
Advances in Continuous
and Discrete Models

Anguelov and Lubuma Advances in Continuous and Discrete Models         (2023) 2023:38 
https://doi.org/10.1186/s13662-023-03784-2

R E S E A R C H Open Access

Forward invariant set preservation in
discrete dynamical systems and numerical
schemes for ODEs: application in biosciences
Roumen Anguelov1,2* and Jean M.-S. Lubuma3

*Correspondence:
roumen.anguelov@up.ac.za
1Department of Mathematics and
Applied Mathematics, University of
Pretoria, Pretoria, South Africa
2Institute of Mathematics and
Informatics, Bulgarian Academy of
Sciences, Sofia, Bulgaria
Full list of author information is
available at the end of the article

Abstract
We present two results on the analysis of discrete dynamical systems and finite
difference discretizations of continuous dynamical systems, which preserve their
dynamics and essential properties. The first result provides a sufficient condition for
forward invariance of a set under discrete dynamical systems of specific type, namely
time-reversible ones. The condition involves only the boundary of the set. It is a
discrete analog of the widely used tangent condition for continuous systems (viz. the
vector field points either inwards or is tangent to the boundary of the set). The
second result is nonstandard finite difference (NSFD) scheme for dynamical systems
defined by systems of ordinary differential equations. The NSFD scheme preserves the
hyperbolic equilibria of the continuous system as well as their stability. Further, the
scheme is time reversible and, through the first result, inherits from the continuous
model the forward invariance of the domain. We show that the scheme is of second
order, thereby solving a pending problem on the construction of higher-order
nonstandard schemes without spurious solutions. It is shown that the new scheme
applies directly for mass action-based models of biological and chemical processes.
The application of these results, including some numerical simulations for invariant
sets, is exemplified on a general Susceptible-Infective-Recovered/Removed (SIR)-type
epidemiological model, which may have arbitrary large number of infective or
recovered/removed compartments.
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1 Introduction
Dynamical systems are pervasive in the modelling of naturally occurring phenomena [25].
While there are many results of the theory of continuous dynamical systems that permit
to model the features of real-life processes, capturing them with discrete dynamical sys-
tems can be challenging. One typical and fundamental example is the forward invariance
of a closed set D contained in open set � ⊂ R

n with respect to the following system of
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autonomous ordinary differential equations:

dx
dt

≡ ẋ = f (x) in �, (1)

in which the independent variable is the time t ≥ 0 and the function f is smooth enough.
For convenience, we recall that the said forward invariant property means that

S(t)x0 ∈ D at all time t ∈ [0,∞) and for any x0 ∈ D, (2)

where S(t) denotes the solution operator and we assume that there exists a unique global
solution S(t)x0 for any initial condition x(0) = x0 ∈ D.

A short account on the invariance problem is given in [27]. The basic hypothesis for the
invariance property (2) is a tangent condition that roughly states that at a point x on the
boundary ∂D of D, i.e., x ∈ ∂D, the vector f (x) is either tangent to D or points into the
interior,

◦
D, of D. In 1942, Nagumo [21] formulated the tangent condition in the following

form, using the distance d(x, D) from a point x to the set D:

lim
h→0+

1
h

d
(
x + hf (x), D

)
= 0 for x ∈ closure(D). (3)

It took nearly three decades for the invariance problem to be revitalized, starting with the
seminal works of Brezis [8], who used the definition (3), and that of Bony [7], who came
up with the following subtler formulation of the tangent condition based on the inner
product, 〈x, y〉, in R

n:

〈
ν(x), f (x)

〉 ≤ 0 for x ∈ ∂D, (4)

where ν(x) is any outer normal to D at x (in the sense of Bony). Let us recall that a vector
ν(x) �= 0 is called outer normal vector to D at x ∈ ∂D if the open ball with center x+ν(x) and
radius |ν(x)| has no intersection with

◦
D. The straight line through x perpendicular to ν(x)

is called a tangent. This general definition of normal vector and tangent does not require
any smoothness of the boundary ∂D, which is rather convenient in applications. Let us
note that the normal vector ν(x), similarly the associated tangent, need not exist and, if
existing, need not be unique. However, ν(x) at the point x ∈ ∂D reduces to the classical
outer normal if the boundary is smooth, so the tangent exists in the classical sense at x.

In the late sixties, there was a great deal of solving the invariance problem (and /or re-
lated issues of existence of solution of the initial value problem) under either formulation
of the tangent condition (3) or (4), as seen from the contributions in [10, 13, 23], where
the works of Bony and Brezis [7, 8] were revisited, compared, and extended. Since then,
the tangent condition has abundantly been used, particularly in mathematical biology, to
show the forward invariant structure of the positive cone R

n
+ with respect to ordinary

differential equation models and even with respect to reaction diffusion models (see for
instance [24, 28]). However, to the authors’ best knowledge, the use of the tangent con-
dition to establish the forward invariant nature of sets under discrete dynamical systems
has not been explored.
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The purpose of this work is primarily to fill this gap. To this end we consider a discrete
dynamical system

xk+1 = F(h, xk) ≡ F(h)(xk), (5)

where in the map, F ≡ F(h, x) ≡ F(h)(x) : R×R
n →R

n, the parameter h > 0 represents the
time step size between two consecutive states xk and xk+1. This map is assumed to be as
smooth as needed in the two arguments. The specific class of discrete dynamical systems
we will focus on is defined as follows [12]:

Definition 1 A discrete dynamical system (5) is called symmetric or (time) reversible if

xk = F(–h, xk+1). (6)

More generally, the discrete dynamical system is said to be reversible for all x whenever
y = F(h, x) implies that x = F(–h, y), which means that F(–h, ·) is the inverse F(h, ·).

