(W, W)

+ ‖L12‖T
∏

0≤tk <τ

(1 + ξ2k) × ρ(W, W)
]

e–λ dτ

≤
[

‖L11‖T
∏

0≤tk<t

1 + ξ1k

(1 + ζ1k)p1–1 + ‖L12‖T
∏

0≤tk <t

1 + ξ2k

(1 + ζ1k)p1–1

]

×
[

1 – ν1

N(ν1)
+

Tν1

N(ν1)�(ν1)

]

e–λ × ρ(W, W). (3.26)

Similar to (3.26), we have

∣
∣h2

(
t, W1(t), W2(t)

)
– h2

(
t, W1(t), W2(t)

)∣
∣

≤
[

‖L21‖T
∏

0≤tk<t

1 + ξ1k

(1 + ζ2k)p2–1 + ‖L22‖T
∏

0≤tk <t

1 + ξ2k

(1 + ζ2k)p2–1

]

×
[

1 – ν2

N(ν2)
+

Tν2

N(ν2)�(ν2)

]

e–λ × ρ(W, W). (3.27)

According to (3.20), we obtain

∣
∣F1

(
W(t)

)
– F1

(
W(t)

)∣
∣

=
∣
∣
∣
∣
1 – μ1

N(μ1)
∏

0≤tk <t

(1 + ξ1k)–1(1 + ζ1k)
[
�q1

(
h1

(
t, W1(t), W2(t)

))

– �q1

(
h1

(
t, W1(t), W2(t)

))]
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+
μ1

N(μ1)�(μ1)

∫ t

0
(t – s)μ1–1

∏

0≤tk <s

(1 + ξ1k)–1(1 + ζ1k)

× [
�q1

(
h1

(
s, W1(s), W2(s)

))
– �q1

(
h1

(
s, W1(s), W2(s)

))]
ds

∣
∣
∣
∣

≤ 1 – μ1

N(μ1)
∏

0≤tk <t

(1 + ξ1k)–1(1 + ζ1k)
∣
∣�q1

(
h1

(
t, W1(t), W2(t)

))

– �q1

(
h1

(
t, W1(t), W2(t)

))∣
∣

+
μ1

N(μ1)�(μ1)

∫ t

0
(t – s)μ1–1

∏

0≤tk <s

(1 + ξ1k)–1(1 + ζ1k)
∣
∣�q1

(
h1

(
s, W1(s), W2(s)

))

– �q1

(
h1

(
s, W1(s), W2(s)

))∣
∣ds. (3.28)

When q1 ≥ 2, from Lemma 2.2 (vi), (3.22), (3.26), and (3.28), we yield

∣
∣F1

(
W(t)

)
– F1

(
W(t)

)∣
∣

≤ 1 – μ1

N(μ1)
∏

0≤tk <t

(1 + ξ1k)–1(1 + ζ1k)(q1 – 1)M1
q1–2

× ∣
∣h1

(
t, W1(t), W2(t)

)
– h1

(
t, W1(t), W2(t)

)∣
∣

+
μ1

N(μ1)�(μ1)
∏

0≤tk <t

(1 + ξ1k)–1(1 + ζ1k)

× (q1 – 1)M1
q1–2

∫ t

0
(t – s)μ1–1∣∣h1

(
s, W1(s), W2(s)

)
– h1

(
s, W1(s), W2(s)

)∣
∣ds

≤ 1 – μ1

N(μ1)
∏

0≤tk <t

(1 + ξ1k)–1(1 + ζ1k)(q1 – 1)M1
q1–2

[

‖L11‖T
∏

0≤tk<t

1 + ξ1k

(1 + ζ1k)p1–1

+ ‖L12‖T
∏

0≤tk <t

1 + ξ2k

(1 + ζ1k)p1–1

]

×
[

1 – ν1

N(ν1)
+

Tν1

N(ν1)�(ν1)

]

e–λ × ρ(W, W)

+
μ1

N(μ1)�(μ1)
∏

0≤tk <t

(1 + ξ1k)–1(1 + ζ1k)(q1 – 1)M1
q1–2

∫ t

0
(t – s)μ1–1

×
[

‖L11‖T
∏

0≤tk <t

1 + ξ1k

(1 + ζ1k)p1–1 + ‖L12‖T
∏

0≤tk <t

1 + ξ2k

(1 + ζ1k)p1–1

]

×
[

1 – ν1

N(ν1)
+

Tν1

N(ν1)�(ν1)

]

e–λ × ρ(W, W) ds

≤ 1
N(μ1)N(ν1)

[

(1 – μ1)(1 – ν1) +
(1 – μ1)Tν1

�(ν1)
+

(1 – ν1)Tμ1

�(μ1)
+

μ1ν1Tμ1+ν1

�(μ1)�(ν1)

]

