Open Access

Monotonicity results for fractional difference operators with discrete exponential kernels

Advances in Difference Equations20172017:78

DOI: 10.1186/s13662-017-1126-1

Received: 22 July 2016

Accepted: 24 February 2017

Published: 9 March 2017


We prove that if the Caputo-Fabrizio nabla fractional difference operator \(({}^{\mathrm{CFR}}_{a-1}\nabla^{\alpha}y)(t)\) of order \(0<\alpha\leq1\) and starting at \(a-1\) is positive for \(t=a,a+1,\ldots\) , then \(y(t)\) is α-increasing. Conversely, if \(y(t)\) is increasing and \(y(a)\geq0\), then \(({}^{\mathrm{CFR}}_{a-1}\nabla^{\alpha}y)(t)\geq0\). A monotonicity result for the Caputo-type fractional difference operator is proved as well. As an application, we prove a fractional difference version of the mean-value theorem and make a comparison to the classical discrete fractional case.


discrete exponential kernel Caputo fractional difference Riemann fractional difference discrete fractional mean value theorem

1 Introduction

The fractional calculus was successfully used during the last few years in many branches of engineering and science [15]. The core ideas of this type of nonlocal calculus were applied successfully to the so-called discrete fractional calculus (DFC) [618]. This new direction initiated about a decade ago is in continuous evolution, and it started recently to be considered as a powerful tool to extract new insides of the dynamics of complex discrete dynamical systems. The discrete diffusion equation within discrete Riesz derivative is one of the new results reported very recently [19, 20]. Therefore, the DFC is a natural generalization of the classical discrete ones. Very recently, Caputo and Fabrizio [21] introduced a new fractional derivative based on a nonsingular kernel. The discrete version of this operator was reported in [22]. In our opinion, the existence of various types of memory kernels increases the chances to formulate adequately different types of models where different types of memory appear. Very recently, some authors investigated the monotonicity properties of discrete functions via their discrete fractional operators. Some authors studied the monotonicity analysis of delta- or nabla-type fractional difference operators of order \(0<\alpha<1\) (see [23]), whereas others studied fractional difference operators of order \(\alpha>1\) [2427]. These new results motivate us to discuss in this paper the monotonicity results for this nabla discrete fractional operator with discrete exponential kernel and compare them to the discrete classical ones. The fractional differences under consideration in this paper have kernels different from classical nabla fractional differences with kernels depending on the rising factorial powers, and we believe that they bring new kernels with new memories, which may be of different interest for applications.

2 Preliminaries

For two real numbers \(a< b\) with \(a\equiv b\) (mod 1), we denote \(\mathbb{N}_{a}=\{a,a+1,\ldots\}\), \({}_{b}\mathbb{N}= \{b,b-1,\ldots\}\), and \(\mathbb{N}_{a,b}=\mathbb{N}_{a} \cap{}_{b}\mathbb{N}=\{a,a+1,\ldots ,b\}\). For details about concepts of discrete fractional calculus, we refer the reader to the nice text book [28].

Using the time scale notation, the nabla discrete exponential kernel can be expressed as \(\widehat{e}_{\lambda}(t,\rho(s))=(\frac{1}{1-\lambda })^{t-\rho(s)}=(1-\alpha)^{t-\rho(s)}\) [29], where \(\lambda= \frac{-\alpha}{1-\alpha}\). The following discrete versions were proposed in [22]:

Definition 1


For \(\alpha\in(0,1)\) and f defined on \(\mathbb{N}_{a}\), or \({}_{b}\mathbb{N}\) in right case, we have the following definitions:
  • The left (nabla) new Caputo fractional difference is given by
    $$\begin{aligned} \bigl({}^{\mathrm{CFC}}_{a}\nabla^{\alpha}f\bigr) (t) =& \frac{B(\alpha)}{1-\alpha}\sum_{s=a+1}^{t}( \nabla_{s} f) (s) (1-\alpha)^{t-\rho(s)} \\ =& B(\alpha)\sum_{s=a+1}^{t}( \nabla_{s} f) (s) (1-\alpha)^{t-s}. \end{aligned}$$
  • The right (nabla) new Caputo fractional difference is given by
    $$\begin{aligned} \bigl({}^{\mathrm{CFC}}\nabla^{\alpha}_{b} f\bigr) (t) =& \frac{B(\alpha)}{1-\alpha}\sum_{s=t}^{b-1}(- \Delta_{s} f) (s) (1-\alpha)^{s-\rho(t)} \\ =& B(\alpha)\sum_{s=t}^{b-1}(- \Delta_{s} f) (s) (1-\alpha)^{s-t}. \end{aligned}$$
  • The left (nabla) new Riemann fractional difference is given by
    $$\begin{aligned} \bigl({}^{\mathrm{CFR}} _{a}\nabla^{\alpha}f\bigr) (t) =& \frac{B(\alpha)}{1-\alpha}\nabla _{t}\sum_{s=a+1}^{t} f(s) (1-\alpha)^{t-\rho(s)} \\ =& B(\alpha)\nabla_{t} \sum_{s=a+1}^{t} f(s) (1-\alpha)^{t-s}. \end{aligned}$$
  • The right (nabla) new Riemann fractional difference is given by
    $$\begin{aligned} \bigl({}^{\mathrm{CFR}}\nabla^{\alpha}_{b} f\bigr) (t) =& \frac{B(\alpha)}{1-\alpha}(-\Delta _{t})\sum_{s=t}^{b-1} f(s) (1-\alpha)^{s-\rho(t)} \\ =& B(\alpha) (-\Delta_{t})\sum_{s=t}^{b-1}f(s) (1-\alpha)^{s-t}, \end{aligned}$$
where \(B(\alpha)\) is a normalizing positive constant depending on α and satisfying \(B(0)= B(1)=1\).

Remark 1


In the limiting cases \(\alpha\rightarrow 0\) and \(\alpha\rightarrow1\), we remark the following:
  • $$\bigl({}^{\mathrm{CFC}} _{a}\nabla^{\alpha}f\bigr) (t) \rightarrow f(t)-f(a)\quad \mbox{as } \alpha\rightarrow0, $$
    $$\bigl({}^{\mathrm{CFC}} _{a}\nabla^{\alpha}f\bigr) (t) \rightarrow\nabla f(t) \quad\mbox{as } \alpha\rightarrow1. $$
  • $$\bigl({}^{\mathrm{CFC}}\nabla^{\alpha}_{b} f\bigr) (t) \rightarrow f(t)-f(b) \quad\mbox{as } \alpha \rightarrow0, $$
    $$\bigl({}^{\mathrm{CFC}}\nabla^{\alpha}_{b} f\bigr) (t) \rightarrow-\Delta f(t) \quad\mbox{as } \alpha\rightarrow1. $$
  • $$\bigl({}^{\mathrm{CFR}} _{a}\nabla^{\alpha}f\bigr) (t) \rightarrow f(t)\quad \mbox{as } \alpha \rightarrow0, $$
    $$\bigl({}^{\mathrm{CFR}} _{a}\nabla^{\alpha}f\bigr) (t) \rightarrow\nabla f(t)\quad \mbox{as } \alpha\rightarrow1. $$
  • $$\bigl({}^{\mathrm{CFR}}\nabla^{\alpha}_{b} f\bigr) (t) \rightarrow f(t) \quad\mbox{as } \alpha \rightarrow0, $$
    $$\bigl({}^{\mathrm{CFR}}\nabla^{\alpha}_{b} f\bigr) (t) \rightarrow-\Delta f(t) \quad\mbox{as } \alpha\rightarrow1. $$

Remark 2

[22] (the action of the discrete Q-operator)

The Q-operator acts regularly between left and right new fractional differences as follows:
  • \((Q{}^{\mathrm{CFR}} _{a}\nabla^{\alpha}f)(t)= ({}^{\mathrm{CFR}}\nabla^{\alpha}_{b} Qf)(t)\),

  • \((Q{}^{\mathrm{CFC}} _{a}\nabla^{\alpha}f)(t)= ({}^{\mathrm{CFC}}\nabla^{\alpha}_{b} Qf)(t)\),

where \((Qf)(t)=f(a+b-t)\).

Definition 2


For \(0<\alpha<1\) and \(u:\mathbb {N}_{a}\rightarrow\mathbb{R}\), \(a< b\), \(a\equiv b\) (mod 1), we define:
  • the corresponding left fractional sum by
    $$ \bigl({}^{\mathrm{CF}} _{a}\nabla^{-\alpha} u \bigr) (t)=\frac{1-\alpha}{B(\alpha)}u(t)+\frac {\alpha}{B(\alpha)}\sum _{s=a+1}^{t}u(s)\,ds; $$
  • the right fractional sum by
    $$ \bigl({}^{\mathrm{CF}}\nabla^{-\alpha}_{b} u\bigr) (t)=\frac{1-\alpha}{B(\alpha)}u(t)+\frac {\alpha}{B(\alpha)}\sum_{s=t}^{b-1}u(s)\,ds. $$