We introduce a discrete analog of the tangent condition that in essence states the fol-
lowing: there exists h > 0 such that for all x ∈ ∂D and h ∈ (0, h], the vector F(–h, x) – x does
not point inside

◦
D. Under this condition, we show that the set D is invariant under the map

F(h, .) for every h in (0, h].
A natural question of interest is to link the above-stated discrete tangent condition to

continuous dynamical systems. This brings us to the second purpose of this paper, which
we achieve by considering the sequence (xk) obtained recursively through Eq. (5) as ap-
proximations at the discrete times tk = hk, h > 0, k = 0, 1, 2, . . . of the solutions x(t) = S(t)x0

of the continuous system (1). In this case, it is essential to assume that

F is at least continuous on x and continuously differentiable on h, (7)

and that it satisfies the consistency requirements,

F(0, x) = x,
dF(0, x)

dh
= f (x). (8)

Our specific aim is that the numerical method (5) is reliable in the three important direc-
tions below. The numerical method must satisfy the discrete tangent condition whenever
the tangent condition holds for the continuous system, thereby showing that the scheme
preserves the forward invariant structure. Furthermore, the numerical method must be
elementarily stable and second-order convergent.

Regarding the latter targeted property, we stress that the construction of higher-order
nonstandard finite difference (NSFD) schemes that are dynamically consistent with the
underlying features of the continuous differential equations, particularly for those with
transient dynamics, is a pending problem. Several authors have attempted to address this
problem. These include the nonstandard versions of the classical θ -method, with θ = 1/2,
developed in [1–3, 16], where the positivity of the discrete solution is achieved by also us-
ing Mickens’ rule on a nontrivial denominator function for the discrete derivative [18, 19].
In the same vein, we mention the recent work [15], valid for a scalar differential equation,
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where the second-order accuracy and elementary stability are achieved by a modified non-
standard θ method, 0 ≤ θ ≤ 1, in which the nontrivial denominator function varies at each
iteration.

The rest of the paper is organized as follows. In the next section, we state precisely the
discrete tangent condition in two equivalent forms and establish the forward invariance
property under time-reversible flows. We devote Sect. 3 to the construction of a NSFD
scheme that is time-reversible, and show that, in essence, this property makes our scheme
of second-order accuracy and elementarily stable. In the same section, it is further shown
via the discrete tangent condition that the NSFD scheme preserves the forward invari-
ance structure of the continuous dynamical system. The case of mass action models of
biological and chemical processes is considered in detail in Sect. 4, followed by Sect. 5
on a general SIR-type epidemiological model with arbitrary number of infective or recov-
erred/removed compartments. Concluding remarks with possible extensions of this work
are given in Sect. 6.

2 Domain preserving property of reversible schemes
The theory for continuous dynamical systems of the form (1) provides theorems proving
that a set in R

n is forward invariant through conditions only on the boundary of the set,
namely the tangent condition as stated in (3) or (4), see for instance [27]. In this section
we derive discrete counterparts of the tangent condition and resulting theorems for the
forward invariance of sets under reversible maps.

Let the closed set D be a subset of � and be related to its interior,
◦
D, and boundary, ∂D,

as follows:

D = closure(
◦
D) =

◦
D ∪ ∂D. (9)

Theorem 2 Let the discrete dynamical system (5) be reversible for all h ∈ (0, h] and let
(7)–(8) hold. Then the set D is invariant under F(h, ·) for every h ∈ (0, h) if and only if,

F(–h, ∂D) ∩ ◦
D = ∅, h ∈ (0, h]. (10)

Proof To show that Condition (10) is sufficient for the invariance of D, let us consider
x ∈ ◦

D. Assume that there exists h ∈ (0, h] such that F(h, x) /∈ ◦
D. Since F(h, x) is continuous

on h, there exists ĥ ∈ (0, h] such that y = F(ĥ, x) ∈ ∂D. Equivalently, x = F(–ĥ, y), which
contradicts the Condition (10). Therefore, F(h, x) ∈ ◦

D. Considering that x is an arbitrary
element of

◦
D, we have F(h,

◦
D) ⊆ ◦

D. Using (9) and the continuity of F on x, we obtain
F(h, D) ⊆ D, h ∈ (0, h].

Conversely, let D be invariant under F(h, ·) for every h ∈ (0, h], i.e.,

F(h, D) ⊆ D for every h ∈ (0, h], (11)

and assume that Condition (10) is violated, that is, there exists h ∈ (0, h] and x ∈
F(–h, ∂D) ∩ ◦

D. Then, using the fact that F(–h, ·) is the inverse of F(h, ·) we have

y = F(h, x) ∈ F
[
h, F(–h, ∂D)

] ∩ F(h,
◦
D) = ∂D ∩ F(h,

◦
D). (12)
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From the continuity of F(–h, ·), it follows that the set F(h,
◦
D) is open. Therefore, there exists

ε > 0 such that the open ball Vεy with radius ε and centered at y satisfies Vε(y) ⊆ F(h,
◦
D).

Since y is on the boundary of D, the open ball Vε(y) contains points which are not in D.
More precisely, there exists z /∈ D such that

z ∈ Vε(y) ⊆ F(h,
·

D).

This is a contradiction to (11), which proves that Condition (10) is necessary for the stated
invariance of D. �

Condition (10) is not easy to verify. If the set D is convex, we replace below Condi-
tion (10) by an equivalent condition, requiring that the vector F(–h, x) – x be outward di-
rected or tangential to D at x ∈ ∂D. The latter condition is our proposed discrete analog of
Bony [7] tangent condition for continuous dynamical systems, based on Bony’s definition
of outer normal vector ν(x), stated in (4).

Let D be convex. Then some comments on outer normal vectors are in order. First, let
us recall that a supporting hyperplane to D at a point x ∈ ∂D is a hyperplane containing
the point x, while the set D is contained in one of the closed halfspaces determined by the
hyperplane. The so-called supporting hyperplane theorem [17] states that for D, a closed
convex set with nonempty interior, there exists a supporting hyperplane at every x ∈ ∂D.
It is easy to see that the vector ν(x), which is normal to the supporting hyperplane at x and
points in the halfspace not containing D, is an outer normal vector to D at x in Bony’s sense
given in the introduction. Under the stated assumptions, it follows from the hyperplane
separation theorem for convex sets [17] that one can associate a supporting hyperplane
with every outer normal vector, a fact that is intuitively clear. To fix the notation, the sup-
porting hyperplane at x ∈ ∂D with an outer normal vector ν(x) is the set

H0
ν(x) :=

{
y ∈R

n :
〈
y – x,ν(x)

〉
= 0

}
,

which is the common boundary of the following two closed halfspaces:

H+
ν(x) =

{
y ∈R

n :
〈
y – x,ν(x)

〉 ≥ 0
}

,

H–
ν(x) =

{
y ∈R

n :
〈
y – x,ν(x)

〉 ≤ 0
}

.