× (q1 – 1)M1
q1–2 ∏

0≤tk <t

(1 + ξ1k)–1(1 + ζ1k)
[

‖L11‖T
∏

0≤tk <t

1 + ξ1k

(1 + ζ1k)p1–1

+ ‖L12‖T
∏

0≤tk <t

1 + ξ2k

(1 + ζ1k)p1–1

]

e–λ × ρ(W, W)

= (q1 – 1)�1�1M1
q1–2e–λ × ρ(W, W) = ϑ1e–λ × ρ(W, W). (3.29)
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When 1 < q1 < 2, by applying Lemma 2.2 (vi), (3.23), (3.26), and (3.28), we obtain

∣
∣F1

(
W(t)

)
– F1

(
W(t)

)∣
∣

≤ 1
N(μ1)N(ν1)

[

(1 – μ1)(1 – ν1) +
(1 – μ1)Tν1

�(ν1)

+
(1 – ν1)Tμ1

�(μ1)
+

μ1ν1Tμ1+ν1

�(μ1)�(ν1)

]

(q1 – 1)M1
q1–2

∏

0≤tk <t

(1 + ξ1k)–1(1 + ζ1k)

×
[

‖L11‖T
∏

0≤tk <t

1 + ξ1k

(1 + ζ1k)p1–1 + ‖L12‖T
∏

0≤tk <t

1 + ξ2k

(1 + ζ1k)p1–1

]

e–λ × ρ(W, W)

= (q1 – 1)�1�1M1
q1–2e–λ = ϑ1e–λ × ρ(W, W). (3.30)

Similar to (3.28)–(3.30), we have

∣
∣F2

(
W(t)

)
– F2

(
W(t)

)∣
∣ ≤ ϑ2e–λ × ρ(W, W), q2 ≥ 2 (3.31)

and

∣
∣F2

(
W(t)

)
– F2

(
W(t)

)∣
∣ ≤ ϑ2e–λ × ρ(W, W), 1 < q2 < 2. (3.32)

Thus, we derive from (3.29)–(3.32) that

ρ
(
F(W),F(W)

) ≤

⎧
⎪⎪⎪⎪⎪⎨

⎪⎪⎪⎪⎪⎩

max{ϑ1,ϑ2}e–λ × ρ(W, W), q1, q2 ≥ 2,

max{ϑ1,ϑ2}e–λ × ρ(W, W), q1 ≥ 2, 1 < q2 < 2,

max{ϑ1,ϑ2}e–λ × ρ(W, W), 1 < q1 < 2, q2 ≥ 2,

max{ϑ1,ϑ2}e–λ × ρ(W, W), 1 < q1, q2 < 2.

(3.33)

By (H4), we know that

–∞ < log max{ϑ1,ϑ2}, log max{ϑ1,ϑ2}, log max{ϑ1,ϑ2}, log max{ϑ1,ϑ2} < 0. (3.34)

Taking the logarithm on both sides of (3.33) and applying (3.34), we have

logρ
(
F(W),F(W)

) ≤

⎧
⎪⎪⎪⎪⎪⎨

⎪⎪⎪⎪⎪⎩

log max{ϑ1,ϑ2} – λ + logρ(W, W), q1,q2 ≥ 2,

log max{ϑ1,ϑ2} – λ + logρ(W, W), q1 ≥ 2, 1 < q2 < 2,

log max{ϑ1,ϑ2} – λ + logρ(W, W), 1 < q1 < 2,q2 ≥ 2,

log max{ϑ1,ϑ2} – λ + logρ(W, W), 1 < q1,q2 < 2,

<

⎧
⎪⎪⎪⎪⎪⎨

⎪⎪⎪⎪⎪⎩

–λ + logρ(W, W), q1, q2 ≥ 2,

–λ + logρ(W, W), q1 ≥ 2, 1 < q2 < 2,

–λ + logρ(W, W), 1 < q1 < 2, q2 ≥ 2,

–λ + logρ(W, W), 1 < q1, q2 < 2,
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which implies that

logρ
(
F(W),F(W)

)
+ λ < logρ(W, W). (3.35)

In addition, it is clear that

ρ(W, W) ≤ max

{

ρ(W, W),ρ
(
W,F(W)

)
,ρ

(
W,F(W)

)
,

ρ(W,F(W)) + ρ(W,F(W))
2

}

= S(W, W). (3.36)

From (3.35) and (3.36), we obtain

logρ
(
F(W),F(W)

)
+ λ ≤ logS(W, W). (3.37)

We choose an F-contraction mapping as F(z) = log z, then (3.37) can be rewritten as

F
(
ρ
(
F(W),F(W)

))
+ λ ≤ F

(
S(W, W)

)
. (3.38)

Equation (3.38) indicates that the condition (a1) in Lemma 2.3 holds. Obviously, F(z) is
continuous on (0,∞), which means that the condition (a2) in Lemma 2.3 is true. Thus, it
follows from Lemma 2.3 that Fexists and a unique fixed point W∗(t) = (W∗