In [22], it was shown that \(({}^{\mathrm{CF}} _{a}\nabla^{-\alpha }{}^{\mathrm{CF}} _{a}\nabla^{\alpha}f)(t)=f(t)\) and \(({}^{\mathrm{CF}}\nabla^{-\alpha }_{b}{}^{\mathrm{CF}}\nabla_{b}^{\alpha}f)(t)=f(t)\). Also, it was shown that \(({}^{\mathrm{CF}} _{a}\nabla^{\alpha}{}^{\mathrm{CF}} _{a}\nabla^{-\alpha}f)(t)=f(t)\) and \(({}^{\mathrm{CF}}\nabla_{b}^{\alpha}{}^{\mathrm{CF}}\nabla^{-\alpha}_{b}f)(t)=f(t)\).

Proposition 1

[22] (the relation between Riemann- and Caputo-type fractional differences with exponential kernels)

  • \(({}^{\mathrm{CFC}}_{a}\nabla^{\alpha}f)(t)=({}^{\mathrm{CFR}}_{a}\nabla^{\alpha}f)(t)-\frac{B(\alpha)}{1-\alpha} f(a)(1-\alpha)^{t-a}\);

  • \(({}^{\mathrm{CFC}}\nabla_{b}^{\alpha}f)(t)=({}^{\mathrm{CFR}}\nabla_{b}^{\alpha}f)(t)-\frac {B(\alpha)}{1-\alpha} f(b)(1-\alpha)^{b-t}\).

Some parts of the following lemma are essential to proceed.

Lemma 1

For \(0<\alpha<1\) and g defined on \(\mathbb{N}_{a}\), we have:
  1. (i)
    $$ \bigl({}^{\mathrm{CF}}_{a}\nabla^{-\alpha} (1- \alpha)^{t}\bigr) (t)=\frac{(1-\alpha )^{a+1}}{B(\alpha)}; $$
  2. (ii)

    \(\nabla_{s} (1-\alpha)^{t-s}=\alpha(1-\alpha)^{t-s}\);

  3. (iii)

    \(({}^{\mathrm{CF}} _{a}\nabla^{-\alpha} \nabla g)(t)=(\nabla {}^{\mathrm{CF}}_{a}\nabla^{-\alpha} g)(t)-\frac{\alpha}{B(\alpha)} g(a)\);

  4. (iv)

    \(\nabla(1-\alpha)^{t} =-\alpha(1-\alpha)^{t-1}\);

  5. (v)

    \(({}^{\mathrm{CFR}} _{a}\nabla^{\alpha} (1-\alpha)^{t})(t)=B(\alpha )(1-\alpha)^{t-1}[1-\alpha(t-a)]\);

  6. (vi)

    \(({}^{\mathrm{CFR}} _{a}\nabla^{\alpha} 1)(t)=B(\alpha) (1-\alpha )^{t-a-1}\).



