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Abstract
The exchange option, which has two correlated underlying assets, is one of the most
popular exotic options in the over-the-counter markets. This paper studies the
valuation of exchange options with default risk of option issuer, where default is
allowed only at maturity. Moreover, we consider three underlying assets with
stochastic volatilities and assume that fast mean-reverting processes determine the
stochastic volatilities. Based on the partial differential equation approach, we derive
the analytical pricing formula of the exchange option price with default risk using the
asymptotic expansion. To verify the accuracy and efficiency of our pricing formula, we
compare the results by our pricing formula with those by Monte Carlo simulation,
which is considered a benchmark. In addition, we provide several graphs to illustrate
the properties of the option for significant parameters.
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1 Introduction
The exchange option, derived from the difference between the values of two underlying
assets, is one of the most popular exotic options in the over-the-counter (OTC) market.
Exchange option that offers the option holder the right to exchange one risky asset for
another at maturity was first introduced by Margrabe [1]. Thus, it is occasionally called
the Margrabe option. Since Margrabe provided a closed-form pricing formula under the
Black-Scholes model [2], there have been various extensions of the exchange option pric-
ing model such as stochastic volatility [3–6], jump-diffusion [7–9], fractional Brownian
motion [10], and stochastic correlation [11].

Since default risk exists for option issuers in the OTC market, credit risk must be con-
sidered when pricing options in the over-the-counter market. The option with default risk
is called a vulnerable option. The valuation of a vulnerable option has been studied with
two approaches: the reduced-form and structural model. Under the reduced-form model,
credit events are determined by the counting process with some intensities. On the other
hand, credit events under the structural model are determined by the relation between
the firm value and the option issuer’s value. Based on these models, various studies have
been on the valuation of vulnerable options.
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The pricing of vulnerable option under the reduced-form model has been studied by
many researchers. Fard [12] provided an analytical pricing solution of vulnerable option
using the Esscher–Girsanov transform when the underlying asset follows a generalized
jump–diffusion model. Wang [13] dealt with the valuation of vulnerable option under the
generalized autoregressive conditional heteroskedasticity (GARCH) model which is one
of the discrete models. Koo and Kim [14] derived an explicit pricing formula of the catas-
trophe option with credit risk based on the reduced-form model of Fard. More recently,
Pasricha and Goel [15] studied the valuation of European power exchange option in a
reduced-form model. They assume that two underlying assets have the correlated jump-
diffusion processes.

Structural model also has been used a lot for pricing of vulnerable option by many re-
searchers. Johnson and Stulz [16] first studied on vulnerable option pricing under the
structural model. Klein [17] improved the model of [16] considering the correlated default
risk. Klein and Inglis [18, 19] considered stochastic interest rate and a default boundary,
which depends on the liabilities of option issuer and option itself when vulnerable op-
tion is priced. Zhou et al. [20] extended the pricing model of Klein [17] with a variable
default boundary based on the option’s potential debt and the option writer’s other liabili-
ties. These results were based on the probabilistic approaches similar to vulnerable option
valuation under the reduced-form model. However, unlike the reduced-form model, par-
tial differential equation (PDE) approach has been also widely used for valuing vulnerable
options under the structural model. The PDEs for vulnerable options have been mainly
solved using Mellin transforms, and many researchers have developed the pricing mod-
els of vulnerable options (for instance, see [21–27]). In this paper, we also develop the
vulnerable option pricing model based on PDE approach. More specifically, we study the
valuation of vulnerable exchange option and extend the pricing model for the option with
a stochastic volatility model.

Stochastic volatility models have been developed to overcome the limitation of the
Black-Scholes model. Stochastic volatility models present the time-varying volatilities
and explain implied volatility patterns that arise in real option markets unlike the Black-
Scholes model. In fact, there have been many kinds of stochastic volatility models to de-
scribe the phenomena in financial option markets, and there exist many studies on vul-
nerable option pricing based on the stochastic volatility models. Yang et al. [28] first con-
sidered a stochastic volatility model for vulnerable option pricing. They chose a stochas-
tic volatility model with fast mean-reversion introduced by Fouque et al. [29] and derived
asymptotic expansion formula of European vulnerable option price. Wang et al. [30] inves-
tigated the pricing of vulnerable option under a stochastic volatility which has the short-
term fluctuation with a mean-reverting process. In addition, Lee and Kim [31] dealt with
a multiscale generalized Heston’s stochastic volatility model for the pricing of defaultable
options. Wang [32] proposed a stochastic volatility model which captures leverage effects
and stochastic correlation and obtained an analytic pricing formula of Asian option with
counterparty risk under the proposed model. Ma et al. [33] considered the GARCH diffu-
sion model as the stochastic volatility model for pricing of the vulnerable European option,
and calculated the price using the fast Fourier transform (FFT) algorithm. We also study
vulnerable option pricing with a stochastic volatility model. Specifically, we derive the an-
alytical pricing formula of exchange option with default risk based on the stochastic model
of [29] and verify our formula with some numerical results.
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The contribution of this work is to find the pricing formula of exchange option with
default risk under the stochastic volatility. To present our results, this paper is structured
as follows. In Sect. 2, we introduce the model of a stochastic volatility model for vulnerable
exchange option and derived the pricing formula of vulnerable exchange option under the
proposed model. In Sect. 3, we provide some numerical results to examine the features of
the vulnerable exchange option with a stochastic volatility model. In Sect. 4, we provide
the concluding remarks.