Then, the fact that H0
ν(x) is a supporting hyperplane of D at x ∈ ∂D is expressed by the

inclusion

D ⊆H–
ν(x),

or, equivalently,

◦
D ⊆ ◦

H–
ν(x). (13)

Theorem 3 Let a discrete dynamical system (5) be reversible for all h ∈ (0, h] and let D be
a closed and convex subset of � satisfying (9). Then the set D is invariant under F(h, ·) for
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every h ∈ (0, h] if, and only if, for every h ∈ (0, h] and x ∈ ∂D, there exists y ∈ ∂D and an
outer normal vector ν(y) such that

〈
ν(y), F(–h, x) – y

〉 ≥ 0. (14)

Proof We show that the discrete tangent condition (14) implies Condition (10). Indeed,
let h ∈ (0, h] and x ∈ ∂D. Using the convexity of D, the inequality (14) shows that

F(–h, x) ∈H+
ν(y). (15)

Using (13), we obtain

◦
D ∩H+

ν(y) ⊆ ◦
H–

ν(y) ∩H+
ν(y) = ∅. (16)

Then (15) and (16) imply that F(–h, x) /∈ ◦
D. Considering that h ∈ (0, h] and x ∈ ∂D are

arbitrary, Condition (10) follows.
To show the converse implication (10) �⇒ (14), let h ∈ (0, h] and x ∈ ∂D. Condition (10)

shows that F(–h, x) /∈ ◦
D. From the hyperplane separation theorem of convex sets it follows

that there exists y ∈ ∂D and an outer normal vector ν(y) such that F(–h, x) ∈H+
ν(y), which

implies (14). �

The difficulty raised about the practical use of Condition (10) is equally present in its
equivalent formulation (14). In applications, it is easier to use the latter condition with
y = x, i.e., Eq. (17) below. This turns out to be our discrete tangent condition, which, as
stated in the next theorem, is a sufficient condition under which the forward invariance
property with respect to discrete dynamical systems is achieved.

Theorem 4 Let a discrete dynamical system (5) be reversible for all h ∈ (0, h] and let D be
a closed and convex subset of � satisfying (9). Then the set D is invariant under F(h, ·) for
every h ∈ (0, h] if

〈
ν(x), F(–h, x) – x

〉 ≥ 0, for h ∈ (0, h], x ∈ ∂D, ν(x) - outer normal to D at x. (17)

3 Reversible nonstandard finite difference schemes
In the construction of nonstandard finite difference schemes, Mickens [18, 19] made an
important observation, namely, that the discrete models of differential equations have
a larger parameter space than the corresponding differential equations. Adding to this
Mickens’ Rule 1, which says that the orders of the discrete derivatives must be exactly
equal to the orders of the corresponding derivatives of the differential equations, it is con-
venient in the setting of Mickens’ nonlocal approximation Rule 3, to view the right-hand
side of the system (1) as a restriction, on the diagonal z = y, of a certain function of two
variables ϕ ≡ ϕ(y, z) such that f (x) = ϕ(x, x) and hence the system takes the form

ẋ = ϕ(x, x), x ∈ � ⊆R
n. (18)
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We consider the numerical method,

xk+1 – xk

h
=

1
2
(
ϕ(xk+1, xk) + ϕ(xk , xk+1)

)
, (19)

which is a NSFD scheme [4], on which only the nonlocal approximation of the right-hand
side of (18) is used, the rule on the complex denominator function of the derivatives being
excluded. The NSFD scheme (19) is implicit. The existence and uniqueness of solution of
the respective system of algebraic equation is an issue which requires attention on its own.
To make this NSFD scheme a generalized dynamical system on � [25], we will assume here
that

(i) given xk ∈ �, equation (19) has a unique solution xk+1 in �;
(ii) different values of xk result in different solutions for xk+1.

(20)

Finding general conditions for (20) to hold is challenging, as is the case for general equa-
tions of the form G(x, y) = 0 solved by using for instance the implicit function theorem,
sophisticated fixed-point iterations, etc. However, in particular settings, as the ones that
arise in applications and are considered in the sequel, such conditions are relatively easy
to formulate.

Theorem 5 Assume that (20) holds. Then the NSFD scheme (19) satisfies the following
properties:

a) It is time-reversible;
b) It is elementarily stable in the sense that

b1) Its fixed points are precisely the equilibrium points of the system (18);
b2) It replicates the local stability of all hyperbolic equilibrium points of (18);

c) It is a second-order scheme for the Equation (18).

Proof The Assumption (20) implies that the NSFD scheme (19) can be written in the ex-
plicit form (5), where the function F satisfies the equation

F(h, x) – x =
h
2
[
ϕ
(
F(h, x), x

)
+ ϕ

(
x, F(h, x)

)]
. (21)

a) If in the Equation (19) we interchange xk and xk+1 and replace h by –h, the equa-
tion remains the same. Therefore, (6) holds, which means that the NSFD scheme is time-
reversible.

b1) It is clear that x is a fixed point of (19) if, and only if, ϕ(x, x) = 0, i.e. x is an equilibrium
point of (18).

b2) Let us use the explicit form (5) of (19). From (21), the Jacobian matrix (in the x
variable) of F satisfies

∂F(h, x)
∂x

– I =
h
2

(
∂ϕ

∂y
(
F(h, x), x

)∂F(h, x)
∂x

+
∂ϕ

∂z
(
F(h, x), x

)

+
∂ϕ

∂y
(
x, F(h, x)

)
+

∂ϕ

∂z
(
x, F(h, x)

)∂F(h, x)
∂x

)
, (22)
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where I denotes here and after the n × n identity matrix. Let x be an arbitrary fixed point
of (19). At x = x, using F(h, x) = x, Equation (22) simplifies to

(
I –

h
2

(
∂ϕ

∂y
(x, x) +

∂ϕ

∂z
(x, x)

))
∂F(h, x)

∂x
= I +

h
2

(
∂ϕ

∂y
(x, x) +

∂ϕ

∂z
(x, x)

)
,

or, equivalently,

(
I –

h
2

∂f (x)
∂x

)
∂F(h, x)

∂x
= I +

h
2

∂f (x)
∂x

. (23)

Let λ ≡ �(λ) + ı�(λ) be an eigenvalue of ∂f (x)
∂x with associated left eigenvector v. Then

multiplying both sides of (23) on the left by v, we obtain

(
1 –

h
2
λ

)
v
∂F(h, x)

∂x
=

(
1 +

h
2
λ

)
v.

