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1 Introduction
The purpose of this paper is to study the behavior of solutions of the inhomogeneous p-
Laplacian equation with Neumann boundary conditions as p — oo. The precise equation

we consider is

—Apu =y in €2,
|Vulp23 =0  ondQ, (1.1)
Jo lulP?udx =0,

where @ C R? is a Lipschitz domain, and the right-hand side 1, € M(2) is a signed Radon
measure which satisfies the compatibility condition Mp(ﬁ) = 0. We index the right-hand
side by p to include the case that it varies with p. In the rest of the paper we will refer
to (1.1) as the p-Poisson equation since for p = 2 it obviously coincides with the standard
Poisson equation.

We prove two convergence results stated in Sect. 2.4 below. The first one is purely
variational and states that, if the right-hand sides 1, converge weak-star to a measure
u e M(Q) as p — oo, then weak solutions u, of (1.1) converge (up to a subsequence) to

a Kantorovich potential u,, which realizes the maximum in the following version of the
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Wasserstein-1 distance between the positive part u* and the negative part ;= of u:

sup{/ udu® —f udu :u e C(Q),esssupg |Vu| < 1}. (1.2)
Q Q

The second result uses techniques from viscosity solutions to prove that for continuous
data u, € C(R), converging uniformly to u € C(R2), solutions u, converge to a viscosity so-
lution of the following infinity Laplacian / eikonal type partial differential equation (PDE):

min{|Vu| - 1,-Asu}=0 in{u >0},
~Asoti =0 in{x 70},
max{l — |Vul|,-Asu} =0 in{u <0},

(1.3)
maxg # + ming u = 0.

Consequently, the only information on p, which “survives” the limit p — oo in the p-
Poisson problem (1.1), is the support of its positive and negative part.

Similar results have already been established for several related problems associated
with the p-Laplace operator. In [1], the limit of p-Poisson equations with nonnegative
right-hand side and Dirichlet boundary conditions was related to a PDE similar to (1.3).
In [2] the asymptotics of the homogeneous p-Laplacian equation with nonhomogeneous
Neumann boundary conditions was investigated and related to an optimal transport prob-
lem and a viscosity PDE of infinity Laplacian type. Furthermore, in [3] a vector-valued ver-
sion of (1.1) with right-hand side independent of p was studied. Solutions were shown to
converge to a Kantorovich potential and to solve a PDE in divergence form with measure
coefficients. Similar results were established in [4, 5], however, imposing stricter regularity
conditions on the right-hand side in (1.1). Furthermore, in [6] the case of mixed boundary
conditions and regular fixed right-hand sides was related to optimal transport through
a window on the boundary. Infinity Laplacian eigenvalue problems, their approximation
with p-Laplacian problems, and their relation to optimal transport were investigated in
[7-11].

Apart from the theoretical interest in understanding the limiting behavior of solutions
to (1.1), our investigations are also driven by recent developments in data science. In [12]
it was proposed to utilize the p-Poisson equation to solve semisupervised learning tasks.
To this end, one assumes to have access to labels g : O — R of a closed subset O C Q
of the domain, in particular, O could be a finite collection of points. For extending these
labels from a discrete set O = {x; : i = 1,...,m} with m € N to the whole domain ©, it was

suggested in [12] to solve (1.1) with the right-hand side given by

Hp == Z(g(xz) _g)axi’ = % Zg(xl
i=1

where 8, € M(2) denotes the Dirac measure located at x € 2. While this method, termed
“Poisson learning’, performs very well in practice, a full analysis is still pending. In par-
ticular, a rigorous convergence proof of the finite-dimensional approximation of Poisson
learning on weighted graphs—which is used in applications—would be desirable.
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The results of the present article apply to the continuum description of Poisson learning
and, in particular, address the asymptotics as p — 00. For the balanced case of two labelled
classes with equal size, i.e., g : O — {£1} and g = 0, our main results can be interpreted as
follows: The labelling function # arising as limit of solutions to Poisson learning as p — oo
is directly connected to the solution of the optimal transport problem, which transports
the empirical measure ), (..., 0 of the points with label +1 to the empirical measure
> ig(=—1Ox; of the points with label ~1.

The plan of this paper is the following: Sect. 2 reviews some important mathemati-
cal background and states our main results which are proved in Sect. 3. In more detail,
Sect. 3.1 proves compactness of solutions of (1.1) as p — 00, Sect. 3.2 is devoted to the
optimal transport characterization of cluster points, and Sect. 3.3 relates them to the lim-
iting PDE (1.3).

2 Mathematical preliminaries and main results
2.1 Weak solution to the p-Laplacian equation
The p-Laplacian for p € [1, 00) is defined as

Ay = div(|VulP V). (2.1)

For C2-functions u, it admits the decomposition formula

Apu = |Vu|”‘2<Au+(p—2)|A€—°;|l;>, 2.2)
where Au = div(Vu) denotes the Laplacian and Aou := (Vu, D*uVu) is called the infinity
Laplacian.

Since we are interested in the case p — oo anyway, we assume in the whole article that
p > d, in which case the Sobolev embedding W7 (Q) < CO’IV% (€) makes sure that the
following concept of weak solutions to (1.1) is well defined.