2 Model and option pricing
In this section, we investigate an asymptotic analysis approach to price the vulnerable ex-
change option under a stochastic volatility model. Specifically, we introduce the model for
the vulnerable exchange option with a stochastic volatility model and derive an analytical
pricing formula for the option using an asymptotic approach.

Let S1
t and S2

t be underlying assets and Vt be an asset value process of the option issuer.
We assume that the stochastic differential equations for the processes S1

t , S2
t , and Vt are as

follows.

dS1
t = rS1

t dt + f1
(
Y 1

t
)
St dW 1

t ,

dY 1
t =

[
k1

ε

(
m1 – Y 1

t
)

–
√

2ν1√
ε

�1
(
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t
)
]

dt +
√

2ν1√
ε

dZ1
t ,

dS2
t = rS2

t dt + f2
(
Y 2

t
)
S2

t dW 2
t ,

dY 2
t =

[
k2

ε

(
m2 – Y 2

t
)

–
√

2ν2√
ε

�2
(
Y 2

t
)]

dt +
√

2ν2√
ε

dZ2
t ,

dVt = rVt dt + fv
(
Y v

t
)
Vt dW v

t ,

dY v
t =

[
kv

ε

(
mv – Y v

t
)

–
√

2νv√
ε

�v
(
Y v

t
)]

dt +
√

2νv√
ε

dZv
t , (1)

where r is the risk-free interest rate, �i (i = 1, 2, v) are the market prices of volatility risk and
W i

t and Zi
t for i = 1, 2, v are the standard Brownian motions under the risk-neutral measure

Q. Here, The Ornstein–Uhlenbeck (OU) processes Y 1
t , Y 2

t , and Y v
t mean the volatility

driven process for S1
t , S2

t , and Vt , respectively, and are set to reflect the fast mean reverting
volatility environment. The correlation structures of the Brownian motions are set up as
follows.

dW 1
t W 2

t = ρ12 dt, dW 1
t dW v

t = ρ1v dt, dW 2
t dW v

t = ρ2v dt,

dW 1
t dZ1

t = η1 dt, dW 2
t dZ2

t = η2 dt, dW v
t dZv

t = ηv dt. (2)

Then, the price of vulnerable exchange option under the measure Q is given by

Pε(t, s1, s2, v, y1, y2, yv)

= EQ[
e–r(T–t)h

(
S1

T , S2
T , VT

)|S1
t = s1, S2

t = s2, Vt = v, Y 1
t = y1, Y 2

t = y2, Y v
t = yv

]
,
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where h is the payoff function of the vulnerable exchange option, which is defined by

h
(
S1

T , S2
T , VT

)
=

(
S1

T – S2
T
)+

(
1{VT ≥D∗} + 1{VT <D∗}

(1 – α)VT

D

)
.

The default of option issuer occurs if asset value VT is less than the default level D∗ at
maturity T and recovery rate is set to (1 – α)VT /D, where α is the deadweight cost of
bankruptcy and D is the expected value of the option issuer’s total liability at maturity.
From the Feynman-Kac formula, the price Pε satisfies the following PDE:

LεPε(t, s1, s2, v, y1, y2, yv) = 0, (3)

Pε(T , s1, s2, v, y1, y2, yv) = h(s1, s2, v),

where

Lε =
1
ε
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1√
ε
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L0 = k1(m1 – y1)
∂
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1
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+
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.

To obtain a pricing formula for the option by using the asymptotic approach in [29], we
first expand P in power of

√
ε, Pε = P0 +

√
εP1 + εP2 + · · · . Then we have

1
ε
L0P0 +

1√
ε

(L0P1 + L1P0) + (L0P2 + L1P1 + L2P0)

+
√

ε(L0P3 + L1P2 + L2P1) + · · · = 0. (4)

In order to derive a solution for the equation L0P0 = 0 in the 1
ε

-order term in (4), P0

should be independent of y1, y2, and yv, in other words, P0 = P0(t, s1, s2, v). Inserting P0 to
the 1√

