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Abstract
In this paper, the controllability concept of a nonlinear fractional stochastic system
involving state-dependent delay and impulsive effects is addressed by employing
Caputo derivatives and Mittag-Leffler (ML) functions. Based on stochastic analysis
theory, novel sufficient conditions are derived for the considered nonlinear system by
utilizing Krasnoselkii’s fixed point theorem. Correspondingly, the applicability of the
derived theoretical results is indicated by an example.
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1 Introduction
Fractional order dynamical models based on fractional calculus and real dynamics sys-
tems have been significantly improved in a very recent period. The expansive nature of
fractional calculus offers a tremendous opportunity to alter the control model. The the-
ory of arbitrary order integrals and derivatives is fractional calculus, which unifies and
generalizes the concepts in the fields of science, control theory, and many other areas.
The advantages of fractional differential equations (FDEs) have been analyzed by many
scientists [16, 18, 28, 31, 33]. In the branch of qualitative characteristics of dynamical sys-
tems, controllability is an essential aspect. Many researchers have expanded the findings
of nonlinear and linear systems from integer order to fractional order because of its signif-
icance [1, 4, 6, 7]. Apart from these works, controllability problems of nonlinear and linear
systems involving delay in control were reported in [32, 37]. Investigation of controllability
for a class of switched Hilfer neutral fractional systems with noninstantaneous impulses
in finite-dimensional spaces was discussed in [24]. Moreover, in [23], the controllability of
a fractional neutral dynamic system with noninstantaneous impulsive circumstances has
been investigated for an ABC-fractional system with an integral term.

Impulsive differential equations (IDEs) can take adequate consideration of the issues
of sudden state jumps in the complete evolution process. Thus, it yields a suitable struc-
ture for modeling and illustrating various complex dynamical systems. IDEs have been
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focused on widely in the literature since these equations appear obviously in electronics,
economics, medicine, mechanics, and biology. The monograph by Bainov and Simeonov
[5] contains the fundamental understanding of IDEs. In [27], the authors studied sudden
transitions such as state modification or in the form of impulses occurring in physics,
finance, and aeronautics. The existence, uniqueness, Ulam–Hyers stability, and total con-
trollability results for Hilfer fractional switched impulsive systems in finite-dimensional
spaces were discussed in [25]. The existence of solutions, stability, and the controllability
criteria were analyzed for piecewise impulsive dynamic systems on arbitrary time domain
in [22]. The total controllability of a novel class of piecewise nonlinear Langevin fractional
dynamic equations with noninstantaneous impulses and controllability conditions were
investigated in [26].

Stochastic effects have had a major part in the study of fractional differential systems
in recent years. Research on the controllability issue of linear, nonlinear, and stochastic
systems was considered in [19, 20]. Mahmudov et al. [30] examined the stochastic con-
trollability of linear, nonlinear systems respectively in Hilbert spaces [29]. The results on
optimal control of fractional stochastic systems driven by the Wiener process and frac-
tional Brownian motion with noninstantaneous impulsive effects were investigated in [8],
and also, in [34], the authors investigated valuable insights into the controllability of frac-
tional stochastic inclusions with fractional Brownian motion effects. Stochastic differen-
tial equations steered by Poisson jumps with instantaneous and noninstantaneous im-
pulses with delay were reported in [21]. Approximate controllability of second-order im-
pulsive neutral stochastic integro-differential evolution inclusions with infinite delay was
discussed in [35]. Further, in [14], necessary criteria for the controllability of the system
were given by a particular kind of nonlinear stochastic impulsive system with infinite delay
in an abstract space. There was discussion on a generalization of the contraction mapping
principle.

Delay differential equation plays a crucial role in the analysis and predictions of life sci-
ences including population dynamics, immunology, and neural networks. However, dif-
ferential equations examine both the unknown state and its derivatives simultaneously,
although for a certain time the instant delay differential system is governed by the past.
The delay differential system is independent of the past. The past dependence on a vari-
able is state-dependent delay. The interest in state-dependent delay (SDD) type systems
has been enormous in recent years. Existence analysis of fractional system with SDD was
reported in [11]. Existence analysis of differential inclusions involving stochastic effects,
impulsive effects, and SDD was investigated in [13]. A fractional integro-differential sys-
tem involving SDD was studied by Agarwal et al. in [2]. The study of fractional impulsive
systems involving SDD was discussed by the authors in [9]. Moreover, controllability anal-
ysis of second-order systems with SDD and impulses was proved in [3]. Numerous authors
have emphasized how controllability systems are increasingly common and adequate in
applications in [12, 38–40].