Definition 2.1 Let p > d. A function u € W?(Q) is called a weak solution to (1.1) if it
satisfies [, [u[P2udx = 0 and

/ [VulP2Vu - Vo dx = / ¢du,, Vo e W(Q). (2.3)
Q Q

It is obvious that weak solutions in the sense of Definition 2.1 coincide with solutions of

the variational problem

1
min{—/ |Vu|pdx—/ udup:uewl’p(ﬂ),/ |u|P-2udx:o} (2.4)
pPJo Q Q

since the Euler—Lagrange equations of this problem precisely coincide with (2.3), cf. [13].
Using standard arguments from calculus of variations, it can be shown that this problem
admits a unique solution for every p > 1. Apart from guaranteeing existence and unique-
ness, this variational characterization will be essential for deriving the optimal transport
characterization of the limit lim,_., #, of weak solutions u, € W?(Q). For higher reg-
ularity statements for solutions of the p-Poisson equation, we refer the interested reader
to [14].
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2.2 Geodesic geometry
As it turns out, the correct metric on € when working with (1.1) (or (2.4)) and its limit as

p — oo is not the Euclidean one but the geodesic distance. It is defined as

1
do(x,y) = inf{/o |)'/(t)| dt:y e Cl([O,l],Q),y(O) =x,v(1) :y} (2.5)

and turns (2, dg) into a length space. The geodesic distance measures the length of the
shortest curve in €2 connecting two points. If Q is convex, then the curve y (t) = (1 -£)x + ty
shows dgq(x,y) = |x — y|, but in general it holds dq(x,¥) > |x —y|. A derived quantity, which
appears naturally in the context of the Neumann problem (1.1), is the geodesic diameter
of 2, defined as

diam(Q2) := sup dq(x,y). (2.6)
x,y€Q

The geodesic diameter appears in the optimal constant in the inequality

diam(£2)

esssupg, |u| < esssupg, |Vul,

2.7)
Yu e Wh®(Q) : esssupg, u + essinfg u = 0

and in the first nontrivial Neumann eigenvalue of the infinity Laplacian [8, 15], given by

2

Moo = dam()” (2.8)

One can use the geodesic distance to define the geodesic Lipschitz constant of u € C(S2)
as

: |(x) — u(y)]
Li u):=8Sup ———.
pQ( ) x,ye% dg (x,y)

Xy

(2.9)

With this at hand, one can introduce a geodesic version of the Wasserstein-1 distance:

WLQ(M+,M_) = sup{/;2 udu* - /;2 udp™ :u e C(Q),Lipg (1) < 1}. (2.10)

Note that, as stated in [16, page 269], any function z € W () has a continuous repre-
sentative (denoted by the same symbol), and it holds

|u(x) — u(y)| < esssupg |Vulda(r,y), Vx,y€ Q. (2.11)
This shows that Lipg (1) < esssupg, | Vu|. Furthermore, since for points x, y that lie in a ball
that is fully contained in Q it holds dq(x,y) = |x — y|, it is easily seen (see [1, page 23]) that

in fact

Lipg (#) = esssupg, |Vu|. (2.12)
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2.3 Weak-star convergence of measures
For measuring the convergence of the right-hand side measures 11, in (1.1) as p — oo, we

utilize weak-star convergence of measures.

Definition 2.2 (Weak-star convergence of measures) As sequence of Radon measures
(Itn)nen C M(R) is said to converge weak-star to 1 € M(R) (written i, A w) if

lim [ udp, = f udpu YueC(Q). (2.13)
n—00 Q Q
Remark 2.1 (Smooth approximation) It is easy to see that any Radon measure can be ap-

proximated in the weak-star topology by convolving it with a mollifier.

2.4 Main results
The following are our main results. The proof of Theorem 1 can be found in Sect. 3.2 and
the one of Theorem 2, along with precise definitions of the notion of viscosity solutions

and some corollaries, in Sect. 3.3.

Theorem 1 Assume that i, A win M(Q) as p — oo and let i = u* — =, with nonneg-
ative measures p*t € M(Q), be the Jordan decomposition of 1. Then (up to a subsequence)
weak solutions u, € W'(Q2) of (1.1) uniformly converge to a function us € W"*(Q),
which satisfies

Wia(uhu) = /

uoodlf—/ Usodp™.
Q Q

Theorem 2 If 11, € C(R2) converges uniformly to u € C(Q) as p — oo, then (up to a sub-
sequence) weak solutions u, € W"P(Q) of (1.1) converge uniformly to a function us, €
W(Q), which is a viscosity solution of

min{|Vu| - 1,-Asu} =0 in{u >0},
~Aoott =0 in{pn 40},
max{l — |Vu|,-Axu} =0 in{u<0},

(2.14)
maxg # + ming u = 0.

3 Limit behaviorasp — oo

3.1 Convergence of solutions

In this section we show that if the sequence of right-hand sides 1, in (1.1) has uniformly

bounded mass, then the sequence of solutions (#,),-0 admits a convergent subsequence.
To this end, we first derive an upper bound for the p-Dirichlet energy [, [Vul? dx in

terms of the data, which will then allow us to deduce convergence.

Proposition 3.1 Let u, € W'?(2) be a weak solution of (1.1) with data w, € M(Q). Then
it holds

1-1 .
d Q —
limsup<f [Vu,|? dx) ! < %()limsupmlﬁ(ﬂ).
Q

p—>00 p—>00
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Proof Choosing ¢ = u, in (2.3) and using Holder’s and Morrey’s inequalities yields

/|Vup|l’dx:/updupflupl(ﬁ)esssur)glupl
Q

<—|Mp (f |Vup|1’dx> ,

where the optimal constant for the Morrey inequality is defined as

VulPd
0p:=in {M er'p(Q),f |u|”_2udx:0}.
Q

esssupg, |ul?