1 (t), W∗
2 (t)) ∈

X, which is the unique solution of (3.10). The proof is completed. �

4 Generalized UH-stability
This section focuses on the generalized UH-stability of problem (1.1). Therefore, for all
δ > 0, we consider the impulsive fractional differential inequalities below:

⎧
⎪⎪⎪⎪⎪⎪⎪⎪⎪⎨

⎪⎪⎪⎪⎪⎪⎪⎪⎪⎩

ABCD
ν1
t+
k

[�p1 (ABCD
μ1
t+
k
X1(t))] – f1(t,X1(t),X2(t)) ≤ δ, t ∈ (tk , tk+1] ⊂ I,

ABCD
ν2
t+
k

[�p2 (ABCD
μ2
t+
k
X2(t))] – f2(t,X1(t),X2(t)) ≤ δ, t ∈ (tk , tk+1] ⊂ I,

X1(t+
k ) = (1 + ξ1k)X1(t–

k ), ABCD
μ1
t+
k
X1(t+

k ) = (1 + ζ1k)ABCD
μ1
t+
k–1

X1(t–
k ),

X2(t+
k ) = (1 + ξ2k)X2(t–

k ), ABCD
μ2
t+
k
X2(t+

k ) = (1 + ζ2k)ABCD
μ2
t+
k–1

X2(t–
k ),

X1(0) = w1, X2(0) = w2, ABCD
μ1
0+ X1(0) = v1, ABCD

μ2
0+ X2(0) = v2.

(4.1)

Remark 4.1 X(t) = (X1(t),X2(t)) is a solution of inequalities (4.1) iff there has a continuous
function ϕ(t) = (ϕ1(t),ϕ2(t)) such that

⎧
⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎨

⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎩

|ϕ1(t)| ≤ δ, |ϕ2(t)| ≤ δ, t ∈ (tk , tk+1] ⊂ I,
ABCD

ν1
t+
k

[�p1 (ABCD
μ1
t+
k
X1(t))] = f1(t,X1(t),X2(t)) + ϕ1k(t), t ∈ (tk , tk+1] ⊂ I,

ABCD
ν2
t+
k

[�p2 (ABCD
μ2
t+
k
X2(t))] = f2(t,X1(t),X2(t)) + ϕ2k(t), t ∈ (tk , tk+1] ⊂ I,

X1(t+
k ) = (1 + ξ1k)X1(t–

k ), ABCD
μ1
t+
k
X1(t+

k ) = (1 + ζ1k)ABCD
μ1
t+
k–1

X1(t–
k ),

X2(t+
k ) = (1 + ξ2k)X2(t–

k ), ABCD
μ2
t+
k
X2(t+

k ) = (1 + ζ2k)ABCD
μ2
t+
k–1

X2(t–
k ),

X1(0) = w1, X2(0) = w2, ABCD
μ1
0+ X1(0) = v1, ABCD

μ2
0+ X2(0) = v2.

(4.2)
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Consider the integral system below:

⎧
⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎨

⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎩

W1(t) = w1 + 1–μ1
N(μ1) [

∏
0≤tk <t(1 + ξ1k)–1(1 + ζ1k)�q1 (hϕ

1 (t, W1(t), W2(t))) – v1]

+ μ1
N(μ1)�(μ1)

∫ t
0 (t – s)μ1–1

× ∏
0≤tk <s(1 + ξ1k)–1(1 + ζ1k)�q1 (hϕ

1 (s, W1(s), W2(s))) ds,

W2(t) = w2 + 1–μ2
N(μ2) [

∏
0≤tk <t(1 + ξ2k)–1(1 + ζ2k)�q2 (hϕ

2 (t, W1(t), W2(t))) – v2]

+ μ2
N(μ2)�(μ2)

∫ t
0 (t – s)μ2–1

× ∏
0≤tk <s(1 + ξ2k)–1(1 + ζ2k)�q2 (hϕ

2 (s, W1(s), W2(s))) ds,

(4.3)

where

h
ϕ
1
(
s, W1(s), W2(s)

)

= �p1 (v1) +
1 – ν1

N(ν1)

[

�p1

( ∏

0≤tk <s

1
1 + ζ1k

)(

ϕ1(s)

+ f1

(

s,
∏

0≤tk<s

(1 + ξ1k)W1(s),
∏

0≤tk<s

(1 + ξ2k)W2(s)
))

– f1(0, w1, w2) – ϕ1(0)
]

+
ν1

N(ν1)�(ν1)

∫ s

0
(s – τ )ν1–1�p1

( ∏

0≤tk <τ

1
1 + ζ1k

)(

ϕ1(τ )

+ f1

(

τ ,
∏

0≤tk<τ

(1 + ξ1k)W1(τ ),
∏

0≤tk<τ

(1 + ξ2k)W2(τ )
))

dτ , (4.4)

h
ϕ
2
(
s, W1(s), W2(s)

)

= �p2 (v2) +
1 – ν2

N(ν2)

[

�p2

( ∏

0≤tk <s

1
1 + ζ2k

)(

ϕ2(s)

+ f2

(

s,
∏

0≤tk<s

(1 + ξ1k)W1(s),
∏

0≤tk<s

(1 + ξ2k)W2(s)
))

– f2(0, w1, w2) – ϕ2(0)
]

+
ν2

N(ν2)�(ν2)

∫ s

0
(s – τ )ν2–1�p2

( ∏

0≤tk <τ

1
1 + ζ2k

)(

ϕ2(τ )

+ f2

(

τ ,
∏

0≤tk<τ

(1 + ξ1k)W1(τ ),
∏

0≤tk<τ

(1 + ξ2k)W2(τ )
))

dτ . (4.5)

According to Lemmas 3.1 and 3.2, Remark 3.1, and Remark 4.1, we have the following
result.