We just give the proof of (i), (iii), (v), and (vi). The other parts are direct and easy.
  • The proof of (i):
    $$\begin{aligned} \bigl({}^{\mathrm{CF}}_{a}\nabla^{-\alpha} (1- \alpha)^{t}\bigr) (t) =& \frac{1-\alpha }{B(\alpha)}(1-\alpha)^{t}+ \frac{\alpha}{B(\alpha)}\sum_{s=a+1}^{t} (1- \alpha)^{s} \\ =&\frac{1-\alpha}{B(\alpha)}(1-\alpha)^{t}+ \frac{\alpha}{B(\alpha )}(1- \alpha)^{a+1} \frac{1- (1-\alpha)^{t-a}}{1-(1-\alpha)} \\ =& \frac{1}{B(\alpha)} \bigl[(1-\alpha)^{t+1}+(1- \alpha)^{a+1}-(1-\alpha )^{t+1}\bigr] \\ =&\frac{(1-\alpha)^{a+1}}{B(\alpha)}. \end{aligned}$$
  • The proof of (iii):
    $$\begin{aligned} \bigl({}^{\mathrm{CF}} _{a}\nabla^{-\alpha} \nabla g \bigr) (t) =& \frac{1-\alpha}{B(\alpha )} \nabla g(t)+\frac{\alpha}{B(\alpha)}\sum _{s=a+1}^{t} \nabla g(s) \\ =& \frac{1-\alpha}{B(\alpha)} \nabla g(t)+ \frac{\alpha}{B(\alpha)} \bigl[g(t)-g(a) \bigr] \\ =& \nabla\Biggl[\frac{1-\alpha}{B(\alpha)} g(t)+\frac{\alpha}{B(\alpha)} \sum _{s=a+1}^{t} g(s)\Biggr]-\frac{\alpha}{B(\alpha)}g(a) \\ =& \bigl(\nabla{}^{\mathrm{CF}}_{a}\nabla^{-\alpha} g\bigr) (t)-\frac{\alpha}{B(\alpha)} g(a). \end{aligned}$$
  • The proof of (v): By (iv) we have
    $$\begin{aligned} \bigl({}^{\mathrm{CFR}} _{a}\nabla^{\alpha} (1- \alpha)^{t}\bigr) (t) =& B(\alpha) \nabla\sum _{s=a+1}^{t} (1-\alpha)^{t-s}(1- \alpha)^{s} \\ =& B(\alpha) \nabla\bigl[(t-a) (1-\alpha)^{t}\bigr]\\ =&B( \alpha)\bigl[(1-\alpha )^{t-1}-\alpha(t-a) (1-\alpha)^{t-1} \bigr] \\ =& B(\alpha) (1-\alpha)^{t-1}\bigl[1-\alpha(t-a)\bigr]. \end{aligned}$$
  • The proof of (vi):
    $$\begin{aligned} \bigl({}^{\mathrm{CFR}} _{a}\nabla^{\alpha} 1\bigr) (t) =& B(\alpha)\nabla_{t} \sum_{s+a+1}^{t} (1-\alpha)^{t-s} \\ =& B(\alpha) \Biggl[1+ \sum_{s=a+1}^{t-1} \nabla_{t} (1-\alpha)^{t-s}\Biggr] \\ =& B(\alpha) \Biggl[1-\alpha\sum_{s=a+1}^{t-1} (1-\alpha)^{t-1-s}\Biggr] =B(\alpha) \Biggl[1-\alpha\sum _{i=0}^{t-a-2}(1-\alpha)^{i}\Biggr] \\ =& B(\alpha) \biggl[1-\alpha\frac{1-(1-\alpha)^{t-a-1}}{1-(1-\alpha)}\biggr]\\ =& B(\alpha) (1- \alpha)^{t-a-1}. \end{aligned}$$

Definition 3

See also [23]

Let \(y:\mathbb{N}_{a}\rightarrow\mathbb{R}\) be a function satisfying \(y(a) \geq0\). Then y is called an α-increasing function on \(\mathbb{N}_{a}\) if
$$y(t+1)\geq\alpha y(t) \quad\mbox{for all } t \in\mathbb{N}_{a}. $$

Note that if y is increasing on \(\mathbb{N}_{a}\), then y is an α-increasing function on \(\mathbb{N}_{a}\), and if \(\alpha=1\), then the increasing and α-increasing concepts coincide.

Definition 4

See also [23]

Let \(y:\mathbb{N}_{a}\rightarrow\mathbb{R}\) be a function satisfying \(y(a) \leq0\). Then y is called an α-decreasing function on \(\mathbb{N}_{a}\), if
$$y(t+1)\leq\alpha y(t) \quad\mbox{for all } t \in\mathbb{N}_{a}. $$

Note that if y is decreasing on \(\mathbb{N}_{a}\), then y is an α-decreasing function on \(\mathbb{N}_{a}\), and if \(\alpha=1\), then the decreasing and α-decreasing concepts coincide.

3 The monotonicity results

Theorem 1

Let \(y:\mathbb{N}_{a-1}\rightarrow\mathbb{R}\). Suppose that, for \(0<\alpha\leq1\),
$$\bigl({}^{\mathrm{CFR}}_{a-1}\nabla^{\alpha}y\bigr) (t)\geq0, \quad t \in\mathbb{N}_{a-1}. $$
Then \(y(t)\) is α-increasing.