Using that p > ¢/0), converges to the value 3 dm( € (0,00), which is the first nontrivial
Neumann eigenvalue of the infinity Laplacian [8, 15], concludes the proof. d

Before proving the convergence theorem, we need the following important lemma.

Lemma 3.1 Let u, C 17(Q2) converge to us, € L>(S2) uniformly on Q. Then, for every 0 <
k<p-1,itholds

lim (/ |24, [P~ dx) = eSS SupPg |Uoo |- (3.1)
Q

p—>00

Proof Let ¢ > 0 be given. Then, for p sufficiently large, it holds esssup |, — u| < &. Con-
sequently, using Minkowski’s inequality,

(/Iu |pkdx)% (/Wp umlpkdx>%( (1/|u Pkdx>%
o (f ot tan)

and hence

|‘H
i

limsup<f |24, [P~ kdx) < &+ esssupg |Ueol.

p—>00

Using the reverse triangle inequality, one analogously obtains

1
- kg \PF
liminf |24, P75 dx > —& + essSsupg |Usol-
Q

p—>o0
Combining these two inequalities and using that ¢ > 0 was arbitrary concludes the proof. ]
Now we can prove that the sequence of solutions of (1.1) has a convergent subsequence.

Proposition 3.2 Let u, € W (Q) be a weak solution of (1.1) with data p, € M(RQ) and
assume that the data satisfy

lim sup |//,p|(§) < 0.

p—>00
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Then there exists a function u., € WY ®(Q) such that as p — oo (up to a subsequence) the

Sfunctions u, converge to uo, uniformly and weakly in W' (Q) for any m > 1. Furthermore,
it holds

diam(2)

esssupg |Uoo| < 5

, esssupg V| < 1. (3.2)

Proof We follow the strategy from [1]. For p > m, Holder’s inequality yields

2 "
/|Vup|mdx§</ |Vup|pdx> Q7.
Q Q

Consequently, using Proposition 3.1 it follows

limsup/ [Vu,|™ dx < |22| < oo. (3.3)
Q

p—>00

Introducing the first nonzero eigenvalue of the p-Laplacian operator [8, 15]

Vul? d
)"P = ll’lf{ M ‘ue Wl’p(Q))/ |M|p721/tdx = 0}7 (34')
fQ |M|p dx Q
it holds
1
[mpas= [ vupes (35)
Q rp Ja

and therefore we can estimate

lup|™ dx < | P (/ |u |de> <1917 —5 (f |Vu |”dx>
/Q » q 7 o7, q P

Using Proposition 3.1 together with the fact that according to [8] it holds /A, = Ay :=

dianzl(Q) € (0,00) as p — 00, we obtain

m
p

Q
limsup/ 2, dow < 182 < 00. (3.6)
Q Az

p—00 0

Thanks to (3.3) and (3.6), the sequence u,, has uniformly bounded W' -norms, and hence
(up to a subsequence) converges weakly to a function u, in W1 (Q). Furthermore, for m >
d, one has the compact embedding [17] of W1"(Q) into COl-1 (), which (after another
round of subsequence refinement) proves the uniform convergence.

It remains to argue that u., € W*(€2) and to prove (3.2). Using the weak lower semi-
continuity of the L”-norm, we obtain from (3.3) that

/|Vuoo|mdx§liminf/ [Vu,|™ dx < ||
Q p=oo Jo

Taking the mth root and sending m — 0o an application of Lemma 3.1 shows

N

esssupg | Viteo| :W}Ln;o(/ IVuool”’dx) <1
Q
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Figure 1 Solutions up, of (1.1) for p € {1.1,1.5,2,5, 10,100}
(from red to blue)
0.5 1
— = 0.5 1
—0.5 ¢
Using again lower semicontinuity and (3.6) yields
- . m |€2]
[thoo|” dx < liminf | |u,|" dx < —.
Q p—oo Jo )J(’)”o
Taking the mth root and applying Lemma 3.1 with p = m and k = 0 yields
i QF 1 diam(Q)
Z i iam
essSupg |Uoo| = lim </ |uoo|’”dx) §limsup| | S
m— 00 Q s 00 0 )\oo 2
Hence, we have established all inequalities in (3.2). O

Example 3.1 If du,(x) = sign(x)dx for all p > 1, then the explicit solution of the p-
Laplacian equation (1.1) is given by u,(x) = ’%1 sign(x)[1 - (1 — |x|)1%]. As p — o0, the
functions u, converge uniformly to u.(x) = x, see Fig. 1. Note that the Neumann bound-
ary conditions get lost in the limit p — 0o, see also Sect. 3.3.

3.2 Optimal transport characterization

The main theorem in this section characterizes the limit ., as optimal transport potential.
We assume that the data measures (1, converge in the weak-star sense of measures. This
makes sure that one can pass to the limit in duality products where both factors converge,
as the following lemma shows.