Lemma 4.1 If W(t) = (W1(t), W2(t)) ∈ X is a solution of (4.3), then X(t) = (X1(t),X2(t)) is
the solution of (4.2), which is also the solution of (4.1), where

X1(t) =
∏

0≤tk <t

(1 + ξ1k)W1(t), X2(t) =
∏

0≤tk <t

(1 + ξ2k)W2(t).

Therefore, it follows from Lemma 4.1 that the existence of the solutions to the inequal-
ities (4.1) and the integral system (4.3) is equivalent. Additionally, from Lemma 3.1, we
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know that the generalized UH-stability of systems (1.1) and (3.10) is equivalent. Next, we
will only discuss the generalized UH-stability for system (3.10).

Definition 4.1 System (3.10) is generalized UH-stable on the metric space (X,ρ) iff, for
all δ > 0 and any solution W= (W1, W2) ∈ X of (4.3), there exists an ω ∈ C(R,R+) with
ω(0) = 0 and a unique solution W∗ = (W∗

1 , W∗
2 ) ∈X of (3.10) such that

ρ
(
W, W∗) ≤ ω(δ).

Theorem 4.1 Provided that (H1)–(H4) hold, then system (3.10) is generalized UH-stable.

Proof By Theorem 3.1, we know that system (3.10) has a unique solution W∗(t) =
(W∗

1 (t), W∗
2 (t)) ∈X. For all δ > 0 (δ small enough), similar to (3.22)–(3.25), we derive from

(H1), (H2), Remark 4.1, (4.4), and (4.5) that

h
ϕ
1
(
t, W1(t), W2(t)

) ≤ v
p1–1
1 +

1 – ν1

N(ν1)

[

(M1 + δ)
∏

0≤tk <t

1
(1 + ζ1k)p1–1 + δ – m1

]

+
(M1 + δ)Tν1

N(ν1)�(ν1)
∏

0≤tk <t

1
(1 + ζ1k)p1–1 � M1(δ), (4.6)

h
ϕ
1
(
t, W1(t), W2(t)

) ≥ v
p1–1
1 +

1 – ν1

N(ν1)

[

(m1 – δ)
∏

0≤tk <t

1
(1 + ζ1k)p1–1 – δ – M1

]

� M1(δ) > 0, (4.7)

h
ϕ
2
(
t, W1(t), W2(t)

) ≤ v
p2–1
2 +

1 – ν2

N(ν2)

[

(M2 + δ)
∏

0≤tk <t

1
(1 + ζ2k)p2–1 + δ – m2

]

+
(M2 + δ)Tν2

N(ν2)�(ν2)
∏

0≤tk <t

1
(1 + ζ2k)p2–1 � M2(δ) (4.8)

and

h
ϕ
2
(
t, W1(t), W2(t)

) ≥ v
p2–1
2 +

1 – ν2

N(ν2)

[

(m2 – δ)
∏

0≤tk <t

1
(1 + ζ2k)p2–1 – δ – M2

]

� M2(δ) > 0. (4.9)

From (3.22)–(3.25) and (4.6)–(4.9), one has

0 < M1(δ) < M1 < M1 < M1(δ), 0 < M2(δ) < M2 < M2 < M2(δ). (4.10)

For any solution W(t) = (W1(t), W2(t)) ∈ X to system (4.3) and the unique solution
W∗(t) = (W∗

1 (t), W∗
2 (t)) ∈ X to system (3.10), by (3.11), (3.12), (4.4), (4.5), and (4.2), we

have

∣
∣hϕ

i
(
t, W1(t), W2(t)

)
– hi

(
t, W∗

1 (t), W∗
2 (t)

)∣
∣

=
∣
∣
∣
∣
[
hi

(
t, W1(t), W2(t)

)
– hi

(
t, W∗

1 (t), W∗
2 (t)

)]



Zhao Advances in Continuous and Discrete Models          (2024) 2024:5 Page 18 of 26

+
1 – νi

N(νi)

[

�pi

( ∏

0≤tk <t

1
1 + ζik

)

ϕi(t) – ϕi(0)
]

+
νi

N(νi)�(νi)

∫ t

0
(t – τ )νi–1

× �pi

( ∏

0≤tk <τ

1
1 + ζik

)