Inspired by the above mentioned results, the paper reports the controllability of a non-
linear system involving SDD, impulsive conditions, and a stochastic term. To the best of
the authors knowledge, there are no studies concerning the controllability results of this
type of a system, which is the main motivation of this study. Significance of the considered
problem is listed below:
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(i) Stochastic fractional order systems involving state-dependent delay and impulsive
effects have been considered.

(ii) The considered system solution is derived by employing the Caputo derivative,
Laplace transform theory, and the Mittag-Leffler function.

(iii) By using certain assumptions, sufficient conditions are derived utilizing
Krasnoselkii’s fixed point theorem to analyze the controllability result.

The paper is organized in the following manner: Preliminaries, lemmas, and basic def-
initions are explained in Sect. 2. A controllability condition for a nonlinear system with
fractional order is analyzed in Sect. 3. An example is attainable to exemplify the theoretical
result in Sect. 4. Finally, Sect. 5 concludes this paper.

2 Problem formulation
Consider the nonlinear fractional stochastic system involving impulsive and SDD of the
form

C
0 Dκ

t z(t) = A z(t) + Bu(t) + ς̃ (t,z�(t,zt ))
dw(t)

dt
+ g(t,z�(t,zt )), t ∈ J ′ = [0,T], (1)

z(0) = z0, (2)

�z(t) = In
(
z ˜(tn)

)
, t = ˜tn, n = 1, 2, . . . , k, (3)

where C
0 Dκ

t denotes the Caputo derivative with lower bounds 0 of order κ ∈ (0, 1]. H

denotes a Hilbert space, z(·) ∈R
n is a state variable that takes values in H with the inner

product (·, ·) and the norm ‖ · ‖; and A ∈ R
n×n, B ∈ R

n×m are known constant matrices.
u ∈ L2([0,T],U) is a control input, where U ∈ H and B is a bounded linear operator
on H . zs : (–∞, 0] → H defines the function zs in a Hilbert space H . For some abstract
space B, zs(θ ) = z(s+θ ) and continuous function � : J ′ ×B → (–∞,T]. Let (�,F, P) be a
complete probability space with filtration {Ft}t≥0 generated by an m-dimensional Wiener
process and probability measure P on �. In (�,F, P), H and K are separable Hilbert
spaces. The function z(t) is continuous everywhere except for some ˜tn such that

z ˜(
t+
n

)
– z ˜(

t–
n

)
= �z ˜(tn),

z ˜(t–
n), z ˜(t+

n) exist in PC(J ′, L2(�,F, P;H )), where

z ˜(
t–
n

)
= lim

ε→0–
z ˜(tn + ε), z ˜(

t+
n

)
= lim

ε→0+
z ˜(tn + ε)

symbolizes the left and right limits at t = ˜tn and ‖z‖PC = supt∈J ′ |z(t)| < ∞ in the Banach
space. PC(J ′, L2) is the closed subspace of PC(J ′, L2(�,F, P;H )), which is measurable
and F-adapted H -valued process with the norm ‖z‖2 = sup{E‖z(t)‖2, t ∈ J ′}. The func-
tions g : J ′ ×B→ H , ς̃ : J ′ ×B → H , In : PC → H are continuous.

Stochastic process with filtration {Ft}t≥0 in (�,F, P) is a collection of random variables
z(t) : � → H , t ∈ J ′.F is measurable, and for t ≥ 0, {w(t)}t≥0 is an m-dimensional Wiener
process or a Brownian motion in K , where Qen equals λnen, {βn}n≥1 indicates real-valued
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Brownian motions, and {en}n≥1 represents completely orthonormal in K , then

w(t) =
∞∑

n=1

√
λnβnen.

Then w(t) is a Q-Wiener process with a finite covariance operator Q such that tr(Q) < ∞.
φ is a Q Hilbert Schmidt operator in LQ(K ,H ) with the norm ‖φ‖2

Q = 〈φ,φ〉 for φ ∈
L(K ,H ), then

‖φ‖2
Q = tr

(
φQφ∗)

=
∞∑

n=1

‖√λnφen‖2 < ∞.

An abstract space (B,‖ · ‖B), i.e., a seminorm linear space of F0-measurable function,
is defined utilizing the concepts and symbolizations established in [17].

(a) If for every [0,T), z : (–∞,T] → H is a continuous function and z0 ∈B, then
(i) zt ∈B;

(ii) ‖z(t)‖ ≤ N1‖zt‖B;
(iii) ‖zt‖B ≤ N2(t)‖z0‖B + N3(t) sup{‖z(s)‖ : 0 ≤ s≤ T}.
Here N2,N3 : [0,∞) → [0,∞), N2 is locally bounded, N3 is continuous, N1 > 0 is a
constant.