Rewrite \(({}^{\mathrm{CFR}}_{a-1}\nabla^{\alpha}y)(t)=B(\alpha) \nabla S(t)\), where \(S(t)= \sum_{s=a}^{t} y(s)(1-\alpha)^{t-s}\). By the assumption we have
$$ S(t)-S(t-1)=y(t)-\frac{\alpha}{1-\alpha}\sum _{s=a}^{t-1} y(s) (1-\alpha )^{t-s}\geq0. $$
Substituting \(t=a\) into (11), we see that \(y(a)\geq0\). Substituting \(t=a+1\) into (11), we get
$$y(a+1)-\frac{\alpha}{1-\alpha}y(a) (1-\alpha)=y(a+1)-\alpha y(a)\geq0, $$
and hence \(y(a+1)\geq\alpha y(a)\geq0\). We shall proceed by induction on \(t \in\mathbb{N}_{a}\). Assume that \(y(i+1)\geq\alpha y(i)\geq0\) for all \(i< t\). Let us show that \(y(t+1)\geq\alpha y(t)\). Replacing t with \(t+1\) in (11), we have
$$y(t+1) \geq\frac{\alpha}{1-\alpha}\bigl[(1-\alpha)^{t+1-a}y(a)+ (1-\alpha )^{t-a}y(a+1)+\cdots+(1-\alpha)y(t)\bigr], $$
$$y(t+1) \geq\bigl[\alpha(1-\alpha)^{t-a}y(a)+\alpha(1-\alpha )^{t-a-1}y(a+1)+\cdots+ \alpha y(t)\bigr]\geq\alpha y(t), $$
which completes the proof. □

Using Proposition 1 and Theorem 1, we can state the following Caputo fractional difference monotonicity result.

Theorem 2

Let a function \(y:\mathbb{N}_{a-1}\rightarrow\mathbb{R}\) satisfy \(y(a) \geq0\). Suppose that, for \(0<\alpha\leq1\),
$$\bigl({}^{\mathrm{CFC}}_{a-1}\nabla^{\alpha}y\bigr) (t)\geq \frac{-B(\alpha)}{1-\alpha} f(a-1) (1-\alpha)^{t-a+1},\quad t\in\mathbb{N}_{a-1}. $$
Then \(y(t)\) is α-increasing.

Theorem 3

Let a function \(y:\mathbb{N}_{a-1}\rightarrow\mathbb{R}\) satisfy \(y(a) \geq0\) and be increasing on \(\mathbb{N}_{a}\). Then, for \(0<\alpha \leq1\),
$$\bigl({}^{\mathrm{CFR}}_{a-1}\nabla^{\alpha}y\bigr) (t)\geq0,\quad t \in\mathbb{N}_{a-1}. $$


Again, rewriting \(({}^{\mathrm{CFR}} _{a-1}\nabla^{\alpha}y)(t)=B(\alpha) \nabla S(t)\), where \(S(t)= \sum_{s=a}^{t} y(s)(1-\alpha)^{t-s}\), it suffices to show that \(S(t)\) is increasing on \(\mathbb{N}_{a}\). Substituting \(t=a\) into (11) implies that \(S(a)- S(a-1)=y(a)\geq0\) by assumption. Assume that \(S(i)-S(i-1)\geq0\) for all \(i< t\). We shall show that \(S(t)-S(t-1)\geq0\). By the assumption that y is increasing we conclude that \(y(t)\geq y(t-1)\geq y(a)\geq0\) for all \(t =a+k\in \mathbb{N}_{a}\). Now, we have
$$\begin{aligned} S(t)-S(t-1) =& y(t)-\frac{\alpha}{1-\alpha}\sum _{s=a}^{t-1}y(s) (1-\alpha)^{t-s} \\ =& y(t)-\alpha y(t-1)-\frac{\alpha}{1-\alpha}\sum _{s=a}^{t-2}y(s) (1-\alpha)^{t-s} \\ =& y(t)-\alpha y(t-1) \\ &{}-\frac{\alpha}{1-\alpha} \Biggl[\sum_{s=a}^{t-2} \bigl(y(s)-y(t-1)\bigr) (1-\alpha)^{t-s} +\sum _{s=a}^{t-2}y(t-1) (1-\alpha)^{t-s} \Biggr] \\ \geq& y(t)-\alpha y(t-1)-\frac{\alpha}{1-\alpha}\sum _{s=a}^{t-2}y(t-1) (1-\alpha)^{t-s} \\ =& y(t)- y(t-1) +y(t-1)-\frac{\alpha}{1-\alpha}y(t-1)\sum _{s=a}^{t-1}(1-\alpha)^{t-s} \\ \geq& y(t-1) \Biggl[1-\frac{\alpha}{1=\alpha}\sum _{s=a}^{t-1}(1-\alpha )^{t-s} \Biggr] \\ =& y(t-1) \Biggl[1-\alpha(1-\alpha)^{k}\sum _{s=1}^{k}(1-\alpha )^{-s} \Biggr] \\ =& y(t-1) (1-\alpha)^{k}\geq0, \end{aligned}$$
which completes the proof. □

Similarly, can prove the following result.