Lemma 3.2 Ifu, A win M(Q) and u, — u uniformly in C(Q), then it holds
lim [ u,dw, = / udu. (3.7)
n—00 Q Q

Proof With the abbreviation (u, u) := fQ udp, we can compute

’(Mm Un) = (W, u)’ = ’(Mn’ Uy —U) + (tn, ) — () Lt)’

< |inl () sup st — ] + | (= 1, 1)
Q

The Banach—Steinhaus theorem (or the uniform boundedness principle) [16, Sect. 2.2]
makes sure that sup,, |u,|(Q) < 0o. Together with the uniform convergence of u, and the



Bungert Advances in Continuous and Discrete Models (2023) 2023:8 Page 9 of 17

weak-star convergence of 11, this implies that the right-hand side goes to zero when taking
the limsup as n — oo. g

To set the scene for the optimal transport characterization, we remind the reader of the
usual Wasserstein-1 distance W, (u*, u~) of the two measures u*, defined as

Wl(/f,;[) = sup{/Q udu* - /Q udp™ :u e C(Q),Lip(u) < 1}, (3.8)

where the Lipschitz constant Lip(«) in (3.8) is

Lip(u) := sup M (3.9)

x,y€Q |x —)/|
xy

Functions u € C(£2), which attain the supremum in (3.8), are typically referred to as Kan-
torovich potentials.

The Lipschitz constant, and hence also the Wasserstein-1 distance, is defined with re-
spect to the Euclidean metric on R4, This is, however, not the most natural metric to
consider on the (possibly nonconvex) domain Q. Indeed it can happen that two points in
2 have a small Euclidean distance although transporting two measures concentrated on
these points onto each other within Q2 requires a long transportation path. To overcome
this, one can use the geodesic distance on €2, defined in (2.5). Correspondingly, one can
also introduce the geodesic Lipschitz constant (2.9) and geodesic Wasserstein-1 distance
(2.10).

As Theorem 1 states, this geodesic transport distance (2.10) arises naturally in the lim-
iting problem of the p-Poisson equation (1.1). We now give the proof of this statement.

Proof of Theorem 1 First we note that the weak-star convergence of 1, together with the
Banach—Steinhaus theorem in particular implies that

limsup |1, |(€2) < 0o

p—>00

such that Proposition 3.2 assures the existence of a subsequential uniform limit #,.
Let u € Wh(Q) with esssupg, |Vu| < 1 be arbitrary. Without loss of generality we can
assume that fQ |u|P~2u dx = 0. Since u,, in particular solves (2.4), it holds

1 1
—f |Vup|pdx—/updup§—/ |Vu|pdx—fudup.
pJa Q pJa Q

We can rearrange this inequality to
1 1 -
—/ |Vup|”dx——/ |Vu|pdx+/ud/¢;—/udup
pJa pJa Q Q

< udu*—/u du,,
Jysw - [

where u, = Ky = My with nonnegative measures ,u[‘;t € M(RQ), is the Jordan decomposition

of . Obviously, it holds 1, X uFasp — oo since the measures 14, are mutually singular.
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Now we use Lemma 3.2 together with the fact that the first term is nonnegative and |Vu| <
1 a.e. in Q to obtain

/ud;ﬂ—/udu‘f/uoodu”—/uoodu_.
Q Q Q Q

Since by (2.12) and (3.2) the function u is feasible for the optimization problem in (2.10),
taking the supremum over u shows the assertion. g

diam(Q
—'a“;( ) one

Since according to Proposition 3.2 the limit u, also satisfies ess supg, |t | <
could also have the idea to include a boundedness condition in the optimization problem
in (2.10). This is motivated by the so-called Kantorovich—Rubinstein (KR) norm of the
measure u = u* — u~ on the length space (2, dg), which is defined as

el reey o= sup{/ udp :u e C(Q),esssupg |u| < 1,Lipg(u) < 1}. (3.10)
Q

The reason why the KR norm does not appear naturally in our context is that for measures
with zero mass it is equivalent (and for suitably scaled domains even equal) to the so-called
dual Lipschitz norm. This norm coincides with the geodesic Wasserstein distance of the

positive and negative part of the measure and is defined as

el i, e = sup{/ udp :u € C(Q),Lipg(u) < 1} =Wia(u'un). (3.11)
Q

For completeness, the equivalence is stated in the following proposition.
Proposition 3.3 Let 1 € M() satisfy () = 0. Then it holds

diam($2)

5 ) 141l ree)- (3.12)

lellkr) < ||N||Lip§(§) =< (1 Vv

Proof The proofworks just asin [9, Proposition 4.3], see also [18, Lemma 2.1]. By omitting
the constraint ess supg, || < 1, we obtain the first inequality || |lxrg) < |l H’”Lip”é(ﬁ)'

For the other inequality, we argue as follows: Since p has zero mass, we can without
loss of generality assume that the supremum in (3.11) is taken over functions that satisfy
esssupg u + essinfq u = 0 by replacing u# with u — ¢ for a suitable constant. Then, using
(2.7), we get for all u € C() with Lipg (1) < 1 that

diam(£2) diam(£2)
esssupg, |u| < ———esssupg |Vy| < ————.
2 —

=Lipg(u)

Letting £:=1Vv di%(m > 1, it holds

1 — .
leeliLips, @) = tsup{/ ;udu s u € C(R2), Lipg(u) < 1}
Q

1 — .
= tsup{/ ;ud,u cu € C(2),esssupg |u| < t,Lipg(u) < 1}
Q
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— 1
= tsup{/ udp :u € C(2),esssupg |u| <1,Lips () < ;}
Q

< tsup{/ udu :u e C(Q),esssupg, |u| < 1,Lipg(u) < 1}
Q
= t”ﬂ”mz(ﬁ)- O

3.3 PDE characterization

Now we also give a PDE characterization of the limit #.,, which we have shown to be a
Kantorovich potential in the previous section. Note that Kantorovich potentials are typi-
cally not unique, which is why it is interesting to verify that the limiting procedure p — oo
selects a more regular potential. Since u, turns out to solve an infinity Laplacian type PDE
in the viscosity sense, we also have to work with viscosity solutions for finite p. However,
for that we have to assume that the data j,, are continuous and converge uniformly.