Definition 2.1 [33] The Caputo derivative of order κ (0 ≤ m ≤ κ < m + 1) for a function
g : R+ →R is

C
0 Dκ

t g(t) =
1

�(m – κ + 1)

∫ t

0

g(m+1)(θ )
(t – θ )η–m dθ .

Definition 2.2 [33] The ML function Eκ (z) with μ > 0 is defined by

Eκ (z) =
∞∑

j=0

zj

�(μj + 1)
, μ > 0, z ∈C,

and the two-parameter ML function Eκ ,p(z) with κ , p > 0 is defined by

Eκ ,p(z) =
∞∑

j=0

zj

�(κ j + p)
, κ > 0, z ∈C.

The Laplace transform of ML function Eκ ,p(z) is

L
{

tκ–1Eκ ,p
(±atκ

)}
(s) =

sκ–p

sκ ∓ a
.

For p = 1, we have

L
{

Eκ

(±atκ
)}

(s) =
sκ

sκ ∓ a
.
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Consider the following Cauchy fractional problem:

⎧
⎨

⎩

C
0 Dκ

t z(t) = A z(t) + g(t), t ≥ 0,

z(0) = z0
(4)

with κ ∈ (0, 1], z ∈R
n, A ∈R

n×n, g is a continuous function such that J ′ →R
n. To obtain

the solution of (4), take the Laplace transform

sκZ(s) – sκ–1Z(0) = A Z(s) + g(s).

Now, taking the inverse Laplace transform, we have

L–1Z(s) = L–1{sκ–1(sκ I – A
)–1}

z0 + L–1{
g(s)

} ∗L–1{(sκ I – A
)–1}.

Then

z(t) = Eκ

(
A tκ

)
z0 +

∫ t

0
(t – s)κ–1Eκ ,κ

(
A (t – s)κ

)
g(s) ds.

Lemma 2.3 [15] If the function z : (–∞,T] → H such that z(·)|J ′ ∈ PC and z0 = ϕ,
then

‖zs‖B ≤ (
MT + J

ϕ
0

)‖ϕ‖B + KT sup
{∥∥z(θ )

∥∥; θ ∈ [
0, max{0,s}]}, s ∈ X

(
�–) ∪ J ′.

Definition 2.4 z(t) ∈ J ′ → H is known as a stochastic process if system (1)–(3) satisfies
(1) z(t) is Ft-adapted measurable ∀t ∈ J ′;
(2) z(t) ∈ H satisfies the following:

z(t) = Eκ

(
A tκ

)
z0 +

∫ t

0

[
(t – s)κ–1Eκ ,κ

(
A (t – s)κ

)
ς̃ (s,z�(s,zs))

]
dw(s)

+
∫ t

0
(t – s)κ–1Eκ ,κ

(
A (t – s)κ

)
g(s,z�(s,zs)) ds

+
∫ t

0
(t – s)κ–1Eκ ,κ

(
A (t – s)κ

)
Bu(s) ds

+
k∑

n=1

Eκ (A
(
T – ˜(tn)

κ)
In

(
z ˜(tn)

)
.

Lemma 2.5 [10, 36] Assume that N is a convex, nonempty, and closed subset belonging to
the Banach space X. Suppose that L̃ and M̃ are operators such that

(i) L̃z + M̃ y ∈ N , z, y ∈ N ;
(ii) L̃ is continuous, compact;

(iii) M̃ is a contraction mapping,
then there ∃T ∈ N such that T = L̃ z + M̃ z.

3 Main result
Now, we prove the controllability results for system (1)–(3) by using the following hypoth-
esis.
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(H1) The function g : J ′ ×B → H is continuous. There exists Lg such that

E
∥
∥g(t,z1) – g(t,z2)

∥
∥ ≤ Lg‖z1 – z2‖2

B.

(H2) The function ς̃ : J ′ ×B → H is continuous. There exists Lς̃ such that

E
∥∥ς̃ (t,z1) – ς̃ (t,z2)

∥∥ ≤ Lς̃‖z1 – z2‖2
B.

(H3) ηg : [0,∞) → (0,∞) is a nondecreasing continuous function, and there exists an
integrable function m : J ′ → [0,∞) such that

∥
∥g(t,ψ)

∥
∥ ≤ m(t)ηg

(‖ψ‖B
)
, lim inf

r→∞
ηg(r)

r
= ϒ ≤ ∞.

(H4) ης̃ : [0,∞) → (0,∞) is a nondecreasing continuous function, and there exists an
integrable function m1 : J ′ → [0,∞) such that

∥∥ς̃ (t,ψ)
∥∥ ≤ m1(t)ης̃

(‖ψ‖B
)
, lim inf

r→∞
ης̃ (r)

r
= ϒ ≤ ∞.