Theorem 4

Let a function \(y:\mathbb{N}_{a-1}\rightarrow\mathbb{R}\) satisfy \(y(a)>0\) and be strictly increasing on \(\mathbb{N}_{a}\). Then, for \(0<\alpha\leq1\),
$$\bigl({}^{\mathrm{CFR}}_{a-1}\nabla^{\alpha}y\bigr) (t)> 0,\quad t\in \mathbb{N}_{a-1}. $$

The following results can also be proved in a similar way.

Theorem 5

Let a function \(y:\mathbb{N}_{a-1}\rightarrow\mathbb{R}\) satisfy \(y(a) \leq0\). Suppose that, for \(0<\alpha\leq1\),
$$\bigl({}^{\mathrm{CFR}}_{a-1}\nabla^{\alpha}y\bigr) (t)\leq0,\quad t \in\mathbb{N}_{a-1}. $$
Then \(y(t)\) is α-decresing.

Theorem 6

Let a function \(y:\mathbb{N}_{a-1}\rightarrow\mathbb{R}\) satisfy \(y(a) \leq0\) and be decreasing on \(\mathbb{N}_{a}\). Then, for \(0<\alpha \leq1\),
$$\bigl({}^{\mathrm{CFR}}_{a-1}\nabla^{\alpha}y\bigr) (t)\leq0,\quad t \in\mathbb{N}_{a-1}. $$

4 Application: mean value theorem

We know that \(({}^{\mathrm{CF}}_{a}\nabla^{-\alpha}{}^{\mathrm{CFR}}_{a}\nabla^{\alpha}y)(t)=y(t)\). However, the next result, which provides an initial condition \(y(a)\), will be a tool to prove our fractional difference mean value theorem.

Theorem 7

For \(0<\alpha\leq1\), we have
$$ \bigl({}^{\mathrm{CF}}_{a}\nabla^{-\alpha}{}^{\mathrm{CFR}}_{a-1} \nabla^{\alpha}y\bigr) (t)=y(t)-\alpha y(a). $$


By definition and Lemma 1 we have
$$\begin{aligned} \bigl({}^{\mathrm{CF}}_{a}\nabla^{-\alpha}{}^{\mathrm{CFR}} _{a-1}\nabla^{\alpha}y\bigr) (t) =& {}^{\mathrm{CF}}_{a} \nabla^{-\alpha}\Biggl[B(\alpha) \nabla_{t} \sum _{s=a}^{t} y(s) (1-\alpha)^{t-s} \Biggr] \\ =& B(\alpha){}^{\mathrm{CF}}_{a}\nabla^{-\alpha} \nabla_{t}\Biggl[y(a) (1-\alpha )^{t-a}+\sum _{s=a+1}^{t} f(s) (1-\alpha)^{t-s} \Biggr] \\ =& B(\alpha) y(a) (1-\alpha)^{-a}{}^{\mathrm{CF}}_{a} \nabla^{-\alpha} \nabla (1-\alpha)^{t}+{}^{\mathrm{CF}}_{a} \nabla^{-\alpha}{}^{\mathrm{CF}}_{a}\nabla^{\alpha}y(t) \\ =& -\alpha B(\alpha) y(a) (1-\alpha)^{-a}{}^{\mathrm{CF}} _{a}\nabla^{-\alpha} (1-\alpha)^{t-1}+y(t) \\ =& y(t)-\alpha y(a). \end{aligned}$$
The proof is completed. □

Theorem 8

The fractional difference MVT

Let f and g be functions defined on \(\mathbb{N}_{a,b}\), where \(a \equiv b\) (mod 1). Assume that g is strictly increasing and \(\alpha\in(0,1)\). Then, there exist \(s_{1},s_{2} \in\mathbb {N}_{a,b}\) such that
$$ \frac{({}^{\mathrm{CFR}}_{a-1}\nabla^{\alpha}f)(s_{1})}{({}^{\mathrm{CFR}}_{a-1}\nabla^{\alpha}g)(s_{1})}\leq\frac{f(b)-\alpha f(a)}{g(b)-\alpha g(a)}\leq\frac {({}^{\mathrm{CFR}}_{a-1}\nabla^{\alpha}f)(s_{2})}{({}^{\mathrm{CFR}}_{a-1}\nabla^{\alpha}g)(s_{2})}. $$