Let us first define what it means to be a viscosity solution to the p-Poisson equation (1.1).
In particular, one has to interpret the Neumann boundary conditions in the viscosity sense,
see also [8, 19]. As explained in [20], the proper way to understand boundary conditions
for boundary value problems of the form

F(x,u(x), Vu(x),D*u(x)) =0 in ,
B(x, u(x), Vu(x), D*u(x)) =0 on d<2,

is to demand that subsolutions satisfy
min{F(x, u(x), Vu(x),Dzu(x)),B(x, u(x), Vu(x),Dzu(x))} <0 ondQ
and supersolutions satisfy the converse inequality with a max in place of the min.

Definition 3.1 (Viscosity solutions of the p-Poisson equation) Let 1, € C(R). An upper
semicontinuous function « : @ — R is called viscosity subsolution of (1.1) if
« forall xp €  and ¢ € C?(RQ) such that z — ¢ has a local maximum at xo, it holds

_Ap¢(x0) - Mp(xo) <0
« forall xy € 32 and ¢ € C%(Q) such that u — ¢ has a local maximum at g, it holds

. —20¢
mm{ |V (xo)|” 5, (60), =2, (x0) - up(xo)} <0;
+ itholds [, [ulF~2udx < 0.
A lower semicontinuous function % : Q — R is called viscosity supersolution of (1.1) if

« forall xy € Q and ¢ € C*(R) such that u — ¢ has a local minimum at xy, it holds
—A,p(x0) — pp(x0) = 0;
« forall xy € 32 and ¢ € C%(Q) such that & — ¢ has a local maximum at x, it holds
¢
(

59
maX{ |V(x0)[” 25 %0), —Ap (%) — Mp(xo)} > 0;
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« itholds [, [ulF~2udx > 0.
A function u € C(R) is called a viscosity solution of (1.1) if it is both a sub- and superso-
lution.

We need the following well-known statement, which asserts that weak solutions to the
p-Poisson equation are also viscosity solutions.

Lemma3.3 Letp, € C(R). A continuous weak solution to (1.1) in the sense of Definition 2.1
is also a viscosity solution in the sense of Definition 3.1.

Proof This statement can be found in [19, Proposition 4.8]. We remark that the full proof
for the PDE on 2 can be found in [21, Theorem 1.8]. The boundary conditions are treated
in precisely the same way as for the p-Laplacian eigenvalue problem (which can be re-
garded as a p-Poisson equation), see [8, Lemma 2] and [19, Proposition 3.2]. O

Before we turn to the limiting PDE, we recall that the statement of Proposition 3.2, which
states that | Vi | < 1 almost everywhere in €2, can be converted into the viscosity frame-

work.

Proposition 3.4 If u, € C(R) converges uniformly to 1 € C(Q) as p — oo, then (up to
a subsequence) viscosity solutions u, € W?(Q) of (1.1) converge uniformly to a function
Uso € WEX(Q), which is a viscosity solution of |Vu| -1 <0and 1 —|Vu| > 0.

Proof As in [19, Proposition 4.7], which solely relies on [1, Part III, Lemma 1.1]. O

It is important to remark that in the viscosity sense the inequality [Vu| — 1 < 0 is not
equivalent to 1 — |Vu| > 0, which is why we make the distinction explicit.

Let us now turn to the limiting PDE (1.3) satisfied by u for which we assume that the
limiting data u € C(R2) are continuous. We prove that every limit u., of solutions to the
p-Poisson equation (1.1) as p — o0 is a viscosity solution of (1.3), which we restate here

for convenience:

min{|Vu| - 1,-Asu} =0 in{u >0},
~Aoott =0 in{n#0J,
max{l — |Vul|,-Asu}=0 in{u <0},

(3.13)
maxg # + ming u# = 0.

Note that this PDE does not contain any boundary conditions and it also does not specify
the behavior on the closed set Q \ ({x >0} U {1z <0} U {/L—7/()}C). Note that even the weak
boundary conditions in the viscosity sense, introduced before Definition 3.1, do not carry
over to the limiting problem, which is consistent with the findings in [1, 19]. Regarding
the behavior outside the three sets that occur in (3.13), one should remark that the PDE
is discontinuous there. Using lower and upper semicontinuous envelopes of this discon-
tinuous function, one can make sense of a weaker form of the PDE on the whole of €2, see
[22, Remark 4.3] for a similar problem and [20, Remark 6.3] for a general statement.

In contrast, for Neumann eigenvalue problems of the p-Laplacian, it is possible to for-
mulate boundary conditions and obtain a limiting PDE on the whole of £, see [8].
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Let us now define what precisely we mean by viscosity solutions to equation (3.13).