(H5) The map In : B → H is continuous and αn : [0,∞) → (0,∞), n = 1, 2, . . . , k, exist

E
∥∥In(z)

∥∥2 ≤ αn
(
E‖z‖2), lim inf

r→∞
αn(r)

r
= ζn ≤ ∞.

(H6) A bounded and continuous function Jϕ : X (�–) → (0,∞) exists and t → ϕt is a well-
defined function from X (�–) into B such that ‖ϕB‖ ≤ Jϕ(t)‖‖ϕ‖B ∀t ∈ X (�–) for
X (�–) = {�(s,ϕ) : (s,ϕ) ∈ J ′ ×B}.

(H7) The linear operator W is defined by

Wu =
∫ T

0
(T – s)κ–1Eκ ,κ

(
A (T – s)κ

)
Bu(s) ds,

there exists a bounded invertible operator W –1 such that ‖W –1‖ ≤ l and B : U →
H is bounded, continuous, ∃ a constant M such that M = ‖(T – s)κ–1[Eκ ,κ (A (T –
s)κ )]B‖2.

For brevity,

C1 = sup
t∈J ′

∥∥Eκ

(
A tκ

)∥∥2, C2 = sup
t∈J ′

∥∥Eκ ,κ
(
A (t – s)κ

)∥∥2.

Define the control function

u(s) = B∗[(T – s)κ–1Eκ ,κ
(
A (T – s)κ

)]∗W –1y1,
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where

y1 = z1 – Eκ

(
A Tκ

)
z0 –

k∑

n=1

Eκ

(
A (T – ˜tn)κ

)
In

(
z ˜(tn)

)

–
∫ T

0
(T – s)κ–1Eκ ,κ

(
A (T – s)κ

)
g(s,z�(s,zs)) ds

–
∫ T

0
(T – s)κ–1Eκ ,κ

(
A (T – s)κ

)(
ς̃ (s,z�(s,zs))

)
dw(s).

Then

E
∥∥u(t)

∥∥2 ≤
∥
∥∥
∥

∫ t

0
(t – s)κ–1Eκ ,κ

(
A (t – s)κ

)
Bu(s) ds

∥
∥∥
∥

2

≤
∥∥
∥∥∥

∫ t

0

[
(t – s)κ–1Eκ ,κ

(
A (t – s)κ

)
B

]
[B∗[(t – s)κ–1Eκ ,κ

(
A ∗(t – s)κ

)]
W –1

×
[

z1 – Eκ

(
A Tκ

)
z0 –

k∑

n=1

Eκ

(
A (T – ˜tn)κ

)
In

(
z ˜(tn)

)

–
∫ T

0
(T – s)κ–1Eκ ,κ

(
A (T – s)κ

)
g(s,z�(s,zs)) ds

–
∫ T

0
(T – s)κ–1Eκ ,κ

(
ς̃ (s,z�(s,zs))

)
dw(s)

]∥
∥∥∥
∥

2

,

E
∥∥u(t)

∥∥2 ≤ 5M2l2T

(

E‖z1‖2 + C1E‖z0‖2 + C1

k∑

n=1

αn(r)E
∥∥z(s)

∥∥2

+ C2
T2κ–1

2κ – 1
ηg

[(
MT + J

ϕ
0

)‖ϕ‖B + KTr
] ∫ T

0
m(s) ds

+ C2
T2κ–1

2κ – 1
ης̃

[(
MT + J

ϕ
0

)‖ϕ‖B + KTr
] ∫ T

0
m1(s) ds

)

.

Theorem 3.1 The nonlinear system (1)–(3) is controllable on J ′ if

1 ≥ 5

( k∑

n=1

ζn +
T2κ–1

2κ – 1
ϒ2

[∫ T

0

(
m(s) + m1(s) ds

)]
)

[
1 + 25M2l2T

]

and (H1)–(H7) are satisfied.

Proof The operator � is defined as follows:

(�z)(t) = Eκ

(
A tκ

)
z0 +

∫ t

0

[
(t – s)κ–1Eκ ,κ

(
A (t – s)κ

)
ς̃ (s,z�(s,zs))

]
dw(s)

+
∫ t

0
(t – s)κ–1Eκ ,κ

(
A (t – s)κ

)
g(s,z�(s,zs)) ds
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+
∫ t

0
(t – s)κ–1Eκ ,κ

(
A (t – s)κ

)
Bu(s) ds

+
k∑

n=1

Eκ

(
A (T – ˜tn)κ

)
In

(
z ˜(tn)

)
.