ε
-order term in (4), P1 is also independent of y1, y2, and yv similar to P0. We then

have the Poisson equation

L0P2 + L2P0 = 0 (5)
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in zero-order term, which must hold its solvability condition 〈L2P0〉 = 0. Here, 〈·〉 denotes
the expectation with respect to the invariant distribution 	 of the three-dimensional pro-
cesses (Y 1

t , Y 2
t , Y v

t ). From the independence assumption, the invariant distribution 	 is
defined as the product of each invariant distribution of Y 1

t , Y 2
t and Y v

t . That is,

	(y1, y2, yv) =
∏

i=1,2,v

1
√

2πν̃2
i

exp

{
–

(yi – mi)2

2ν̃2
i

}
,

where ν̃2
i = ν2

i
ki

. Therefore, P0 satisfies the following PDE:

〈L2〉P0(t, s1, s2, v) = 0,

P0(T , s1, s2, v) = (s1 – s2)+
(

1{v≥D∗} + 1{v<D∗}
(1 – α)v

D

)
, (6)

where

〈L2〉 =
∂

∂t
+ r(D1 + D2 + Dv – ·) +

1
2
σ̄ 2

1 D2
1 +

1
2
σ̄ 2

2 D2
2 +

1
2
σ̄ 2

v D2
v

+ ρ̄12σ̄1σ̄2D1D2 + ρ̄1vσ̄1σ̄vD1Dv + ρ̄2vσ̄2σ̄vD2Dv.

and Dn
i = sn

i
∂n

∂sn
i

for i = 1, 2, Dn
v = vn ∂n

∂vn ,

σ̄1 =
√〈

f 2
1 (y1)

〉
,

σ̄2 =
√〈

f 2
2 (y2)

〉
,

σ̄v =
√〈

f 2
v (yv)

〉
,

ρ̄12 =
ρ12〈f1(y1)f2(y2)〉

σ̄1σ̄2
,

ρ̄1v =
ρ1v〈f1(y1)fv(yv)〉

σ̄1σ̄v
,

ρ̄2v =
ρ2v〈f2(y2)fv(yv)〉

σ̄2σ̄v
. (7)

Since Eq. (6) represents a three-dimensional Black-Scholes equation, we can derive the
Black-Scholes formula for P0 from the work outlined in [22]. The price P0 includes the
volatilities σ̄1, σ̄2, and σ̄v, and the correlation coefficients ρ̄12, ρ̄1v, and ρ̄2v. This can be
summarized in the following theorem:

Theorem 1 If P0, P1, and their yi-partial derivatives do not grow exponentially as yi goes
to infinity for i = 1, 2, v, then the leading order term P0 is independent of y1, y2, and yv, and
is given by

P0(t, s1, s2, v) = s1N2(a1, a2; θ3) – s2N2(b1, b2; θ3)

+
(1 – α)v

D
(
s1e(θ1+θ2)(T–t)N2(c1, c2; –θ3) – s2eθ2(T–t)N2(d1, d2; –θ3)

)
,
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where

a1 =
1
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√
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+
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2
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√
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θ2 = ρ̄2vσ̄2σ̄v + r,

θ3 =
ρ̄1vσ̄1 – ρ̄2vσ̄2
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,
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√
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and N2 is the cumulative density function for two-dimensional normal distribution defined
by

N2(x, y;ρ) =
∫ x

–∞

∫ y

–∞
1

2π
√

1 – ρ2
exp

(
–

u2 – 2ρuv + v2

2(1 – ρ2)

)
du dv.

Next, we consider Eq. (6) to find the correction term P1. Equation (6) yields

L2P0 = L2P0 – 〈L2〉P0

=
1
2
(
f 2
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1
)
s2

1
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∂s2
1

P0 +
1
2
(
f 2
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2
)
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2
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∂s2
2

P0 +
1
2
(
f 2
v (yv) – σ̄ 2

v
)
v2 ∂2

∂v2 P0

+ ρ12
(
f1(y1)f2(y2) –

〈
f1(y1)f2(y2)

〉)
s1s2

∂2

∂s1∂s2
P0

+ ρ1v
(
f1(y1)fv(yv) –

〈
f1(y1)fv(yv)

〉)
s1v

∂2

∂s1∂v
P0

+ ρ2v
(
f2(y2)fv(yv) –

〈
f2(y2)fv(yv)

〉)
s2v

∂2

∂s2∂v
P0,
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and Eq. (5) leads

P2 = – L–1
0 (L2P0)

= – L–1
0

(
L2 – 〈L2〉

)
P0

= –
1
2
(
φ1(y1) + c1(t, s1, s2, v, z)

)
s2

1
∂2

∂s2
1

P0

–
1
2
(
φ2(y2) + c2(t, s1, s2, v, z)

)
s2

2
∂2

∂s2
2

P0

–
1
2
(
φv(yv) + cv(t, s1, s2, v, z)

)
v2 ∂2

∂v2 P0

– ρ12
(
φ12(y1, y2) + c12(t, s1, s2, v, z)

)
s1s2

∂2

∂s1∂s2
P0

– ρ1v
(
φ1v(y1, yv) + c1v(t, s1, s2, v, z)

)
s1v

∂2

∂s1∂v
P0

– ρ2v
(
φ2v(y2, yv) + c2v(t, s1, s2, v, z)

)
s2v

∂2

∂s2∂v
P0.