ϕi(τ ) dτ

∣
∣
∣
∣

≤ ∣
∣hi

(
t, W1(t), W2(t)

)
– hi

(
t, W∗

1 (t), W∗
2 (t)

)∣
∣

+
1 – νi

N(νi)

[ ∏

0≤tk <t

1
(1 + ζik)pi–1 + 1

]

δ +
δTνi

N(νi)�(νi)
∏

0≤tk <t

1
(1 + ζik)pi–1

=
∣
∣hi

(
t, W1(t), W2(t)

)
– hi

(
t, W∗

1 (t), W∗
2 (t)

)∣
∣ + �i(δ), i = 1, 2, (4.11)

where �i(δ) = 1–νi
N(νi)

[
∏

0≤tk <t
1

(1+ζik )pi–1 + 1]δ + δTνi
N(νi)�(νi)

∏
0≤tk <τ

1
(1+ζik )pi–1 .

When qi ≥ 2 (i = 1, 2), similar to (3.28), we derive from (3.10), (3.29), (3.31), (4.3), (4.10),
(4.11), and (vi) in Lemma 2.2 that

∣
∣Wi(t) – W∗

i (t)
∣
∣

≤ 1 – μi

N(μi)
∏

0≤tk <t

(1 + ξik)–1(1 + ζik)
∣
∣�qi

(
h

ϕ
i
(
t, W1(t), W2(t)

))

– �qi

(
hi

(
t, W∗

1 (t), W∗
2 (t)

))∣
∣ +

μi

N(μi)�(μi)

∫ t

0
(t – s)μi–1

∏

0≤tk <s

(1 + ξik)–1

× (1 + ζik)
∣
∣�qi

(
h

ϕ
i
(
s, W1(s), W2(s)

))
– �qi

(
hi

(
s, W∗

1 (s), W∗
2 (s)

))∣
∣ds

≤ 1 – μi

N(μi)
∏

0≤tk <t

(1 + ξik)–1(1 + ζik)(qi – 1)Mi(δ)qi–2∣∣hϕ
i
(
t, W1(t), W2(t)

)

– hi
(
t, W∗

1 (t), W∗
2 (t)

)∣
∣ +

μi

N(μi)�(μi)
∏

0≤tk <t

(1 + ξik)–1(1 + ζik)(qi – 1)

× Mi(δ)qi–2
∫ t

0
(t – s)μi–1∣∣hϕ

i
(
s, W1(s), W2(s)

)
– hi

(
s, W∗

1 (s), W∗
2 (s)

)∣
∣ds

=
1 – μi

N(μi)
∏

0≤tk <t

(1 + ξik)–1(1 + ζik)(qi – 1)Mi(δ)qi–2(∣∣hi
(
t, W1(t), W2(t)

)

– hi
(
t, W∗

1 (t), W∗
2 (t)

)∣
∣ + �i(δ)

)
+

μi

N(μi)�(μi)
∏

0≤tk <t

(1 + ξik)–1(1 + ζik)(qi – 1)

× Mi(δ)qi–2
∫ t

0
(t – s)μi–1(∣∣hi

(
s, W1(s), W2(s)

)
– hi

(
s, W∗

1 (s), W∗
2 (s)

)∣
∣ + �i(δ)

)
ds

≤ 1 – μi

N(μi)
∏

0≤tk <t

(1 + ξik)–1(1 + ζik)(qi – 1)Mi(δ)qi–2
([

‖Li1‖T
∏

0≤tk <t

1 + ξ1k

(1 + ζik)pi–1

+ ‖Li2‖T
∏

0≤tk <t

1 + ξ2k

(1 + ζik)pi–1

][
1 – νi

N(νi)
+

Tνi

N(νi)�(νi)

]

e–λ × ρ(W, W) + �i(δ)
)

+
μi

N(μi)�(μi)
∏

0≤tk <t

(1 + ξik)–1(1 + ζik)(qi – 1)Mi(δ)qi–2
∫ t

0
(t – s)μi–1

×
([

‖Li1‖T
∏

0≤tk <t

1 + ξ1k

(1 + ζik)pi–1 + ‖Li2‖T
∏

0≤tk <t

1 + ξ2k

(1 + ζik)pi–1

]
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×
[

1 – νi

N(νi)
+

Tνi

N(νi)�(νi)

]

e–λ × ρ(W, W) + �i(δ)
)

ds

≤ θi(δ)e–λ × ρ(W, W) + κi(δ), (4.12)

where θi(δ) = (qi – 1)�i�iMi(δ)qi–2, κi(δ) = (qi – 1)�i�iMi(δ)qi–2�i(δ).
When 1 < qi < 2 (i = 1, 2), similar to (4.12), we have

∣
∣Wi(t) – W∗

i (t)
∣
∣ ≤ θi(δ)e–λ × ρ(W, W) + κi(δ), (4.13)

where θi(δ) = (qi – 1)�i�iMi(δ)qi–2, κi(δ) = (qi – 1)�i�iMi(δ)qi–2�i(δ).
For all δ > 0 (δ small enough), we know that 0 < θ1(δ), θ1(δ), θ2(δ), θ2(δ) < 1. Thus, from