We follow by contradiction. Suppose (14) is not true. Then, either
$$ \frac{f(b)-\alpha f(a)}{g(b)-\alpha g(a)}> \frac{({}^{\mathrm{CFR}}_{a-1}\nabla ^{\alpha}f)(t)}{({}^{\mathrm{CFR}}_{a-1}\nabla^{\alpha}g)(t)}\quad \mbox{for all } t \in \mathbb{N}_{a,b}, $$
$$ \frac{f(b)-\alpha f(a)}{g(b)-\alpha g(a)}< \frac{({}^{\mathrm{CFR}}_{a-1}\nabla ^{\alpha}f)(t)}{({}^{\mathrm{CFR}}_{a-1}\nabla^{\alpha}g)(t)}\quad \mbox{for all } t \in \mathbb{N}_{a,b}. $$
Since g is strictly increasing, by Theorem 4 we conclude that \(({}^{\mathrm{CFR}}_{a}\nabla^{\alpha}g)(t)>0\). Hence, (15) becomes
$$\frac{f(b)-\alpha f(a)}{g(b)-\alpha g(a)}\bigl({}^{\mathrm{CFR}}_{a-1}\nabla^{\alpha}g \bigr) (t) > \bigl({}^{\mathrm{CFR}}_{a-1}\nabla^{\alpha}f\bigr) (t). $$
Applying the fractional sum operator evaluated at \(t=b\) to both sides of the last inequality and using (13) in Theorem 7 lead to
$$f(b)-\alpha f(a)> f(b)-\alpha f(a), $$
which is a contradiction. In a similar way, we can show that (16) leads to a contradiction. This completes the proof. □

Remark 3

  • Since \(\alpha<1\) and g is strictly increasing, clearly, the quantity \(g(b)-\alpha g(a)\) in Theorem 8 is not equal to zero.

  • The corresponding coefficient of \(g(b)-\alpha g(a)\) in the classical discrete fractional calculus in case of delta analysis is of the form \(g(b)-\frac{\Gamma(b-a+\alpha)}{\Gamma(\alpha)\Gamma (b-a+1)}g(a)\) [23], where both \(\frac{\Gamma(b-a+\alpha )}{\Gamma(\alpha)\Gamma(b-a+1)}\) and α tend to 1 as \(\alpha \rightarrow1\). The coefficient in this paper for discrete fractional differences with discrete exponential kernels is simpler, free of \(\Gamma(\alpha)\), and does not depend on the end points a and b. This reflects the absence of the memory in the corresponding fractional sum.

  • The results in this paper can be carried over the right fractional case by using the action of the Q-operator.


Open Access This article is distributed under the terms of the Creative Commons Attribution 4.0 International License (, which permits unrestricted use, distribution, and reproduction in any medium, provided you give appropriate credit to the original author(s) and the source, provide a link to the Creative Commons license, and indicate if changes were made.

Authors’ Affiliations

Department of Mathematics and General Sciences, Prince Sultan University
Department of Mathematics, Çankaya University
Institute of Space Sciences