Here, the functions φi (i = 1, 2, v), φ12, φ1v, and φ2v are the solutions of the following Poisson
equations.

L0φ1(y1) = f 2
1 (y1) – σ̄ 2

1 ,

L0φ2(y2) = f 2
2 (y2) – σ̄ 2

2 ,

L0φv(y3) = f 2
v (yv) – σ̄ 2

v ,

L0φ12(y1, y2) = f1(y1)f2(y2) –
〈
f1(y1)f2(y2)

〉
,

L0φ1v(y1, yv) = f1(y1)fv(yv) –
〈
f1(y1)fv(yv)

〉
,

L0φ2v(y2, yv) = f2(y2)fv(yv) –
〈
f2(y2)fv(yv)

〉
, (8)

where ci (i = 1, 2, v), c12, c1v, and c2v are the integral constant function. Since the operator
L0 depends on the variables y1, y2, and yv, φi (i = 1, 2, v), φ12, φ1v, and φ2v are the func-
tions with three variables. However, as a result of the spectral theory, the functions can
be defined as above. We leave the details of this in the Appendix. In

√
ε-order term in

(4), we have the PDE for P3, L0P3 + L1P2 + L2P1 = 0, and 〈L1P2〉 + 〈L2〉P1 = 0 holds from
the solvability condition for P3. Furthermore, since the terminal condition in Eq. (3) does
not depend on the small parameter ε, it leads us to the conclusion that P1(T) = 0 from
Pε(T) = P0(T) +

√
εP1(T) + · · · . As a result of this, we can further derive the following

PDE for Pε
1(:=

√
εP1).

〈L2〉Pε
1 = HεP0,

Pε
1(T , s1, s2, v) = 0, (9)

where

Hε =
√

ε
〈
L1L–1

0
(
L2 – 〈L2〉

)〉
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=
√

ε

〈(
–
√

2ν1�1(y1)
∂

∂y1
–

√
2ν2�2(y2)

∂

∂y2
–

√
2νv�v(yv)

∂

∂yv

+
√

2ν1η1f1(y1)s1
∂2

∂s1∂y1
+

√
2ν2η2f2(y2)s2

∂2

∂s2∂y2
+

√
2νvηvfv(yv)v

∂2

∂v∂yv

)

×
[

1
2
(
φ1(y1) + c1(t, s1, s2, v, z)

)
s2

1
∂2

∂s2
1

+
1
2
(
φ2(y2) + c2(t, s1, s2, v, z)

)
s2

2
∂2

∂s2
2

+
1
2
(
φv(yv) + cv(t, s1, s2, v, z)

)
v2 ∂2

∂v2 + ρ12
(
φ12(y1, y2)

+ c12(t, s1, s2, v, z)
)
s1s2

∂2

∂s1∂s2

+ ρ1v
(
φ1v(y1, yv) + c1v(t, s1, s2, v, z)

)
s1v

∂2

∂s1∂v

+ ρ2v
(
φ2v(y2, yv) + c2v(t, s1, s2, v, z)

)
s2v

∂2

∂s2∂v

]〉
.

Consequently, the following theorem is derived.

Theorem 2 Under the same conditions as in Theorem 1, the fast correction term Pε
1, which

is the solution of the PDE (9), is given by

Pε
1 = –(T – t)HεP0,

where

Hε = –
[
D1

(
V ε

1 D2
1 + V ε

1,2D1D2 + V ε
1,vD1Dv

)
+ D2

(
V ε

2 D2
2 + V ε

2,1D1D2 + V ε
2,vD2Dv

)

+ Dv
(
V ε

v D2
v + V ε

v,1D1Dv + V ε
v,2D2Dv

)
+ W ε

1D2
1 + W ε

1,2D1D2 + W ε
1,vD1Dv

+ W ε
2D2

2 + W ε
2,1D1D2 + W ε

2,vD2Dv + W ε
v D2

v + W ε
v,1D1Dv + W ε

v,2D2Dv
]
, (10)

and

V ε
i = –

√
εηiνi√

2

〈
fi(yi)

∂

∂yi
φi(yi)

〉
,

V ε
i,j = –

√
2εηiρijνi

〈
fi(yi)

∂

∂yi
φij(yi, yj)

〉
,

W ε
i =

√
ενi√
2

〈
�i(yi)

∂

∂yi
φi(yi)

〉
,

W ε
i,j =

√
2ερijνi

〈
�i(yi)

∂

∂yi
φij(yi, yj)

〉
, (11)

for i, j = 1, 2, v. Here, ρji = ρij and φji = φij are considered for the case where φji is not defined
(for example, φv1 is replaced by φ1v).