Now, we can find a fixed point of �, which implies that system (1)–(3) is controllable, by
dividing the proof into several steps using Lemma 2.5.

Define the set Br = {z ∈ B : ‖z‖∞ ≤ r}. Clearly, Br is a convex, closed, and bounded
set in B for each r, then by Lemma 2.3

‖z�(t,zt )‖B ≤ (
MT + J

ϕ
0

)‖ϕ‖B + KT(r).

Step 1: �Br ⊂Br .
If we assume �Br ⊂ Br is false, then there ∃z ∈ Br ∀r > 0 such that r ≤ E‖�z(t)‖2,

t ∈ J ′, we get

r ≤ E
∥
∥�z(t)

∥
∥2

≤ 5E
∥
∥Eκ

(
A tκ

)
z0

∥
∥2 + 5E

∥
∥∥∥
∥

k∑

n=1

Eκ

(
A (T – ˜tn)κ

)
In

(
z( ˜tn)

)
∥
∥∥∥
∥

2

+ 5E
∥
∥∥
∥

∫ t

0
(t – s)κ–1Eκ ,κ

(
A (t – s)κ

)
g(s,z�(s,zs)) ds

∥
∥∥
∥

2

+ 5E
∥
∥∥
∥

∫ t

0
(t – s)κ–1Eκ ,κ

(
A (t – s)κ

)
ς̃ (s,z�(s,zs)) dw(s)

∥
∥∥
∥

2

+ 5E
∥
∥∥
∥

∫ t

0
(t – s)κ–1Eκ ,κ

(
A (t – s)κ

)
Bu(s) ds

∥
∥∥
∥

2

≤ 5C1E‖z0‖2 + 5C1

k∑

n=1

αn(r)
∥
∥z(s)

∥
∥2

+ 5C2
T2κ–1

2κ – 1
ηg

[(
MT + J

ϕ
0

)‖ϕ‖B + KTr
] ∫ T

0
m(s) ds

+ 5C2
T2κ–1

2κ – 1
ης̃

[(
MT + Jϕ

0
)‖ϕ‖B + KTr

] ∫ T

0
m1(s) ds

+ 25M2l2T

[

E‖z1‖2 + 5C1E‖z0‖2 + 5C1

k∑

n=1

αnE
∥
∥z(s)

∥
∥2

+ 5C2
T2κ–1

2κ – 1
ηg

[(
MT + J

ϕ
0

)‖ϕ‖B + KTr
] ∫ T

0
m(s) ds

+ 5C2
T2κ–1

2κ – 1
ης̃

[(
MT + J

ϕ
0

)‖ϕ‖B + KTr
] ∫ T

0
m1(s) ds

]

,

r ≤ 5C1

[

E‖z0‖2 +
k∑

n=1

αn(r)E
∥
∥z(s)

∥
∥2

]
[
1 + 25M2l2T

]

+
[

5C2
T2κ–1

2κ – 1
(ηg + ης̃ )

[(
MT + J

ϕ
0

)‖ϕ‖B + KTr
](∫ T

0
m(s) + m1(s) ds

)]
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× [
1 + 25M2l2T

]
+ 25M2l2TE‖z1‖2,

and hence

1 ≤ 5

( k∑

n=1

ζn +
T2κ–1

2κ – 1
ϒ2

[∫ T

0

(
m(s) + m1(s) ds

)
])

[
1 + 25M2l2T

]
.

This contradicts the assumption. Thus, for some r > 0, �Br ⊂Br .
Consider

�(z) = �1(z) + �2(z),

where

(�1z)(t) =
∫ t

0
(t – s)κ–1Eκ ,κ

(
A (t – s)κ

)
g(s,z�(s,zs)) ds

+
∫ t

0
(t – s)κ–1Eκ ,κ

(
A (t – s)κ

)(
ς̃ (s,z�(s,zs))

)
dw(s),

(�2z)(t) = Eκ

(
A tκ

)
z0 +

k∑

n=1

Eκ

(
A (t – ˜tn)κ

)
In

(
z ˜(tn)

)

+
∫ t

0
(t – s)κ–1Eκ ,κ

(
A (t – s)κ

)
Bu(s) ds.