Definition 3.2 (Viscosity solutions of the limiting equation) Let u € C(2). An upper
semicontinuous function « : @ — R is called a viscosity subsolution of (3.13) if
« forall xp € Q and ¢ € C?(R) such that z — ¢ has a local maximum at xy, it holds

min{| Ve (xo)| — 1, ~Anh(xo)} <0 if xg € {1t >0},
~Aoop(x9) <0 if xg € {w 70},
max{1 — [V (xo)l, ~Axh(o)} <0 ifxg € {1 <0},

« it holds maxg u + essinfq u <O0.
A lower semicontinuous function u: Q — R is called a viscosity supersolution if
« forall xy € Q and ¢ € C*(R2) such that u — ¢ has a local minimum at xy, it holds

min{|Vé@o)| - 1, ~Axd(®0)} = 0 if xo € {1 >0},
~And(x0) > 0 if xo € {1 70},
max{1 — [Vo(xo)|, —Axp(x0)} = 0 ifxo € {1 <0},

« it holds ess supg, # + ming # > 0.

A function u € C(R) is called viscosity solution it is both a sub- and supersolution.
Now we can prove the main theorem of this section.

Proof of Theorem 2 The conditions of Proposition 3.2 are trivially fulfilled, which guaran-
tees the existence of a (subsequential) uniform limit #,, € C(2). We only show the subso-
lution property, the supersolution property can be shown analogously.

Let xp € Q and ¢ € C%(R2) such that u., — ¢ has a local maximum at xy. Choose a se-
quence (p;)ien C (d, 00) converging to oo such that u,, — 4, uniformly. Then there exists
a sequence of points (x;);en C 2 converging to xo € 2 such that u,, — ¢ has a local maxi-
mum in x; for all i € N. Since u,, is a viscosity solution of (1.1), by (2.2) it holds

PRAGx) + 0 - 2| Vo) [ Ao () = ~Apd(x:) < 11y, (x).  (3.14)

~(|Ve(x)

Case 1, xo € {1 > 0}: We have to show that
min{|V(xo)| — 1, ~Axp(x0)} < 0. (3.15)

In fact, for showing this, we will not even have to use that p(xp) > 0, but (3.15) is true for
all x € Q. The condition p(xo) > 0 will only be relevant for showing the converse inequality
for supersolutions.

If [V (xo)| = 0, then we have by definition that — A ¢ (xo) = 0. In the case that |V (xo)| >
0, we get for i € N sufficiently large that |[V¢(x;)| > 0 and can divide by this quantity to get

N2
_< |V¢(x12)| 1 (). (3.16)

Ag(x;) + Aoo¢(xi)> =< ! —
(Bi = 2)|Vp(x;) P

i
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Then either |[V@(xp)] — 1 < 0 or |Vo(xo)] — 1 > 0, and in the latter case we obtain
— A (o) < 0 by taking the limit i — oo and using the uniform boundedness of 1,,,. Com-
bining all those cases yields (3.15).

Case 2, xy € {11 # 0} : We have to show that

—Ax(x) < 0. (3.17)

If [Vg(xo)| = 0, then we have by definition that —A¢(x) = 0. If [V (xp)| > 0, then (3.16),
the openness of {1n 70}, and the uniform convergence of u,, imply that —A,¢(x) < 0.
In either case, we obtain (3.17).

Case 3, xo € {1 < 0}: We have to show that

max{1 - |Ve(xo)|, ~As(x0)} <0. (3.18)

Since the functions p1,, converge uniformly to u, the set {u < 0} is open, and p1(xo) is strictly
negative, (3.14) can only be satisfied if |V (x;)| > O for i € N sufficiently large. Dividing by
(pi —2)|V(x;)|P™* > 0 then again yields (3.16). If 1 — |V (xo)| < 0, then in the limit i — oo
and using the uniform boundedness of 1, we get —A ¢ (xp) < 01If, however, 1 - |V (xo)| >
0, one gets —Ap(xg) < —00 as i — 0o, which is impossible since ¢ € C2(R2). Combining
these two cases, we obtain (3.18).

Mean value: Finally, let us turn to the mean value condition. Letting »* := max(Zu,0)
denote the positive/negative part of a function u: Q — R for all i € N, it holds

pi—2 _ +|Pi—2 4 _ -
Oz/Q|upl.|l upidx—/9|upi} upl,dx /J”p;-

which is equivalent to

1 _ipi-1
/Q|u;i|p’ dx5/9|upi|p’ dx.

Applying Lemma 3.1 with k = 1 then yields

pi—2 _
U, dx,

)

esssupg |ul, | < esssupg|uz,
which by the upper semicontinuity of u, is equivalent to maxg #o, + essinfg us, <0. O

Next we show that viscosity solutions of (3.13) have the intriguing property that they
solve the eikonal equation |Vu| = 1 on the interior of the support of the data x and are
infinity harmonic elsewhere. But even more is true: namely that « is an infinity superhar-
monic solution of the eikonal equation on {u > 0} and analogously a subharmonic one on
{i < 0}. This is formalized in the following corollary.

Corollary 3.1 The function u is a viscosity solution of

[Vu|-1=0, —-Asu>0 in{u>0}
~Asot =0 in{n#0J, (3.19)
1-|Vu|=0, -Au<0 in{u<0}
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Figure 2 Five different solutions u; of the limiting PDE 1
(3.13) for t € {0.5,0.625,0.75,0.875,1} (from red to blue). The
linear function u(x) = x is a limit of p-Laplacian solutions, see
Example 3.1
0.5 1
-1 —-0.5 0.5 1
—0.5 1
_1 1

Proof Let x € {11 >0} and ¢ € C%(R2) such that u., — ¢ has a local minimum at xo. Since
Uso 1s in particular a supersolution of (3.13), it follows that

[Vo(xo)| =120 and - Axg(xo) = 0.