Proof Since the differential operators ∂
∂t , Dn

i (i = 1, 2, v) are commutative for any n ∈ N,
the operator 〈L2〉 and Hε are also commutative, and

〈L2〉Pε
1 = 〈L2〉(t – T)HεP0
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= HεP0 + (t – T)
(〈L2〉HεP0

)

= HεP0 + (t – T)
(
Hε〈L2〉P0

)

= HεP0. �

From Theorem 1 and Theorem 2, we can obtain the analytical pricing formula of vul-
nerable exchange option as the approximate solution. Moreover, we verify the accuracy of
the solution in the following theorem.

Theorem 3 Let P̃ε = P0 + Pε
1, then P̃ε approximates to Pε in (3) with order ε2/3 log ε. In

other words, there exist a positive constant C such that

∣
∣Pε – P̃ε

∣
∣ < Cε2/3 log |ε|.

Proof Since the option in this study has non-smooth and discontinuous payoff, the proof
will sequentially cover three steps. First, we analyze the error of accuracy for smooth pay-
offs. We then consider the case of continuous but non-smooth payoffs. Finally, we address
the error of accuracy for discontinuous payoffs.

Firstly, if the payoff function for Pε is smooth, it is known that P̃ε approximates to Pε

with order ε (refer to [34, 35]). Reviewing the whole process, first let Rε = Pε – P̂ε , where
P̂ε = P̃ε + εP2 + ε

√
εP3. We also suppose that the payoff function for Pε and its derivatives

are smooth and bounded. We then obtain the following from LεPε = 0 in Eq. (3):

LεRε +
1
ε
L0P0 +

1√
ε

(L0P1 + L1P0) + (L0P2 + L1P1 + L2P0)

+
√

ε(L0P3 + L1P2 + L2P1) + ε(L1P3 + L2P2 +
√

εL2P3) (12)

= 0.

From L0P0 = 0, L0P1 + L1P0 = 0, L0P2 + L1P1 + L2P0 = 0, and L0P3 + L1P2 + L2P1 = 0 in
Eq. (4), The Eq. (12) is rewritten as

LεRε + εRε
1 = 0,

where Rε
1 = L1P3 + L2P2 +

√
εL2P3. Considering the terminal condition for P0 and P1 in

Eq. (6) and Eq. (9), respectively, we obtain

Rε(T , s1, s2, v, y1, y2, yv) = –εP2(T , s1, s2, v, y1, y2, yv) – ε
√

εP3(T , s1, s2, v, y1, y2, yv).

Hence, one can use the Feynman–Kac probabilistic representation formula to lead

Rε = εEQ
[

e–r(T–t)(–P2
(
T , S1

T , S2
T , VT , Y 1

T , Y 2
T , Y v

T
)

–
√

εP3
(
T , S1

T , S2
T , VT , Y 1

T , Y 2
T , Y v

T
))

+
∫ T

t
e–r(u–t)Rε

1
(
u, S1

u, S2
u, Vu, Y 1

u , Y 2
u , Y v

u
)

du
∣∣
∣S1

t , S2
t , Vt , Y 1

t , Y 2
t , Y v

t

]
,
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and then

∣
∣Pε – P̃ε

∣
∣ ≤ ∣

∣Rε
∣
∣ +

∣
∣P̂ε – P̃ε

∣
∣

≤ C1ε,

for some constant C1 > 0.
We then apply the regularization method described in [36] for handling non-smooth

payoff functions. As a brief sketch of the second step of the proof, we start by regularizing
an option with a continuous yet non-smooth payoff (such as a call option). Since our op-
tion has three underlying assets, for simplicity, let Cε,η be an one-dimensional call option
where the payoff is replaced by the Black-Scholes call option price at t = T – η for small
parameter η. Further, let C̃ε,η represent the first-order approximation of Cε,η , such that

Cε,η ≈ C̃ε,η = Cη
0 +

√
εCη

1 ,

where

Cη
0 (t, s1) = CBS(t – η, s1; σ̄1),

√
εCη

1 = –(T – t)Hε
1Cη

0 . (13)

Here, the operator Hε
1 is the one-dimensional reduced form of the operator Hε in Eq. (10).

From this, we can deduce that

∣∣Cε – C̃ε
∣∣ ≤ ∣∣Cε – Cε,η∣∣ +

∣∣Cε,η – C̃ε,η∣∣ +
∣∣C̃ε,η – C̃ε

∣∣ (14)

and the right hand side of Eq. (14) is bounded by three terms (η, ε ln |η|, ε3/2√
η

). Refer to [36]
for details.