It follows from (20) that the matrix ∂F(h,x)
∂x is not singular. Then, due to the obvious impos-

sibility for 1 – h
2 λ and 1 + h

2 λ to be both zero, neither of them is. Hence

v
∂F(h, x)

∂x
=

1 + h
2 λ

1 – h
2 λ

v.

Therefore, to every eigenvalue λ of ∂f (x)
∂x with associated left eigenvector v corresponds

an eigenvalue μ = 1+ h
2 λ

1– h
2 λ

of the matrix ∂F(h,x)
∂x with the same left eigenvector v. After some

technical manipulation, we obtain

|μ|2 =
(1 + h

2 �(λ))2 + h2

4 �2(λ)

(1 – h
2 �(λ))2 + h2

4 �2(λ)

=
1 + h2

4 |λ|2 + h�(λ)

1 + h2
4 |λ|2 – h�(λ)

. (24)

It follows from (24) that

�(λ) < 0 ⇐⇒ |μ| < 1,

which implies that a hyperbolic equilibrium point x of (18) is asymptotically stable if and
only if it is asymptotically stable as a fixed-point of (19).

c) Let x ∈ � and let u(t) = S(t)x denote the solution of (1) with u(0) = x. Denote

ξ =
1
2
(
F(h)(x) + x

)
.

Taylor expansion about h = 0 yields

ξ =
1
2

(
x + F(0, x) + h

dF
dh

(0, x) + O
(
h2)

)
,
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so that

ξ = u
(

h
2

)
+ O

(
h2), (25)

by the consistency conditions (8). Then, for the local truncation error,

E(h) := u(h) – F(h, x) = u(h) – x –
h
2
ϕ
(
F(h)(x), x

)
–

h
2
ϕ
(
x, F(h)(x)

)
,

of the NSFD scheme (5) and (21), Taylor expansions of u about h
2 and of ϕ about (y, z) =

(ξ , ξ ) yield

E(h) = hu̇
(

h
2

)
–

h
2

(
ϕ(ξ , ξ ) +

∂ϕ(ξ , ξ )
∂y

(
F(h)(x) – ξ

)
+

∂ϕ(ξ , ξ )
∂z

(x – ξ )
)

–
h
2

(
ϕ(ξ , ξ ) +

∂ϕ(ξ , ξ )
∂y

(x – ξ ) +
∂ϕ(ξ , ξ )

∂z
(
F(h)(x) – ξ

))
+ O

(
h3)

= h
(

f
(

u
(

h
2

))
– f (ξ )

)
+ O

(
h3).

Then performing a further Taylor expansion and using (25), we obtain E(h) = O(h3) from
which second-order accuracy follows by the standard theory for one-step numerical meth-
ods. �

Remark 6 Since the scheme (19) is symmetric, the statement c) in Theorem 5 can be de-
rived from the general theory of symmetric schemes [12]. We note that properties in items
a) and b) are of qualitative nature and do not follow from the standard numerical analysis
theory, involving zero-stability, consistency, and therefore convergence.

4 Application to mass action-type models
Modelling of biological and chemical processes by applying the mass action principle for
representing the interaction of the involved species typically results in a system of the form
(18) in �, a convex and compact subset of Rn

+, where the function ϕ is linear in both its
arguments. Then ϕ can be represented as

ϕ(x, y) = P(x)y + A(x + y) + b = Q(y)x + A(x + y) + b, (26)

where P and Q are n × n matrix functions of x and y, respectively. The matrix A and the
vector b are constant. In this particular setting, the numerical method (19) can be written
in the form

xk+1 – xk

h
=

1
2
(
P(xk)xk+1 + Q(xk)xk+1

)
+ A(xk+1 + xk) + b, (27)

or, equivalently,

(
I –

h
2
(
P(xk) + Q(xk)

)
– hA

)
xk+1 = (I + hA)xk + hb. (28)
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Furthermore, and also expressing its reversibility, the equation (27) can be written in the
form

(
I +

h
2
(
P(xk+1) + Q(xk+1)

)
+ hA

)
xk = (I – hA)xk+1 – hb. (29)

Considering that � is compact, there exists h such that the matrices

M(h, x) := I –
h
2
(
P(x) + Q(x)

)
– hA & M(–h, x) := I +

h
2
(
P(x) + Q(x)

)
+ hA

are both diagonally dominant matrices for all h ∈ (0, h] and x ∈ �.
(30)

Then, these matrices are non-singular and (28) can be written explicitly as

xk+1 = F(h, xk), (31)

where

F(h, x) =
(
M(h, x)

)–1((I + hA)x + hb
)
. (32)

Further, we have

F–1(h, x) = F(–h, x) =
(
M(–h, x)

)–1((I – hA)x – hb
)
. (33)

Theorem 3 is a useful tool for determining the invariance of � under F(h, ·). Using the
specific form of the maps (32), we derive an explicit representation of F(–h, x) – x. Indeed,
using (33) and the expression of M(h, x) in (30), we have

M(–h, x)
(
F(–h, x) – x

)
= (I – hA)x – hb –

(
I +

h
2
(
P(x) + Q(x)

)
+ hA

)
x

=
h
2
(
P(x)x + 2Ax

)
+

h
2

(Q(x)x + 2Ax

= –
h
2
ϕ(x, x) –

h
2
ϕ(x, x)

= –hf (x). (34)

Therefore,

F(–h, x) – x = –h
(
M(–h, x)

)–1f (x), (35)

and also, by Taylor expansion,

F(–h, x) – x = –hf (x) + h2
∫ 1

0

d2F(–th, x)
dt2 (1 – t) dt.