(4.12) and (4.13), we obtain

ρ(W, W) ≤

⎧
⎪⎪⎪⎪⎪⎪⎪⎨

⎪⎪⎪⎪⎪⎪⎪⎩

max{κ1(δ),κ2(δ)}
1–max{θ1(δ),θ2(δ)}e–λ , q1,q2 ≥ 2,

max{κ1(δ),κ2(δ)}
1–max{θ1(δ),θ2(δ)}e–λ , q1 ≥ 2, 1 < q2 < 2,

max{κ1(δ),κ2(δ)}
1–max{θ1(δ),θ2(δ)}e–λ , 1 < q1 < 2, q2 ≥ 2,

max{κ1(δ),κ2(δ)}
1–max{θ1(δ),θ2(δ)}e–λ , 1 < q1,q2 < 2.

(4.14)

According to Definition 4.1 and (4.14), we conclude that system (3.10) is generalized UH-
stable. The proof is completed. �

5 Simulation algorithms and examples
In this section, we will provide a numerical simulation algorithm for system (1.1) and apply
an example to checkout the correctness and effectiveness of our theoretical results and
simulation algorithm.

5.1 Simulation algorithms
Based on assumptions (H1)–(H4), our simulation algorithm further requires the following
assumption:

(H5) For all t, u, v ∈ R, fi(t, u, v) (i = 1, 2) has the first-order partial derivative at (t, u, v),
that is, ∂fi

∂t , ∂fi
∂u , and ∂fi

∂v all exist.
By (3.1), (3.2), and Lemmas 3.1 and 3.2, we give a simulation algorithm for system (1.1)

as follows:
Step 1: Let �p1 (ABCD

μ1
t+
k
X1(t)) = Y1(t), �p2 (ABCD

μ2
t+
k
X2(t)) = Y2(t), we will convert sys-

tem (1.1) to system (3.1).
Step 2: Based on system (3.1), we can obtain system (3.2).
Step 3: According to Lemma 3.2, we can obtain an integral system (3.10).
Step 4: In view of Definition 2.2 and (H5), we know that W′

1 (t) and W′
2 (t) all exist. There-

fore, taking the derivative on both sides of (3.10), we obtain
⎧
⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎨

⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎩

W′
1 (t) = 1–μ1

N(μ1)
∏

0≤tk <t(1 + ξ1k)–1(1 + ζ1k) d[�q1 (h1(t,W1(t),W2(t)))]
dt

+ μ1(μ1–1)
N(μ1)�(μ1)

∫ t
0 (t – s)μ1–2

× ∏
0≤tk <s(1 + ξ1k)–1(1 + ζ1k)�q1 (h1(s, W1(s), W2(s))) ds,

W′
2 (t) = 1–μ2

N(μ2)
∏

0≤tk <t(1 + ξ2k)–1(1 + ζ2k) d[�q2 (h2(t,W1(t),W2(t)))]
dt

+ μ2(μ2–1)
N(μ2)�(μ2)

∫ t
0 (t – s)μ2–2

× ∏
0≤tk <s(1 + ξ2k)–1(1 + ζ2k)�q2 (h2(s, W1(s), W2(s))) ds.

(5.1)
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It follows from the definition of �qi (i = 1, 2) that

d[�qi (hi(t, W1(t), W2(t)))]
dt

=
d[|hi(t, W1(t), W2(t))|qi–2hi(t, W1(t), W2(t))]

dt

=
d[(sgn(hi(t, W1(t), W2(t))))q1–2 × (hi(t, W1(t), W2(t)))qi–1]

dt

= (qi – 1)
∣
∣hi

(
t, W1(t), W2(t)

)∣
∣q1–2 × d[hi(t, W1(t), W2(t))]

dt

=
(qi – 1)�qi (hi(t, W1(t), W2(t)))

hi(t, W1(t), W2(t))
× d[hi(t, W1(t), W2(t))]

dt
. (5.2)

Let U =
∏

0≤tk <t(1 + ξ1k)W1(t), V =
∏

0≤tk <t(1 + ξ2k)W2(t), we derive from (3.11) and (3.12)
that

d[hi(t, W1(t), W2(t))]
dt

=
1 – νi

N(νi)
�pi

( ∏

0≤tk <t

1
1 + ζik

)[
∂fi

∂t
+

∂fi

∂U
×

∏

0≤tk <t

(1 + ξ1k)W′
1 (t)

+
∂fi

∂V
×

∏

0≤tk <t

(1 + ξ2k)W′
2 (t)

]

+
νi(νi – 1)
N(νi)�(νi)

∫ t

0
(t – τ )νi–2�pi

( ∏

0≤tk <τ

1
1 + ζik

)