Step 2: �1(z) is contractive. Suppose z1,z2 ∈Br ,

E
∥∥�1(z1)(t) – �1(z2)(t)

∥∥2

≤ 2E
∥∥
∥∥

∫ t

0
(t – s)κ–1Eκ ,κ

(
A (t – s)κ

){
g(s,z1�(s,z1s)) – g(s,z2�(s,z2s))

}
ds

∥∥
∥∥

2

+ 2E
∥∥∥
∥

∫ t

0
(t – s)κ–1Eκ ,κ

(
A (t – s)κ

)({
ς̃ (s,z1�(s,z1s)) – ς̃ (s,z2�(s,z2s))

}
dw(s)

)
∥∥∥
∥

2

≤ 2C2
T2κ–1

2κ – 1
Lg‖z1�(s,z1s) – z2�(s,z2s)‖2 + 2C2

T2κ–1

2κ – 1
Lς̃‖z1�(s,z1s) – z2�(s,z2s)‖2

≤ 2C2
T2κ–1

2κ – 1
(
[Lg + Lς̃ ]ϒ2) sup

0≤s≤T
E
∥∥z1(s) – z2(s)

∥∥2

≤ L0
∥
∥z1(s) – z2(s)

∥
∥2,

where

L0 = 2C2
T2κ–1

2κ – 1
(
[Lg + Lς̃ ]ϒ2).

Therefore L0 ≤ 1, �1(z) is contractive.
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Step 3: For every z ∈Br ,

E
∥
∥�2(z)(t)

∥
∥2 ≤ 3E

∥
∥Eκ

(
A tκ

)
z0

∥
∥2 + 3E

∥
∥∥∥
∥

k∑

n=1

Eκ

(
A (T – ˜tn)κ

)
In

(
z ˜(tn)

)
∥
∥∥∥
∥

2

+ 3E
∥
∥∥
∥

∫ t

0
(t – s)κ–1Eκ ,κ

(
A (t – s)κ

)
Bu(s) ds

∥
∥∥
∥

2

≤ 3C1

(

E‖z0‖2 +
k∑

n=1

αn(r)E
∥
∥z(s)

∥
∥2

)

+ 3M2T
∥
∥u(s)

∥
∥2

≤ 3

(

C1E‖z0‖2 +
k∑

n=1

αn(r)E
∥∥z(s)

∥∥2 + M2T
∥∥u(s)

∥∥2
)

.

Therefore, E‖�2(z)(t)‖2 is bounded in Br .
Step 4: �2 is equicontinuous. Assume 0 ≤ τ1 ≤ τ2 ≤ T,

E
∥∥�2(z)(τ2) – �2(z)(τ1)

∥∥2

≤ 4E
∥∥[

Eκ

(
A (τ2)κ

)
– Eκ

(
A (τ1)κ

)]
z0

∥∥2

+ 4E

∥∥
∥∥
∥

k∑

n=1

[
Eκ ,κ

(
A (τ2 – ˜tn)

)κ – Eκ ,κ
(
A (τ1 – ˜tn)

)κ]Inz( ˜tn)

∥∥
∥∥
∥

2

+ 4E
∥
∥∥
∥

∫ τ1

0

[
(τ2 – s)κ–1Eκ ,κ

(
A (τ2 – s)κ

)
– (τ1 – s)κ–1Eκ ,κ

(
A (τ1 – s)κ

)]

× Bu(s) ds
∥
∥∥
∥

2

+ 4E
∥
∥∥
∥

∫ τ2

τ1

[
(τ2 – s)κ–1Eκ ,κ

(
A (τ2 – s)κ

)]
Bu(s) ds

∥
∥∥
∥

2

,

E
∥
∥�2z(τ2) – �2z(τ1)

∥
∥2

≤ 4E
∥∥[

Eκ

(
A (τ2)κ

)
– Eκ

(
A (τ1)κ

)]
z0

∥∥2

+ 4E
∥∥[

Eκ

(
A (τ2 – ˜tn)κ

)
– Eκ

(
A (τ1 – ˜tn)κ

)]∥∥2
k∑

n=1

αn(r)E
∥∥z(s)

∥∥2

+ 4M2
∫ τ1

0

([
E
∥
∥[

(τ2 – s)κ–1Eκ ,κ
(
A (τ2 – s)κ

)
– (τ1 – s)κ–1

× Eκ ,κ
(
A (τ1 – s)κ

)]
ds

∥∥2]E
∥∥u(s)

∥∥2) + 4M2 (τ2 – τ1)2κ–1

2κ – 1
∥∥u(s)

∥∥2.

Thus E‖�2z(τ2) – �2z(τ1)‖2 → 0 as T → 0. Thus �2 is equicontinuous.
Step 5: Let 0 ≤ ε ≤ t for any z ∈Br . Now, define an operator �ε on Br by

�ε
2z(t) = Eκ

(
A tκ

)
z0 +

k∑

n=1

Eκ

(
A (T – ˜tn)κ

)
In

(
z ˜(tn)

)

+
∫ t–ε

0
(t – s)κ–1Eκ ,κ

(
A (t – s)κ

)
Bu(s) ds
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= Eκ

(
A tκ

)
z0 +

n∑

i=k

Eκ

(
A (T – ˜tn)κ

)
In

(
z ˜(tn)

)

+ T(ε)
∫ t–ε

0
(t – s – ε)κ–1Eκ ,κ

(
A (t – s – ε)κ

)
Bu(s) ds.