Then, the relation (17) can be written equivalently as

〈
ν(x),

(
M(–h, x)

)–1f (x)
〉 ≤ 0, x ∈ ∂�, (36)
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or

〈
ν(x), –hf (x)

〉
+ h2

∫ 1

0

〈
ν(x),

d2F(–th, x)
dt2 (1 – t)

〉
dt ≥ 0, x ∈ ∂�. (37)

Assume that the continuous tangent condition (4) holds with strict inequality < 0 for all
x ∈ ∂� and for the dynamical system (1) or (18) in which the function f (x) = ϕ(x, x) is given
by (26). To be more precise, we assume that there exists a constant upper bound c < 0 in
the said strict inequality, i.e., ≤ c < 0 for all x ∈ ∂�. Then, it follows from (37) that there
exists h > 0 such that the relation (36) holds in the following uniform manner, which is the
discrete tangent condition (17):

〈
ν(x),

(
M(–h, x)

)–1f (x)
〉 ≤ 0 for x ∈ ∂�,∀h ∈ (0, h]. (38)

On the contrary, if (4) holds in the limit case with the equality ‘= 0’, the discrete tangent
condition (38) must be checked directly, because the previous argument is no longer true.

Note that the scheme (27) is constructed in the general form (19). It satisfies Assump-
tion (20) with the unique solution being given in the explicit form (31) for h ∈ (0, h]. The
invariance of � follows from Theorem 3 combined with the discrete tangent condition
(38), which, as shown above, is inherited from the continuous tangent condition in the
strict case and is checked in the limit case. We have thus proved the following theorem:

Theorem 7 Assume that the tangent condition (4) is satisfied for the continuous model (1),
(18), and (26). Then the NSFD scheme (27) inherits the forward invariance on � in the sense
explained above. Furthermore, the scheme (27) satisfies the properties a)–c) in Theorem 5.

Remark 8 In limit situations which are not conclusive (e.g., stability of the disease-free
equilibrium when the basic reproduction number R0 = 1 [2, 14]), it is standard in math-
ematical analysis to deal with such cases differently. This is the essence of the require-
ment that the discrete tangent condition be checked directly in the limit case when
〈ν(x), f (x)〉 = 0. As a matter of fact, it often occurs in practical applications that the vector
ν(x) is a left eigenvector of M(–h, x) with a positive eigenvalue λ. If this is the case, then
the discrete tangent condition (38) follows directly from the tangent condition (4) of the
continuous system. Indeed,

〈
ν(x),

(
M(–h, x)

)–1f (x)
〉
= ν(x)T(

M(–h, x)
)–1f (x) = λ–1〈ν(x), f (x)

〉 ≤ 0.

Remark 9 The NSFD scheme (19) is an implicit method. When applied to mass action
models, and due to the nonlocal approximation of nonlinear terms, it is interesting to
observe that the method can be written in the form (28). Therefore, every step requires
only solving a linear system—a computational effort comparable to the explicit methods.

5 Example: a general epidemiological model
In this section, we show how the theory and tools developed in Sects. 2, 3, and 4 can be
put together in deriving second-order scheme with the properties a)–b) in Theorem 5.
While the theoretical existence of h is important, deriving constructively the value of h is
critical for any specific application. We show how the value of h can be computed for the
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considered model. Although the numerical approach proposed in this paper is exemplified
on the model considered in this section, its realm of application is wider.

5.1 The model
We consider a general compartmental model of a contagious disease in a single population.
Let the model have n compartments with their sizes given by the coordinates of a vector
x = (x1, x2, . . . , xn)T ∈R

n, where we fix x1 = S—the compartment of susceptible individuals.
We assume that the infection rate is given via mass-action term of the form

n∑

j=2

βjSxj.

If the jth compartment contains infective individuals, then βj > 0. If the individuals in the
jth compartment are not infective, then βj = 0. Examples of infective compartments are:
symptomatic infective, asymptomatic infective, recovered, but still infective, partially iso-
lated infective, etc. Examples of not infective, other than the susceptible, are: exposed (la-
tent period), recovered with temporary immunity, recovered with permanent immunity,
fully isolated (receiving treatment or not), dead, vaccinated (one or more types of vac-
cines), and others. The newly infected individuals are distributed in the compartments
x2, . . . , xn. Let gijSxj be the growth rate of the ith compartment due to the susceptible in-
fected by the individuals in the jth compartment. Clearly, we have gij ≥ 0, i, j = 2, . . . , n,
and

βj = g2j + · · · + gnj. (39)

Denote g1j = –βj, j = 2, . . . , n, and gi1 = 0, i = 1, 2, . . . , n. Then using the matrix G = (gij),
the mass action is represented by the vector x1Gx. The remaining transfer rates between
compartments are assumed to be linear and represented by a matrix C, which is a Metzler
matrix, that is, the nondiagonal entries of C are nonnegative. Further, a constant recruit-
ment rate is given by a vector b = (b1, b2, . . . , bn)T ≥ 0, where bi is the recruitment rate in
the ith compartment. The recruitment in the compartment of susceptible is always pos-
itive, that is b1 > 0, but other compartments may also have positive recruitment rates.
Then, the compartmental epidemiological model is represented as a system of differential
equations

dx
dt

= f (x) := GxeT
1 x + Cx + b, (40)

where e1 is the first vector in the canonical basis {e1, e2, . . . , en} in R
n.

There are a large number of models in mathematical epidemiology that can be repre-
sented in the generic form (40). These include the SEIR-types of models, [14], as well as
models with more strains, [9, 26], models with multiple types of infective and treated in-
dividuals (SEITR model), [22], models including vaccination (SVEIR model), [11].