× fi

(

τ ,
∏

0≤tk <τ

(1 + ξ1k)W1(τ ),
∏

0≤tk<τ

(1 + ξ2k)W2(τ )
)

dτ , i = 1, 2. (5.3)

Substituting (5.2) and (5.3) into (5.1), we can simplify it to obtain

⎧
⎨

⎩

W′
1 (t) = A1[B1 W

′
1 (t) + C1 W

′
2 (t) + D1] + E1,

W′
2 (t) = A2[B2 W

′
1 (t) + C2 W

′
2 (t) + D2] + E2,

(5.4)

where

Ai =
(1 – μi)(1 – νi)
N(μi)N(νi)

×
∏

0≤tk <t

(1 + ξik)–1(1 + ζik) × �pi

( ∏

0≤tk <t

1
1 + ζik

)

× (qi – 1)�qi (hi(t, W1(t), W2(t)))
hi(t, W1(t), W2(t))

,

Bi =
∂fi

∂U
×

∏

0≤tk <t

(1 + ξ1k), Ci =
∂fi

∂V
×

∏

0≤tk <t

(1 + ξ2k),

Di =
νi(νi – 1)
N(νi)�(νi)

∫ t

0
(t – s)νi–2�pi

( ∏

0≤tk <τ

1
1 + ζik

)

× fi

(

s,
∏

0≤tk<s

(1 + ξ1k)W1(s),
∏

0≤tk<s

(1 + ξ2k)W2(s)
)

ds
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and

Ei =
μi(μi – 1)
N(μi)�(μi)

∫ t

0
(t – s)μi–2

∏

0≤tk <s

(1 + ξik)–1(1 + ζik)�qi

(
hi

(
s, W1(s), W2(s)

))
ds.

Applying Cramer’s rule, (5.4) is rewritten as

⎧
⎨

⎩

W′
1 (t) = J1

J ,

W′
2 (t) = J2

J ,
(5.5)

where

J =

∣
∣
∣
∣
∣

1 – A1B1 –A1C1

–A2B2 1 – A2C2

∣
∣
∣
∣
∣
,

J1 =

∣
∣
∣
∣
∣

A1D1 + E1 –A1C1

A2D2 + E2 1 – A2C2

∣
∣
∣
∣
∣

and

J2 =

∣
∣
∣
∣
∣

1 – A1B1 A1D1 + E1

–A2B2 A2D2 + E2

∣
∣
∣
∣
∣
.

Step 5: We use the ode45 toolbox of MATLAB to solve equation (5.5).
Step 6: By applying the relationship Xi(t) =

∏
0≤tk <t(1 + ξik)Wi(t) (i = 1, 2) in Lemma 3.1,

we can perform the numerical simulation on system (1.1).

5.2 An example
Consider the following nonlinear fractional coupled (p1,p2)-Laplacian systems with non-
singular Mittag–Leffler kernel and a single impulsive point:

⎧
⎪⎪⎪⎪⎪⎪⎪⎪⎪⎨

⎪⎪⎪⎪⎪⎪⎪⎪⎪⎩

ABCD
ν1
t+
k

[�p1 (ABCD
μ1
t+
k
X1(t))] = f1(t,X1(t),X2(t)), t ∈ (0, t1] ∪ (t1, T],

ABCD
ν2
t+
k

[�p2 (ABCD
μ2
t+
k
X2(t))] = f2(t,X1(t),X2(t)), t ∈ (0, t1] ∪ (t1, T],

X1(t+
1 ) = (1 + ξ11)X1(t–

1 ), ABCD
μ1
t+
1
X1(t+

1 ) = (1 + ζ11)ABCD
μ1
0+ X1(t–

1 ),

X2(t+
1 ) = (1 + ξ21)X2(t–

1 ), ABCD
μ2
t+
1
X2(t+

1 ) = (1 + ζ21)ABCD
μ2
0+ X2(t–

1 ),

X1(0) = w1, X2(0) = w2, ABCD
μ1
0+ X1(0) = v1, ABCD

μ2
0+ X2(0) = v2,

(5.6)

where T =
√

2, t1 = 1√
2 , p1 = 3

2 , p2 = 5
4 , μ1 = 0.7, ν1 = 0.6, μ2 = 0.2, ν2 = 0.4, w1 = 1,

w2 = 5, v1 = 2, v2 = 3, ξ11 = 1
2 , ξ21 = 1

3 , ζ11 = 3, ζ21 = 4, f1(t, u, v) = 2+cos(u)
100e + 1

50e | sin(t)| v
1+v2 ,

f2(t, u, v) = 2+sin(3t)
1000e [ 3π

4 + arctan(u + v)].
Take N(x) = 1 – x + x

�(x) , 0 < x ≤ 1, then N(0) = N(1) = 1. A simple computation yields
that q1 = 3 > 2, q2 = 5 > 2, and

1
100

≤ f1(t, u, v) ≤ 4
100e

,
π

4000e
≤ f2(t, u, v) ≤ 15π

4000e
,

∣
∣f1(t, u, v) – f1(t, u, v)

∣
∣ ≤ e–1

[
1

100
|u – u| +

| sin(t)|
100

|v – v|
]

,
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∣
∣f2(t, u, v) – f2(t, u, v)

∣
∣ ≤ 2 + sin(3t)

1000
[|u – u| + |v – v|]e–1.