Furthermore, Proposition 3.4 shows that | Vi, | — 1 < 0 in the viscosity sense, which shows
the claim. If xy € {1 < 0}, then one analogously uses the subsolution property of #., to infer
that1-|Vu| < 0and — A us < 0inthe viscosity sense and again utilizes Proposition 3.4
to conclude. O

It is important to remark that the limiting PDE (3.13) does not admit unique solutions.
This is illustrated in the following example.

Example 3.2 (Nonuniqueness of the limiting PDE) Let us consider the situation Q2 =
(-1,1) C R and p being an arbitrary continuous function with {u < 0} = (-1,0) and
{i >0} =(0,1). We claim that the following family of functions (see Fig. 2)

lx+t|—t, «xe€[-1,-0.5],
ur(x) = | x, x€(-0.5,05), te[0.51],
t—|x—t|, x€l[05,1],

is a viscosity solution of (3.13). Indeed, it is trivial to see that u, is even a classical so-
lution of (3.13) on (-2,2) \ {%t}. So we just have to check the two corner points at +t.
For xo = —t and ¢ € C2(R2) touching u from above in xy, it is obvious that |¢'(x0)| < 1,
and hence min{|¢(xo)| — 1, ~ A (x0)} < 0. Furthermore, there is no ¢ € C2(£2) touching u
from below in x. Similarly, one can argue for x = ¢ and obtain that u, is a viscosity solu-
tion of (3.13). Note that none of the functions %, has homogeneous Neumann boundary
conditions.

Since the concept of viscosity solutions heavily relies on continuity and is not compatible
with discontinuous or even measure data y, we have to use approximation techniques if
we want to make sense of (3.13) if i is a measure. In particular, it seems natural to replace
the open set {1z # 0} with the open set 2\ supp . However, one cannot just replace {; =}
with supp u™ since the latter sets are not open and might even have empty interior. For an
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arbitrary measure data u € M(S), which we extend to zero outside 2, we consider the

mollifications
W= [ p-ndut) ver? (3:20)
Q

where ¢ € C?(Rd) is a smooth kernel with supp ¢ € B;(0) and ¢, (x) = s %¢(x/¢). It is ob-
vious from the definition of u, thatifx € Q\ supp i then x € Q \ supp u® for all & > 0 small
enough. Furthermore u* A wnase | 0. Using the techniques from the proof of Theorem 2,

we immediately get the following result.

Corollary 3.2 Let 1 € M(Q) and Mp = u’? L Q e C(Q), where lim,_, o &, = 0 and u* is
defined as in (3.20). Let, furthermore, u, € W (Q) be viscosity solutions of (1.1) with data
Hp € C(RQ). Then the function u., € WY *(Q) is a viscosity solution of

—Acou=0 inQ\ suppu. (3.21)

Proof Let xp € Q \ supp  and ¢ € C*(R2) such that u, — ¢ has a local maximum at x.
Choose a sequence (p;)ien C (d,00) converging to oo such that u,, — ., uniformly. As
always, there exists a sequence of points (x;);en C 2 converging to xo € €2 such that u,, — ¢
has a local maximum in %; for all i € N. For all sufficiently large i € N, it holds xy € Q \
supp jip,;, and hence pi,,(xo) = 0. As in Case 2 of the proof of Theorem 2, we can conclude

that —A¢(xo) < 0. The supersolution property is shown analogously. O

4 Conclusion

In this article we have investigated limits of the p-Laplace equation with measure-valued
right-hand side as p — co. We proved the existence of (subsequential) limits and charac-
terized them as Kantorovich potentials for the optimal transport problem of transporting
the positive part of the right-hand side onto the negative one. For continuous data, we also
proved that such limits are viscosity solutions of a degenerate PDE, involving the infinity
Laplacian and the eikonal equation. It will be interesting to investigate in which sense
the limiting PDE can be interpreted for measure-valued data, which have a support with
empty interior. Here, lower / upper semicontinuous relaxations as in [20, 22] might be

promising tools.

Acknowledgements

The author would like to thank Jeff Calder and Simone Di Marino for enlightening discussions. This work was partially
done while the author was visiting the Simons Institute for the Theory of Computing to participate in the program
"Geometric Methods in Optimization and Sampling” during the fall of 2021, and the author is very grateful for the
hospitality of the institute.

Funding

This work was supported by the Deutsche Forschungsgemeinschaft (DFG, German Research Foundation) under
Germany’s Excellence Strategy—GZ 2047/1, Projekt-ID 390685813. Parts of this work were also done while the author was
in residence at Institut Mittag-Leffler in Djursholm, Sweden during the semester on Geometric Aspects of Nonlinear Partial
Differential Equations in 2022, supported by the Swedish Research Council under grant no. 2016-06596. Open Access
funding enabled and organized by Projekt DEAL.

Availability of data and materials
Not applicable.



Bungert Advances in Continuous and Discrete Models (2023) 2023:8

Declarations

Competing interests
The author declares that he has no competing interests.

Author contribution
Not applicable since this is a single-author publication. The author read and approved the final manuscript.