The system (40) is of the form (18) with

ϕ(x, y) = GxeT
1 y +

1
2

C(x + y) + b,
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which in turn is of the form (26), where

P(x) = GxeT
1 , Q(y) = eT

1 yG = y1G, A =
1
2

C,

and vector b as given. Assuming that the compartments take jointly into account the whole
population, by adding all equations we obtain that the total population N = x1 +x2 + · · ·+xn

satisfies the conservation law,

dN
dt

= � – μN , (41)

where � = b1 + b2 + · · · + bn and μ is the disease-independent removal/death rate. It is
easy to see that this property implies that ν = (1, 1, . . . , 1)T is a left eigenvector of C and we
have νT C = –μνT . Since C is a Metzler matrix, this shows that all diagonal entries of C
are negative. More precisely, cii ≤ –μ < 0. Let us mention that due to the property (39), we
have νT G = (0, 0, . . . , 0)T . Hence, the mass action kinetics do not affect the demography.

It is easy to see, using the tangent condition (4), that the model (40) defines a forward
dynamical system on

� =

{

x ∈R
n
+ :

n∑

i=1

xi ≤ �

μ

}

.

Indeed, � is bounded by the coordinate planes and the plane

n∑

i=1

xi =
�

μ
. (42)

The respective outer normal vectors are

–e1, –e2, . . . , –en,ν.

Using the Metzler property of C, we have

〈
–ei, f (x)

〉∣∣
xi=0 = –bi – x1

∑

j �=i

gijxj –
∑

j �=i

cijxk ≤ 0, i = 2, . . . , n,

〈
–e1, f (x)

〉∣∣
x1=0 = –b1 –

n∑

j=2

c1jxj < 0.

Further, on the plane (42), we have

〈
ν, f (x)

〉
=

n∑

i=1

fi(x) = � – μ

n∑

i=1

xi = 0, (43)

which completes the proof of the claim that � is forward invariant for (40).
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5.2 Discretization and its properties
We consider the numerical method (27) for the model (40) on �. The matrices M(h, x)
and M(–h, x), see (30), are both strictly diagonally dominant if and only if

1 –
h
2

(

x1
n∑

j=1

|gij| +
n∑

j=1

|gij|xj +
n∑

j=1

|cij|
)

= 1 –
h
2

( n∑

j=1

|gij|
(
x1 + xk) +

n∑

j=1

|cij|
)

> 0, i = 1, . . . , n.

Therefore, if

h ≤ h̃ :=
2

�
μ
‖G‖∞ + ‖C‖∞

, (44)

then both matrices M(h, x) and M(–h, x) are strictly diagonally dominant for all x ∈ � and
h ∈ (0, h̃]. Hence the scheme can be written in the explicit form (31).

Our aim is to apply Theorem 7. Here, we will derive the invariance of � under (31)
directly since one of the tangent conditions is satisfied as an equality, see (43). In this way
we also derive a computable value of h.

We deal first with the plane (42). Considering that νT P = νT Q = (0, . . . , 0)T and that
νT C = –μC, we obtain that νT M(–h, x) = (1 – h

2 μ)νT . Since C is a Metzler matrix, we
have that μ = –

∑n
k=1 cik ≤ |cii| ≤ ‖C‖∞, i = 1, . . . , n. Therefore, if h satisfies (44), ν is a left

eigenvalue of M(–h, x) with a positive eigenvalue 1 – h
2 μ. Then the tangent condition (38)

holds on the entire plane (42) due to Remark 8.
Next, we consider the boundary of � on the coordinate plane x1 = S = 0. It follows from

(35) that the vector y = x – F(–h, x) is the solution y = (y1, . . . , yn) of the linear system

M(–h, x)|S=0 y = hf (x)S=0,

or, equivalently,

(
I +

h
2
(
P(x) + C

))
y = h(Cx + b). (45)

For the tangent condition to hold, we need to show that

〈
–e1, F(–h, x) – x

〉
= –F1(–h, x) = y1 ≥ 0.

Using that x ∈ � and that y is a solution of the linear system (45), we obtain

‖y‖∞ =
∥
∥∥∥h(Cx + b) –

h
2
(
GxeT

1 + C
)
y
∥
∥∥∥∞

≤ h
(

‖C‖∞
�

μ
+ ‖b‖∞

)
+

h
2

(
�

μ
‖G‖∞ + ‖C‖∞

)
‖y‖∞. (46)
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Assume that (44) holds. Then, (46) yields

‖y‖∞ ≤ h
‖C‖∞ �

μ
+ ‖b‖∞

1 – h
2 ( �

μ
‖G‖∞ + ‖C‖∞)

≤ 2h
(

�

μ
‖C‖∞ + ‖b‖∞

)
. (47)

From the first equation in the system (45), we have

(

1 +
h
2

(

–
n∑

j=2

g1jxj + c11

))

y1 = h

(

b1 +
n∑

j=2

c1jxj

)

–
h
2

n∑

j=2

c1jyj

≥ h
2

(

2b1 – ‖y‖∞
n∑

j=2

c1j

)

≥ h

(

b1 – h
(

‖C‖∞
�

μ
+ ‖b‖∞

) n∑

j=2

c1j

)

.

Taking into account that the coefficient of y1 is positive, y1 is nonnegative provided

h ≤ ˜̃h :=
b1

(‖C‖∞ �
μ

+ ‖b‖∞)
∑n

j=2 c1j
.

Let

h = min{h̃, ˜̃h}.

Then we have established so far that the tangent condition (38) holds on the entire plane
(42) and on the boundary of � on the coordinate plane x1 = 0 for all h ∈ (0, h].