Consequently, the conditions (H1)–(H3) are fulfilled. Additionally, m1 = 1
100e , M1 = 4

100e ,
m2 = π

4000e , M2 = 15π
4000e , L11(t) = 1

100 , L12(t) = | sin(t)|
100 , L21(t) = L22(t) = 2+sin(3t)

200 , ‖L11‖T = 1
100 ,

‖L12‖T = sin(
√

2)
100 , ‖L21‖T = ‖L22‖T = 3

1000 , and

�1 =
1

N(μ1)N(ν1)

[

(1 – μ1)(1 – ν1) +
(1 – μ1)Tν1

�(ν1)
+

(1 – ν1)Tμ1

�(μ1)
+

μ1ν1Tμ1+ν1

�(μ1)�(ν1)

]

≈ 1.6350,

�2 =
1

N(μ2)N(ν2)

[

(1 – μ2)(1 – ν2) +
(1 – μ2)Tν2

�(ν2)
+

(1 – ν2)Tμ2

�(μ2)
+

μ2ν2Tμ2+ν2

�(μ2)�(ν2)

]

≈ 1.5861,

�1 =
1 + ζ11

1 + ξ11

[

‖L11‖T
1 + ξ11

(1 + ζ11)p1–1 + ‖L12‖T
1 + ξ21

(1 + ζ11)p1–1

]

≈ 0.0376,

�2 =
1 + ζ21

1 + ξ21

[

‖L21‖T
1 + ξ11

(1 + ζ21)p2–1 + ‖L22‖T
1 + ξ21

(1 + ζ21)p2–1

]

≈ 0.0426,

M1 = v
p1–1
1 +

1 – ν1

N(ν1)

[
m1

(1 + ζ11)p1–1 – M1

]

≈ 1.4078 > 0,

M2 = v
p2–1
2 –

1 – ν2

N(ν2)

[
m2

(1 + ζ21)p2–1 – M2

]

≈ 1.3129 > 0,

M1 = v
p1–1
1 +

1 – ν1

N(ν1)

[
M1

(1 + ζ11)p1–1 – m1

]

+
M1Tν1

N(ν1)�(ν1)
1

(1 + ζ11)p1–1 ≈ 1.4236,

M2 = v
p2–1
2 +

1 – ν2

N(ν2)

[
M2

(1 + ζ21)p2–1 – m2

]

+
M2Tν2

N(ν2)�(ν2)
1

(1 + ζ21)p2–1 ≈ 1.3200,

ϑ1 = (q1 – 1)�1�1M1
q1–2 ≈ 0.1750 < 1,

ϑ2 = (q2 – 1)�2�2M2
q2–2 ≈ 0.6216 < 1.

Thus, (H4) is true. It follows from Theorem 3.1 and Theorem 4.1, that system (5.6) has a
unique solution, which is generalized UH-stable.

By applying the algorithm in Sect. 5.1 and the ODE45 toolbox in MATLAB 2018b, we
have provided numerical simulations of the solution for system (5.6), as shown in Figs. 1
and 2. The simulation shows that the solution of system (1.1) is discontinuous at impulsive
point t = 1√

2 .

6 Conclusions
The ABC-fractional differential model has achieved better results in describing some
problems in the fields of physics and engineering compared to integer-order differential
systems. Some scholars have carried out studies on certain types of ABC-fractional dif-
ferential equations. However, as far as we know there are no papers dealing with the non-
linear ABC-fractional differential coupled system with a Laplacian and impulses. There-
fore, we try to fill the gap by studying system (1.1) in this manuscript. By constructing
a complete metric space and F-contraction operator, and applying an important fixed-
point theorem on metric space, we obtain the existence and uniqueness of the solution
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Figure 1 Simulation of solution X1(t)

Figure 2 Simulation of solution X2(t)

of system (1.1). Meanwhile, the generalized UH-stability is established by using the di-
rect analysis method. In addition, we provide a novel numerical simulation algorithm.
We apply an example to validate and demonstrate our theoretical results and algorithms.
Our study shows that the existence, uniqueness, and stability of the solution to system
(1.1) are closely related to Laplace parameters p1, p2, fractional derivative orders μi, νi

(i = 1, 2), impulse variables ξik , ζik (i = 1, 2; k = 1, 2, . . . , n), initial values ABCD
μ1
0+ X1(0) = v1,

ABCD
μ2
0+ X2(0) = v2, and fi(t, ·, ·) (i = 1, 2). Moreover, our future academic focus will shift to-

wards reaction–diffusion systems and population-dynamics systems involving fractional
derivatives due to some of our preliminary studies [57–59, 64–69].
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