Lastly, in the case of a discontinuous payoff (such as digital options), an additional fac-
tor η–1/2 is required due to the successive derivatives of Cη

0 in Eq. (13). This modification
bounds the error term by the three terms (η, ε ln |η|√

η
, ε3/2

η
). For further details on discontin-

uous payoffs, please refer to [37]. By substituting η = eq, we derive the max-min problem:

max min

{
q, 1 –

q
2

,
3
2

– q
}

.

This problem has the solution q = 2
3 , leading to an order of accuracy for the error:

∣
∣Cε – C̃ε

∣
∣ = O

(
ε2/3 log |ε|).

Given that the exchange option in this study carries a default risk, it has a discontinu-
ous payoff for Vt . Although the exchange option has three underlying asset processes, it
is not difficult to extend the methodology from the one-dimensional digital option case
mentioned earlier. As a results, we establish

∣
∣Pε – P̃ε

∣
∣ ≤ Cε2/3 log |ε|

for some constant C > 0. �
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3 Numerical results
In this section, we carry out several numerical experiments to illustrate the value of vul-
nerable option and to verify our results. Specifically, we provide some graphs to show the
movements for the sensitivity analysis with respect to the significant parameters and im-
plement the Monte-Carlo (MC) simulation, which is generally used for pricing of multi-
asset options, for the verification of our result.

For feasible conduction of numerical experiment, the volatilities fi in (1) are specified as
follows.

dS1
t = rS1

t dt + eY 1
t S1

t dW 1
t , (15)

dY 1
t =

k1

ε

(
m1 – Y 1

t
)

dt +
√

2ν1√
ε

dZ1
t , (16)

dS2
t = rS2

t dt + eY 2
t S2

t dW 2
t , (17)

dY 2
t =

k2

ε

(
m2 – Y 2

t
)

dt +
√

2ν2√
ε

dZ2
t , (18)

dVt = rVt dt + eY v
t Vt dW v

t , (19)

dY v
t =

kv

ε

(
mv – Y v

t
)

dt +
√

2νv√
ε

dZv
t . (20)

From the calculation in the appendix of [35], the group parameters in (7) and (11) can be
obtained by

σ̄i = emi+ν̃2
i , (21)

ρ̄ij = ρij exp

{
–

1
2
(
ν̃2

i + ν̃2
j
)}

, (22)

Uε
i =

√
εηi√
2νi

exp

{
3mi +

5
2
ν̃2

i

}
(
e2ν̃2

i – 1
)
, (23)

Uε
i,j =

√
2εηiρij

νi
exp

{
2mi + mj +

1
2
(
2ν̃2

i + ν̃2
j
)}(

eν̃2
i – 1

)
, (24)

for i, j = 1, 2, v, where ν̃2
i = ν2

i /ki. For the experiment, the baseline parameters are needed.
We use the following baseline parameters r = 0.05, α = 0.25, D = D∗ = 70, S1

0 = 100, S2
0 =

100, V0 = 100, k1 = k2 = kv = 1, m1 = m2 = m3 = –1.45, ρ12 = ρ1v = ρ2v = 0.2, η1 = η2 = ηv =
–0.5, ε = 0.01 and T = 3 unless otherwise stated. From these parameters and (21), (22),
(23) and (24), we can determine the group parameters. The parameters are as follows.

σ̄1 = 0.3012, σ̄2 = 0.3012, σ̄v = 0.2019,

ρ̄12 = 0.1557, ρ̄1v = 0.1557, ρ̄2v = 0.1557,

Uε
1 = –1.11 × 10–3, Uε

2 = –1.11 × 10–3, Uε
v = –3.33 × 10–4,

Uε
1,2 = –1.51 × 10–4, Uε

1,v = –1.01 × 10–4, Uε
2,1 = –1.51 × 10–4,

Uε
2,v = –1.01 × 10–4, Uε

v,1 = –6.78 × 10–5, Uε
v,2 = –6.78 × 10–5.
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Figure 1 Vulnerable exchange option value P̃ε
1 and the correction term Pε

1

Figure 2 Option values with respect to S10 for different ρ12

Figure 3 Option values with respect to V0 for different ρ1v and ρ2v

Figure 1(a) and Fig. 1(b) illustrate the sensitivities of the option value P̃ε
1 and the cor-

rection term Pε
1 with respect to initial values of two underlying assets. In Fig. 1, we can

observe that the effect of stochastic volatility correction is nonlinear with respect to the
underlying assets. Note that the values P̃ε

1 and Pε
1 are more sensitive with respect to as-

set S1
0 than asset S2

0. Figure 2(a), Fig. 2(b), Fig. 3(a), and Fig. 3(b) present how the option
value with the stochastic volatility changes for different correlations when the underlying
assets S1 and V increase. In Fig. 2, it can be seen that high value of correlation ρ12 lowers
the option value. We also find the results in higher value difference for positive values of
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Figure 4 Option values with respect to V0 for different D and D∗

correlation ρ12. In contrast to Fig. 2, Fig. 3 shows that the option value increases as the
correlation between underlying asset and the option issuer’s asset increases. However, we
can see that the option values converge to the same value for all correlations if V is suffi-
ciently large. Figure 4(a) and Fig. 4(b) present how the option value changes for different
D and D∗ as the option issuer’s asset V varies. As expected, higher values of D and D∗ cor-
respond to lower values of vulnerable exchange option, and the option values converge to
the same value for all values of D and D∗ if the value of V is sufficiently large. We also find
that the option values are more sensitive with respect to values of D than values of D∗.