The fact that Fi(h, x) ≥ 0 for i = 2, . . . , n, x ∈ �, h ∈ (0, h] can be established in a more
direct way. Let the (n – 1) × (n – 1) matrix M̃(h, x) be obtained from M(h, x) given in (30)
by deleting the first row and the first column. It is easy to see that M̃(h, x) = I – h

2 (x1G̃ + C̃),
where G̃ and C̃ are obtained from matrices G and C by deleting their first row and the
first column, respectively. We note that the non-diagonal entries M̃(h, x) are non-positive.
Further, M̃(h, x) inherits from M(x, h) its diagonal dominance. Hence, M̃(h, x) is an M-
matrix, which implies that (M̃(h, x))–1 ≥ 0. Denoting b̃ = (b2, . . . , bn)T ≥ 0, x̃ = (x2, . . . , xn)T ,
it follows from (32) that

⎛

⎜
⎜⎜
⎝

F2(h, x)
F3(h, x)

· · ·
Fn(h, x)

⎞

⎟
⎟⎟
⎠

=
(
M̃(h, x)

)–1
((

I +
h
2

C̃
)

x̃ + b̃ + F1(h, x)G̃x̃
)

≥ 0, (48)

for x ∈ � and F1(h, x) ≥ 0. Let us recall that, while we established the tangent property
for the whole plane (42), we established the tangent property only for that part of the
coordinate plate x1 = 0, which is boundary of �. Hence, this result by itself does not imply
F1(h, x) ≥ 0. We establish the nonnegativity of F(h, x) as follows. The tangent condition on
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the boundary of � on x1 = 0, implies that as h increases from 0 to h, F(h, x) may not leave
� through this part of the boundary. Let x1 > 0. Then F1(h, x) > 0 for h small enough. It
follows from (48) that, as h increases, while F1(h, x) > 0, we have F(h, x) ≥ 0. Hence, F(h, x)
may leave � only through the boundary on the plane x1 = 0. Due to the tangent condition,
this may not happen for h ∈ (0, h]. Therefore, F(h, x) ∈ � for all x ∈ � and h ∈ (0, h].

Thus, from Theorem 7, we obtain that the NSFD scheme for the model (40) is reversible,
it defines a discrete dynamical system on the domain � of the continuous dynamical sys-
tem (40), it is elementarily stable and second-order accurate.

Remark 10 The model (40) assumes only one compartment of susceptible individuals. In
principle, the same method of proof works for a vector of susceptible compartments (for
instance, as in [20]). We present this simple version of the model to avoid technicalities,
which may obscure the main ideas demonstrated on this example. Further, we note that if
there there is a disease induced mortality, (41) is satisfied as an inequality. In order to have
(41) as equation, we can transform the model by introducing a compartment or compart-
ments for deaths due to the disease with a removal rate equal to the natural death rate.
This transformation increases the dimensions of the domain of the model, but allows for
the case of disease induced mortality to be accommodated within the framework of (27)
applied to the model (40).

The proof of the properties of NSFD method (27) applied to the model (40) uses the
specific demographic equation (41). Let us note that demographic dynamics are not a
restriction to applying the NSFD method (27). However, different demographic equations
would require different approaches to proving the tangent condition for the domain of the
model.

Essential for the application of the NSFD method (27) is the fact that the force of infec-
tion is represented through the mass action principle and is given in the form

∑n
j=2 βjxj.

We may note that a model with standard incidence force of infection in the form
∑n

j=2 βj
xj
N ,

is easily converted to mass action model for z = x
N , [9, 14]. Hence, the NSFD method (27)

can be applied. However, the transformation changes the model and the domain, so that
the proof of the tangent condition need to be adapted accordingly. Clearly, if the model
cannot be written in a mass action form, the NSFD method (19) can be applied under the
Assumption (20), but the method (27) is not applicable.

Remark 11 It follows from Theorem 7 that the NSFD scheme preserves all hyperbolic
equilibria of the model as well as their stability properties, without any prior knowledge of
the values of these equilibria or even their existence. In this way, the discetizations by (27)
provide means of discovery of asymptotic dynamics of the model. This is solely done by
using the nonlocal discretizations of nonlinear terms; a way to bring in our NSFD scheme
Mikens’ rule on nontrivial denominator function is discussed in [5]. A natural question is if
this result cannot be extended to invariant sets other than equilibria. There are nonstan-
dard numerical methods preserving, for specific models, specific invariant sets such as
first integrals considered for instance by the authors [4]. However, constructing schemes
and developing the associated theory, for preserving invariant sets in general is an open
problem. Nevertheless, it is interesting that the method (27) applied to (40) preserves two
important invariant sets on the boundary of the domain, as discussed in the next subsec-
tion.
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5.3 Preserving invariant sets
The model (40) has two forward invariant sets on the boundary of the domain �: the
disease-free manifold and the constant population manifold. We show that both are pre-
served by the numerical method (27).

The disease free manifold is given by

DFM =
{

x ∈ � : 〈ej, x〉 = 0, j = I
}

, (49)

where I is the set of the indexes of the compartments promoting the disease—infective
or transferring into infective. If the disease-free manifold exists, then the model (40) has
the following properties

〈ej, b〉 = 0, j ∈ I , (50)

if 〈ej, x〉 = 0, j ∈ I , then Gx = 0 and
〈
(ej, Cx

〉
= 0, j ∈ I . (51)

Let x ∈ DFM. Then,

F(h, x) =
(

I –
h
2
(
x1G + C

)
)–1((

I +
h
2

C
)

x + hb
)

.

Using (50)–(51), it is easy to see that

〈
ej,

(
I +

h
2

C
)

x + hb
〉

= 0, j ∈ I ,

and, consequently, by mathematical induction,

〈
ej,

(
x1G + C

)m
((

I +
h
2

C
)

x + hb
)〉

= 0, j ∈ I , m = 1, 2, . . . . (52)

Since h ≤ h̃, we have

(
I –

h
2
(
x1G + C

))–1

=
∞∑

m=0

hm

2m

(
x1G + C

)m. (53)

It follows from (52) and (53) that 〈ej, F(h, x)〉 = 0, j ∈ I . Considering that it has been proved
already that F(h, x) ∈ �, we obtain that F(h, x) ∈ DFM, that is, DFM is forward invariant
under F(h, ·), h ∈ (0, h].

The constant population manifold is given by

{
x ∈ � : 〈ν, x〉 =

�

μ

}
. (54)

Considering the specific form of the matrix M(h, x) for (40), multiplying (28) on the left
by ν , we obtain

(
1 +

1
2
μh

)
〈ν, xk+1〉 =

(
1 –

1
2
μh

)
〈ν, xk〉 + h�, (55)
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or, equivalently,

〈
ν, F(h, x)

〉
=

(1 – 1
2μh)〈ν, x〉 + h�

1 + 1
2μh

.