Publisher’s Note

Springer Nature remains neutral with regard to jurisdictional claims in published maps and institutional affiliations.

Received: 16 December 2021 Accepted: 11 January 2023 Published online: 27 January 2023

References

1.

20.

21.

22.

Bhattacharya, T, DiBenedetto, E., Manfredi, J.: Limits as p — oo of A,u =f and related extremal problems. Rend. Sem.

Mat. Univ. Politec. Torino 47, 15-68 (1989)

. Garcia Azorero, J,, Manfredi, J.J, Peral, I, Rossi, J.D.: The Neumann problem for the co-Laplacian and the

Monge-Kantorovich mass transfer problem. Nonlinear Anal., Theory Methods Appl. 66(2), 349-366 (2007)

. Bouchitte, G,, Buttazzo, G, De Pascale, L.: A p-Laplacian approximation for some mass optimization problems.

J. Optim. Theory Appl. 118(1), 1-25 (2003)

. Mazon, JM.,, Rossi, J.D.,, Toledo, J.: Mass transport problems obtained as limits of p-Laplacian type problems with

spatial dependence. Adv. Nonlinear Anal. 3(3), 133-140 (2014)

. Evans, L.C, Gangbo, W.: Differential Equations Methods for the Monge-Kantorovich Mass Transfer Problem, vol. 653.

Am. Math. Soc., Providence (1999)

. Peral, I, Garcfa Azorero, J., Manfredi, J.J, Rossi, J.D.: The limit as p — oo for the p-Laplacian with mixed boundary

conditions and the mass transport problem through a given window. Rend. Lincei 20(2), 111-126 (2009)

. Juutinen, P, Lindgvist, P, Manfredi, J.J.. The co-eigenvalue problem. Arch. Ration. Mech. Anal. 148(2), 89-105 (1999)
. Esposito, L, Kawohl, B, Nitsch, C, Trombetti, C.: The Neumann eigenvalue problem for the co-Laplacian. Rend. Lincei

Mat. Appl. 26(2), 119-134 (2015)

. Bungert, L, Koroley, Y. Eigenvalue problems in L*°: optimality conditions, duality, and relations with optimal

transport. Commun. Am. Math. Soc. 2(8), 345-373 (2022)

. Champion, T, De Pascale, L.: Asymptotic behaviour of nonlinear eigenvalue problems involving p-Laplacian-type

operators. Proc. R. Soc. Edinb,, Sect. A, Math. 137(6), 1179-1195 (2007)

. Champion, T, De Pascale, L., Jimenez, C.: The oo eigenvalue problem and a problem of optimal transportation (2008).

arXiv preprint arXiv:0811.1934

. Calder, J, Cook, B, Thorpe, M., Slepcev, D.: Poisson learning: graph based semi-supervised learning at very low label

rates. In: International Conference on Machine Learning, PMLR, pp. 1306-1316 (2020)

. Lindqvist, P: Notes on the p-Laplace Equation, vol. 161. University of Jyvaskyla, Jyvaskyla (2017)
. Lindgren, E., Lindqvist, P: Regularity of the p-Poisson equation in the plane. J. Anal. Math. 132(1), 217-228 (2017)
. Rossi, J.D, Saintier, N.B.C.: On the first nontrivial eigenvalue of the co-Laplacian with Neumann boundary conditions.

Houst. J. Math. 42(2), 613-635 (2016)

. Brezis, H.: Functional Analysis, Sobolev Spaces and Partial Differential Equations, vol. 2. Springer, Berlin (2011)
. Ziemer, W.P: Weakly Differentiable Functions: Sobolev Spaces and Functions of Bounded Variation, vol. 120. Springer,

Berlin (2012)

. Lellmann, J, Lorenz, D.A, Schonlieb, C, Valkonen, T.: Imaging with Kantorovich-Rubinstein discrepancy. SIAM J.

Imaging Sci. 7(4), 2833-2859 (2014)

. Amato, V, Lia Masiello, A, Nitsch, C,, Trombetti, C.: On the solutions to p-Poisson equation with Robin boundary

conditions when p goes to +oo. Adv. Nonlinear Anal. 11(1), 1631-1649 (2022)

Crandall, M.G,, Ishii, H., Lions, P-L.: User’s guide to viscosity solutions of second order partial differential equations. Bull.

Am. Math. Soc. 27(1), 1-67 (1992)

Medina, M., Ochoa, P: On viscosity and weak solutions for non-homogeneous p-Laplace equations. Adv. Nonlinear
Anal. 8(1), 468-481 (2019)

Buccheri, S., Leonori, T:: Large solutions to quasilinear problems involving the p-Laplacian as p diverges. Calc. Var.
Partial Differ. Equ. 60(1), 1-23 (2021)

Page 17 of 17


http://arxiv.org/abs/arXiv:0811.1934

	The inhomogeneous p-Laplacian equation with Neumann boundary conditions in the limit p->infty
	Abstract
	MSC
	Keywords

	Introduction
	Mathematical preliminaries and main results
	Weak solution to the p-Laplacian equation
	Geodesic geometry
	Weak-star convergence of measures
	Main results

	Limit behavior as p to inﬁnity
	Convergence of solutions
	Optimal transport characterization
	PDE characterization

	Conclusion
	Acknowledgements
	Funding
	Availability of data and materials
	Declarations
	Competing interests
	Author contribution
	Publisher's Note
	References