In what follows, we show the accuracy of our pricing formula by comparing the val-
ues of P̃ε and the values by MC simulation. The MC simulation is based on the processes
(15), (16), (17), (18), (19), (20), and the baseline parameters. It is well known that the MC
method is very costly in terms of time. However, the MC method is widely used to verify
the accuracy in pricing of financial derivatives since the value by the MC method con-
verges to exact value for sufficiently large sample paths. For the experiment of MC simu-
lation with the stability, we adopt the Euler scheme with N = 1,000,000 sample paths and
M = 1000 × T time steps for the discretization of the stochastic processes. The numeri-
cal results are presented in Table 1. Values of ‘R-err’ in Table 1 denote the relative error
defined by

R-err �
∣
∣∣
∣
‘Pricing formula’ – ‘Monte Carlo’

‘Pricing formula’

∣
∣∣
∣.

The results of Table 1 show that our analytical pricing formula for vulnerable exchange
option provides the exact value. Moreover, we can see that it takes less than 0.01 seconds
to calculate each option value. In other words, we consider the value obtained by the MC
simulation as the benchmark and verify the accuracy and efficiency of our formula com-
pared to benchmark value.

4 Concluding remarks
In this paper, we study the valuation of exchange option with default risk, which is called
‘vulnerable exchange option’, under a stochastic volatility model. The stochastic volatil-
ity model is assumed as a fast mean-reverting model. Since vulnerable exchange option
consist of three underlying assets, we assume that the processes of three assets follow the
stochastic volatility model. We derive the PDE for vulnerable exchange option based on
asymptotic expansion approach and provide an explicit analytical pricing formula of the
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Table 1 Values obtained from our approach and values from Monte-Carlo simulation. The baseline
parameters are r = 0.02, α = 0.5, D = 100, S10 = 100, S20 = 100, V0 = 100, k1 = k2 = kv = 1,
m1 =m2 =mv = –2, ρ12 = ρ1v = ρ2v = 0.5, and η1 = η2 = ηv = –0.7. Pricing formula* in P0 denotes
the value obtained from Theorem 1. ‘Av. run time’ denotes average CPU execution time for the
computation when T = 3

P0 P̃ε (= P0 + Pε
1 )

T D∗ Pricing formula* Monte Carlo R-err Pricing formula Monte Carlo R-err

Panel A. ε = 0.01
1 70 6.1275 6.1324 8.0× 10–4 6.0996 6.1141 2.4× 10–3

80 5.9549 5.9610 1.0× 10–3 5.9069 5.9208 2.3× 10–3

90 5.4297 5.4353 1.0× 10–3 5.3947 5.4077 2.4× 10–3

3 70 10.2437 10.2326 1.1× 10–3 10.1801 10.2058 2.5× 10–3

80 9.6883 9.6794 9.0× 10–4 9.6293 9.6498 2.1× 10–3

90 8.9200 8.9118 9.0× 10–4 8.8798 8.9014 2.4× 10–3

Panel B. ε = 0.02
1 70 6.1275 6.6.1324 8.0× 10–4 6.0881 6.0596 4.7× 10–3

80 5.9549 5.9610 1.0× 10–3 5.8870 5.8639 3.9× 10–3

90 5.4297 5.4353 1.0× 10–3 5.3802 5.3629 3.2× 10–3

3 70 10.2437 10.2326 1.1× 10–3 10.1536 10.1374 1.6× 10–3

80 9.6883 9.6794 9.0× 10–4 9.6049 9.5900 1.6× 10–3

90 8.9200 8.9118 9.0× 10–4 8.8631 8.8481 1.7× 10–3

Av. run time (T = 3) 0.0097 s 26 min 48 s

option with the correction term. We also carry out the numerical experiments to show
some features of vulnerable exchange option and the accuracy of our formula. We pro-
vide some graphs to illustrate the features of the option. From the graphs, we observe the
stochastic volatility correction effect on the vulnerable exchange option and the behaviors
of the option values with respect to some significant parameters. In addition, MC simula-
tion is applied to obtain the value that is considered as a benchmark. From the numerical
results with MC simulation, we can find that our formula is accurate and efficient in pric-
ing of the vulnerable exchange option.