Direct substitution shows that if 〈ν, x〉 = �
μ

then 〈ν, F(h, x)〉 = �
μ

. Therefore, (54) is forward
invariant under F(h, ·), h ∈ (0, h]. Note that with the notation Nk = 〈ν, xk〉 = x1

k +x2
k + · · ·+xn

k ,
Equation (55) can be written as

Nk+1 – Nk

h
= –

μ

2
(Nk + Nk+1),

which is a second-order finite difference method for the Equation (41).

5.4 Some illustrative numerical simulations
In Sect. 5.2 and Sect. 5.3, we established that the NSFD scheme (28) applied to the model
(40) preserves some properties of (40) considered as a dynamical system. These include:
the domain �, the hyperbolic equilibria with their stability, the disease-free manifold and
the constant population manifold. These are properties of qualitative nature and cannot be
derived through the techniques of the standard numerical analysis, involving consistence,
stability and therefore convergence. To illustrate this point, we consider examples where
well-known methods do not preserve the mentioned properties for a very simple version
of (40), the SIR model:

dS
dt

= � – γ SI – μS,

dI
dt

= γ SI – (δ + μ)I, (56)

dR
dt

= (δ + μ)I.

For the simulations, we use (i) midpoint method, which is a second-order method, and
(ii) the fourth-order Runge–Kutta method as provided by the function ode45 in Matlab.
Figures 1 and 2 provide phase diagrams of some numerical solutions in the S × I plane.
The boundary of the domain is marked by a solid magenta line. The red star denotes the
disease-free equilibrium, which is a stable equilibrium of the model (56) for the stated
values of the parameters. Both simulations illustrate that numerical solutions produced
by the stated methods may leave the domain of the model. Further, the trajectories by
the Midpoint method presented in Fig. 1 converge (correctly) to the stable equilibrium,
but some of them approach it from the exterior of the domain. The numerical solution
presented in Fig. 2 eventually oscillates with nondecreasing amplitude as it approaches
the stable equilibrium. Note that the Matlab functionode45 automatically selects optimal
step size. Hence, h is not specified.

For comparison, we present on Fig. 3 the numerical solutions by the method (27) with
h = 0.1 using the same data as in Fig. 1 and in Fig. 2. For the model (56), we have h =
h̃ = 2

γ �
μ +ν+δ

. Hence, for both sets of values of parameters we have h = 0.1 < h. Therefore,

it follows from the discussion in Sect. 5.2 that the method (27) satisfies the properties
stated in Theorem 7. One can also observe on the graphs in Fig. 3 that both the domain
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Figure 1 Phase diagram of the numerical solution of (56) with � =μ = 3, γ = 1, δ = 15 by the Midpoint
method with h = 0.1

Figure 2 Phase diagram of the numerical solution of (56) with parameters � =μ = 1, γ = 2, δ = 1 by the
Matlab function ode45

Figure 3 Phase diagrams of the numerical solutions by the NSFD method (27) of (56) with h = 0.1 and
parameters as in (a) Fig. 1 and as in (b) Fig. 2

and the stability of the equilibrium of the model (56) are preserved. Further, we may note
that the values of the parameters used in Fig. 1 are associated with a disease, which is
low contagious and with a fast removal rate. Hence, all solutions very quickly approach
the disease-free manifold, which is the primary driver of the long-term dynamics. This



Anguelov and Lubuma Advances in Continuous and Discrete Models         (2023) 2023:38 Page 20 of 22

property is correctly represented by the trajectories on Fig. 3(a), but not by the trajectories
on Fig. 1, including those within the domain.

6 Conclusion
The literature on forward invariant sets in R

n with respect to continuous dynamical sys-
tems defined by ordinary differential equations is rich (see, for instance, the short account
in [27]). However, the invariance problem is not sufficiently investigated for discrete dy-
namical systems. Our findings in this work are threefold. Firstly, we formulated a discrete
analog of the tangent condition by Bony [7], under which we established the forward in-
variance of sets with respect to time-reversible discrete dynamical systems. Secondly, we
constructed a new NSFD scheme to approximate the solutions of continuous dynamical
systems. Apart from its elementary stability, this new scheme is innovative and reliable
in that: (a) it is time reversible, (b) it inherits in a discrete manner the tangent condition
and the associated forward invariant property from the continuous system, and (c) it has
second-order accuracy, thereby addressing the challenge of designing high-order numer-
ical schemes that cannot exhibit spurious/ghost solutions or other elementary instability
that do not correspond to the feature of the continuous equations. Thirdly, we showed that
our construction and findings apply directly for mass action-type models in biological and
chemical processes, specifically the preservation by the NSFD scheme of forward invari-
ance of the biologically feasible domain and other dynamics of the continuous system.

Our future research includes the following:
(1) Formulating a discrete analog of the tangent condition (3) by Nagumo [21] in the

case when the latter is not equivalent to Bony’s condition (4). Conditions for their
equivalence are stated in [27].

(2) Investigate the preservation by our time-reversible NSFD scheme of the global
asymptotic stability of the disease-free equilibrium of continuous epidemic models
when the basic reproduction number is less than 1. (See [2] for an approach, which
avoids the use of the Lyapunov function for discrete dynamical systems.)

(3) Extending this study to dynamical systems with non-hyperbolic equilibrium points,
an approach considered in [6] as far as the stability for one-dimensional models is
concerned.

(4) Though a standard incidence-based epidemic model can be transformed into a mass
action-based one (with different dynamics) to which the NSFD scheme proposed in
this paper can be applied, as mentioned in Remark 10, investigating the reverse
process in order to recover the preserved dynamics of the initial model is an issue of
interest.

(5) Other possible generalizations are: (i) NSFD scheme (27) applied to extended model
(40) with vector of susceptible compartments and/or disease-induced death rate, (ii)
models with demographics different from (40), and (iii) models where the general
method (19) can be applied but not the method (27).
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