  1. Podlubny, I: Fractional Differential Equations. Academic Press, San Diego (1999) MATHGoogle Scholar
  2. Samko, G, Kilbas, AA, Marichev, S: Fractional Integrals and Derivatives: Theory and Applications. Gordon and Breach, Yverdon (1993) MATHGoogle Scholar
  3. Kilbas, AA, Srivastava, MH, Trujillo, JJ: Theory and Application of Fractional Differential Equations. North-Holland Mathematics Studies, vol. 204. North-Holland, Amsterdam (2006) MATHGoogle Scholar
  4. Magin, RL: Fractional Calculus in Bioengineering. Begell House Publishers, Danbury (2006) Google Scholar
  5. Bozkurt, F, Abdeljawad, T, Hajji, MA: Stability analysis of a fractional order differential equation model of a brain tumor growth depending on the density. Appl. Comput. Math. 14(1), 50-62 (2015) MathSciNetMATHGoogle Scholar
  6. Abdeljawad, T: On Riemann and Caputo fractional differences. Comput. Math. Appl. 62(3), 1602-1611 (2011) MathSciNetView ArticleMATHGoogle Scholar
  7. Atıcı, FM, Eloe, PW: A transform method in discrete fractional calculus. Int. J. Differ. Equ. 2(2), 165-176 (2007) MathSciNetGoogle Scholar
  8. Atıcı, FM, Eloe, PW: Initial value problems in discrete fractional calculus. Proc. Am. Math. Soc. 137, 981-989 (2009) MathSciNetMATHGoogle Scholar
  9. Atıcı, FM, Eloe, PW: Discrete fractional calculus with the nabla operator. Electron. J. Qual. Theory Differ. Equ. 2009(Spec. Ed. I), Article ID 3 (2009) MathSciNetMATHGoogle Scholar
  10. Atıcı, FM, Şengül, S: Modelling with fractional difference equations. J. Math. Anal. Appl. 369, 1-9 (2010) MathSciNetView ArticleMATHGoogle Scholar
  11. Miller, KS, Ross, B: Fractional difference calculus. In: Proceedings of the International Symposium on Univalent Functions, Fractional Calculus and Their Applications, pp. 139-152 (1989) Google Scholar
  12. Abdeljawad, T, Baleanu, D: Fractional differences and integration by parts. J. Comput. Anal. Appl. 13(3), 574-582 (2011) MathSciNetMATHGoogle Scholar
  13. Bastos, NRO, Ferreira, RAC, Torres, DFM: Discrete-time fractional variational problems. Signal Process. 91(3), 513-524 (2011) View ArticleMATHGoogle Scholar
  14. Gray, HL, Zhang, NF: On a new definition of the fractional difference. Math. Comput. 50(182), 513-529 (1988) MathSciNetView ArticleMATHGoogle Scholar
  15. Abdeljawad, T, Atici, F: On the definitions of nabla fractional differences. Abstr. Appl. Anal. 2012, Article ID 406757 (2012). doi:10.1155/2012/406757 MATHGoogle Scholar
  16. Abdeljawad, T: On delta and nabla Caputo fractional differences and dual identities. Discrete Dyn. Nat. Soc. 2013, Article ID 406910 (2013) MathSciNetGoogle Scholar
  17. Abdeljawad, T: Dual identities in fractional difference calculus within Riemann. Adv. Differ. Equ. 2013, Article ID 36 (2013) MathSciNetView ArticleGoogle Scholar
  18. Abdeljawad, T, Jarad, F, Baleanu, D: A semigroup-like property for discrete Mittag-Leffler functions. Adv. Differ. Equ. 2012, Article ID 72 (2012) MathSciNetView ArticleMATHGoogle Scholar
  19. Wu, GC, Baleanu, D, Zeng, SD, Deng, ZG: Discrete fractional diffusion equation. Nonlinear Dyn. 80, 281-286 (2015) MathSciNetView ArticleMATHGoogle Scholar
  20. Wu, GC, Baleanu, D, Zeng, SD: Several fractional differences and their applications to discrete maps. J. Appl. Nonlinear Dyn. 4, 339-348 (2015) View ArticleMATHGoogle Scholar
  21. Caputo, M, Fabrizio, M: A new definition of fractional derivative without singular kernel. Prog. Fract. Differ. Appl. 1(2), 73-85 (2015) Google Scholar
  22. Abdeljawad, T, Baleanu, D: On fractional derivatives with exponential kernel and their discrete versions. arXiv:1606.07958 (2016). To appear in Rep. Math. Phys.
  23. Atıcı, FM, Uyanik, M: Analysis of discrete fractional operators. Appl. Anal. Discrete Math. 9, 139-149 (2015) MathSciNetView ArticleGoogle Scholar
  24. Dahal, R, Goodrich, CS: A monotonicity result for discerete fractional difference operators. Arch. Math. (Basel) 102, 293-299 (2014) MathSciNetView ArticleMATHGoogle Scholar
  25. Jia, B, Erbe, L, Peterson, A: Two monotonicity results for nabla and delta fractional differences. Arch. Math. (Basel) 104(6), 589-597 (2015). doi:10.1007/s00013-015-0765-2 MathSciNetView ArticleMATHGoogle Scholar
  26. Erbe, L, Goodrich, CS, Jia, B, Peterson, A: Survey of the qualitative properties of fractional difference operators: monotonicity, convexity, and asymptotic behavior of solutions. Adv. Differ. Equ. 2016, Article ID 43 (2016). doi:10.1186/s13662-016-0760-3 MathSciNetView ArticleGoogle Scholar
  27. Goodrich, CS: A convexity result for fractional differences. Appl. Math. Lett. 35, 58-62 (2014) MathSciNetView ArticleMATHGoogle Scholar
  28. Goodrich, C, Peterson, AC: Discrete Fractional Calculus. Springer, Berlin (2015). doi:10.1007/978-3-319-25562-0 View ArticleMATHGoogle Scholar
  29. Bohner, M, Peterson, A: Advances in Dynamic Equations on Time Scales. Birkhäuser, Boston (2003) View ArticleMATHGoogle Scholar


© The Author(s) 2017