Since T(t) is a compact operator, V (t) = {�2z(t),z ∈ Br} is relatively compact in H for
every ε > 0. Also, for every z ∈Br , we have

E
∥∥(�2)z(t) –

(
�ε

2
)
z(t)

∥∥2

≤
∥
∥∥
∥∥

∫ t

t–ε

[
B(t – s)κ–1Eκ ,κ

(
A (T – s)κ

)]∗W –1

×
[

z1 – Eκ

(
A Tκ

)
z0 –

k∑

n=1

Eκ

(
A (T – ˜tn)κ Inz ˜(tn)

)

–
∫ T

0
(T – s)κ–1Eκ ,κ

(
A (T – s)κ

)
g(s,z�(s,zs)) ds

–
∫ T

0
(T – s)κ–1Eκ ,κ

(
A (T – s)κ

)(
ς̃ (s,z�(s,zs))

)
dw(s)

]∥∥
∥∥
∥

2

.

Therefore, E‖�2(z)(t) – (�ε
2(z)(t))‖2 → 0 as ε → 0, and for each t ∈ J ′, there are rela-

tively compact sets arbitrarily close to the set V(t). Hence V (t) = {�2z(t),z ∈ Br} is rela-
tively compact in H . So from the Arzela–Ascoli theorem, �2 is completely continuous.
Thus, from Lemma 2.5, � has a fixed point. Hence system (1)–(3) is controllable on J ′. �

Corollary 3.2 In the absence of a stochastic system, system (1)–(3) reduces to the following
form:

C
0 Dκ

t z(t) = A z(t) + Bu(t) + g(t,z�(t,zt )), t ∈ J ′ = [0,T], (5)

z(0) = z0, (6)

�z(t) = In(z ˜(tn), t = ˜tn, n = 1, 2, . . . , k, (7)

where A , B, g are defined the same as before. Then the solution of system (5)–(7) can be
written as follows:

z(t) = Eκ

(
A tκ

)
z0 +

∫ t

0
(t – s)κ–1Eκ ,κ

(
A (t – s)κ

)
g(s,z�(s,zs)) ds

+
∫ t

0
(t – s)κ–1Eκ ,κ

(
A (t – s)κ

)
Bu(s) ds

+
k∑

n=1

Eκ

(
A (t – ˜tn)

κ)
In

(
z ˜(tn)

)
,
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and it satisfies hypotheses (H1)–(H4), (H6), and (H7), then for any t ∈ J ′ the control can be
chosen as

u(s) = B∗[(T – s)κ–1Eκ ,κ
(
A (T – s)κ

)]∗W –1

[

z1 – Eκ

(
A Tκ

)
z0

–
k∑

n=1

Eκ

(
A (T – ˜tn)κ

)
In

(
z ˜(tn)

)

–
∫ T

0
(T – s)κ–1Eκ ,κ

(
A (T – s)κ

)
g(s,z�(s,zs)) ds

]

.

Then the solution of system (5)–(7) satisfies z(t) = z1, and hence the system is controllable
on J ′.

Corollary 3.3 In the absence of an impulsive condition, system (1)–(3) reduces to the fol-
lowing form:

C
0 Dκ

t z(t) = A z(t) + Bu(t) + g(t,z�(t,zt )) + ς̃ (t,z�(t,zt ))
dw(t)

dt
, t ∈ J ′ = [0,T], (8)

z(0) = z0, (9)

where A , B, g, ς̃ are defined the same as before. Then the solution of system (8)–(9) can
be written as follows:

z(t) = Eκ

(
A tκ

)
z0 +

∫ t

0
(t – s)κ–1Eκ ,κ

(
A (t – s)κ

)
g(s,z�(s,zs)) ds

+
∫ t

0
(t – s)κ–1Eκ ,κ

(
A (t – s)κ

)
Bu(s) ds

+
∫ t

0
(t – s)κ–1Eκ ,κ

(
A (t – s)κ

)(
ς̃ (s,z�(s,zs))

)
dw(s),

and it satisfies hypotheses (H1), (H3), and (H5)–(H7). Then, for any t ∈ J ′, the control can
be chosen as follows:

u(s) = B∗[(T – s)κ–1Eκ ,κ
(
A (T – s)κ

)]∗W –1
[
z1 – Eκ

(
A Tκ

)
z0

–
∫ T

0
(T – s)κ–1Eκ ,κ

(
A (T – s)κ

)
g(s,z�(s,zs)) ds

–
∫ T

0
(T – s)κ–1Eκ ,κ

(
A (T – s)κ

)(
ς̃ (s,z�(s,zs))

)
dw(s)

]
.