Appendix: Spectral theory
In this section, we investigate the dependence of the functions defined in (8) on certain
variables. Without loss of generality, we consider only φ1 and φ12 here, which should be
defined as

L0φ1(y1, y2, yv) = f 2
1 (y1) – σ̄ 2

1 ,

L0φ12(y1, y2, yv) = f1(y1)f2(y2) –
〈
f1(y1)f2(y2)

〉
,

where

L0 = k1(m1 – y1)
∂

∂y1
+ k2(m2 – y2)

∂

∂y2
+ kv(mv – yv)

∂

∂yv

+ k1ν̃
2
1

∂2

∂y2
1

+ k2ν̃
2
2

∂2

∂y2
2

+ kvν̃
2
v

∂2

∂y2
v

and ν̃2
i = ν2

i
ki

for i = 1, 2, v. Using the change of variables

yi = mi + ν̃iui (i = 1, 2, v),
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the operator L0 can be converted to L̃0, which is given by

L̃0 = k1

(
∂2

∂u2
1

– u1
∂

∂u1

)
+ k2

(
∂2

∂u2
2

– u2
∂

∂u2

)
+ kv

(
∂2

∂u2
v

– uv
∂

∂uv

)
.

The operator L̃0 is the infinitesimal generator of a multivariate OU process with zero
mean-reverting level. Also the invariant distribution γ of the OU process is given by the
product of the univariate OU processes because of their independence, as follows.

γ (du1, du2, duv) =
∏

i=1,2,v

γi(dui),

where

γi(dui) =
1√
2π

e–u2
i /2 dui,

for i = 1, 2, v. According to [38, 39], the operator L̃0 has the eigenfunction Hα , which is
known as the Hermite polynomial and given by

Hα(u1, u2, uv) =
∏

i=1,2,v

Hαi (ui),

for index α = (α1,α2,αv) ∈ N
3. Here, N3 denotes the set of all three-dimensional positive

integers. Also, its corresponding eigenvalue is –k · α, where k = (k1,k2, kv), and it means
that the following holds.

L̃0Hα(u1, u2, uv) = –(k1α1 + k2α2 + kvαv)Hα(u1, u2, uv).

By a result of spectral theory, the set of the polynomial Hα forms a complete orthogonal
basis for the Hilbert space L2(γ ) in which the inner product is given by

〈f , g〉 =
∫∫∫

R3
f (u1, u2, uv)g(u1, u2, uv)γ (du1, du2, duv),

for f , g ∈ L2(γ ). Therefore, the three-dimensional Poisson equation,

L̃0φ̃1(u1, u2, uv) = f̃ 2
1 (u1) – σ̄ 2

1 ,

has the following solution

φ̃1(u1, u2, uv) = –
∑

α∈N3

cα

k · α
1√
α!

Hα(u1, u2, uv),

where

cα =
〈

1√
α!

Hα(u1, u2, uv), f̃ 2
1 (u1) – σ̄ 2

1

〉
,
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and α! = α1!α2!αv!. By simple calculation, one can obtain

cα =
〈

1√
α!

Hα(u1, u2, uv), f̃ 2
1 (u1) – σ̄ 2

1

〉

=
1√
α!

∫

R

Hα1 (u1)
(
f̃ 2
1 (u1) – σ̄ 2

1
)
γ (du1)

∫

R

Hα2 (u2)γ (du2)
∫

R

Hαv (uv)γ (duv)

and

∫

R

Hαi (ui)γ (dui) =

⎧
⎨

⎩
1 if αi = 0,

0 if αi > 0,

for i = 1, 2, v. Hence, we conclude that

cα =

⎧
⎨

⎩

1√
α1!

∫
R

Hα1 (u1)(f̃ 2
1 (u1) – σ̄ 2

1 )γ (du1) if α2 = 0 and αv = 0,

0 otherwise,

and φ̃1 is the function of u1, which means φ1 is the function of y1.
Similarly, the equation,

L̃0φ̃12(u1, u2, uv) = f̃1(u1)f̃2(u2) –
〈
f1(y1)f2(y2)

〉
,

has the solution of the form

φ̃12(u1, u2, uv) = –
∑

α∈N3

dα

k · α
1√
α!

Hα(u1, u2, uv),

where

dα =
〈

1√
α!

Hα(u1, u2, uv), f̃1(u1)f̃2(u2) –
〈
f1(y1)f2(y2)

〉
〉

=

⎧
⎪⎪⎨

⎪⎪⎩

1√
α1!α2!

∫∫
R2 Hα1 (u1)Hα2 (u1)(f̃1(u1)f̃2(u2)

– 〈f1(y1)f2(y2)〉)γ (du1)γ (du2) if αv = 0,

0 otherwise.

Therefore, φ12 is also the function of y1 and y2.
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