Then the solution of system (8)–(9) satisfies z(t) = z1, and hence the system is controllable
on J ′.

Corollary 3.4 The solution of the linear system

C
0 Dκ

t z(t) = A z(t) + Bu(t) + ς̃ (t)
dw(t)

dt
, t ∈ J ′ = [0,T],
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z(0) = z0,

�z(t) = In(z ˜(tn), t = ˜tn, n = 1, 2, . . . , k,

can be expressed as

z(t) = Eκ

(
A tκ

)
z0 +

∫ t

0
(t – s)κ–1Eκ ,κ

(
A (t – s)κ

)
ς̃ (s) dw(s)

+
∫ t

0
(t – s)κ–1Eκ ,κ

(
A (t – s)κ

)
Bu(s) ds +

k∑

n=1

Eκ

(
A

(
T – ˜(tn)

)κ)In
(
z ˜(tn)

)
.

The linear system (4)–(6) is controllable if and only if the controllability Grammian matrix

W (t) =
∫ T

0
(T – s)κ–1[Eκ ,κ

(
A (T – s)κ

)
B

][
Eκ ,κ

(
A (T – s)κ

)
B

]∗ ds

is nonsingular on J ′ = [0,T].

Remark 3.5 The research on the results for optimal control of fractional stochastic sys-
tems driven by the Wiener process and fractional Brownian motion with noninstanta-
neous impulsive effects was investigated in [8] and in [34]. The authors investigated valu-
able insights into the controllability of fractional stochastic inclusions with fractional
Brownian motion effects. The analysis of a system with a fractional derivative that can be
steered from one state to another by an admissible control input was discussed by differing
the type of stochastic, impulsive, and delay effects and the applications and implications
of their findings. To the best of the authors’ knowledge, there is no work concerning the
controllability of stochastic fractional systems with state-dependent delay and impulsive
effects, which is the main motivation of the work.

4 Example
Example 4.1 Consider the nonlinear impulsive fractional stochastic system

C
0 Dκ

t z(t) = A z(t) + Bu(t) + ς̃ (t,z�(t,zt ))
dw(t)

dt
+ g(t,z�(t,zt )), t ∈ J ′ = [0,T], (10)

z(0) = z0, (11)

�z(t) = In(z ˜(tn), t = ˜tn, n = 1, 2, . . . , k, (12)

with κ = 1/2, �(t, zt) = t – p(z(t)), p = 1/3, T = 2,

A =

[
0 1
1 0

]

, B =

[
0
1

]

, z(t) =

[
z1(t)
z2(t)

]

, z0 =

[
1
1

]

, In =

[
2 0
0 2

]

,

ς̃ (t,z�(t,zt )) =

[
ln(cosh(t – p(z(t))))

sinh(t – p(z(t)))

]

, g(t,z�(t,zt )) =

⎡

⎣
z1(t–p(z(t)))

1+z2
1(t–p(z(t)))

z2(t–p(z(t)))
1+z2

2(t–p(z(t)))

⎤

⎦ .
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Then, from hypothesis (H7), the controllability matrix W is found by

W (t) =
∫ T

0
(T – s)κ–1[Eκ ,κ

(
A (T – s)κ

)
B

][
Eκ ,κ

(
A (T – s)κ

)
B

]∗ ds

=
∫ 2

0
(2 – s)κ–1[Eκ ,κ

(
A (2 – s)κ

)
B

][
Eκ ,κ

(
A (2 – s)κ

)
B

]∗ ds

=
∫ 2

0
(2 – s)–1/2

[
2 – s
0.564

]
[
2 – s 0.564

]
ds

=

[
2.263 1.063
1.063 0.5997

]

,

which is positive definite. Further, ς̃ and g satisfy the hypotheses of Theorem 3.1. Also,
the corresponding linear system is controllable. Hence the nonlinear impulsive fractional
stochastic system (10)–(12) is controllable on J ′ = [0,T].

5 Conclusion
Controllability results for nonlinear impulsive fractional stochastic systems involving SDD
have been derived based on stochastic theory and fractional calculus under certain as-
sumptions in a Hilbert space. On the basis of the control input, sufficient conditions for
the controllability criteria have been obtained using Krasnoselskii’s fixed point theorem.
An example is included to validate the obtained criteria. FDEs system with delay arises
in many applications; moreover, the proposed approach could be applied to other kinds
of multi-order fractional dynamical systems involving various delay effects, which will be
the focus of future research.
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